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The X-ray radiation from computed tomography (CT) brought us the potential risk. Simply decreasing the dose makes the CT
images noisy and diagnostic performance compromised. Here, we develop a novel denoising low-dose CT image method. Our
framework is based on an improved generative adversarial network coupling with the hybrid loss function, including the
adversarial loss, perceptual loss, sharpness loss, and structural similarity loss. Among the loss function terms, perceptual loss
and structural similarity loss are made use of to preserve textural details, and sharpness loss can make reconstruction images
clear. The adversarial loss can sharp the boundary regions. The results of experiments show the proposed method can effectively
remove noise and artifacts better than the state-of-the-art methods in the aspects of the visual effect, the quantitative

measurements, and the texture details.

1. Introduction

During recent years, the computed X-ray tomography (CT)
has been one of the important practical imaging methods,
which has been widely utilized in medical diagnosis. The
anatomical structure with high temporal-spatial resolution
could be found from CT images, and numerous researchers
benefit from CT scans, especially in pathologic diagnosis and
treatment domains. However, with the widely use of medical
CT, the potential risk of ionizing X-ray radiation to patients
has aroused public concern [1, 2].

According to the famous ALARA theory, the minimiza-
tion of X-ray became one of the research hotspots in CT
image fields. Among the many methods, the most popular
approach to reduce radiation is reducing X-ray flux by short-
ening the exposure time and cutting down the operating the
X-ray tube current. Unfortunately, the lower the X-ray flux,
the noisier the generated CT image. Therefore, one way to
address the problem is to reduce the image noise by the algo-
rithm. The common method to reduce noise is filtering. But

it is an ill-posed and challenging problem [3-5]. Recently,
deep learning techniques have shown their superiority in
denoising the image [6-11]. Various denoising models based
on convolutional neural networks (CNNs) have been pro-
posed with different network architecture for LDCT denois-
ing [1, 12-14], which include 2D CNN:s [2, 12], 3D CNN [1],
residual encoder-decoder CNN [13], and cascaded CNN
[14]. Besides, different loss functions, such as the mean
squared error (MSE) [1, 12-14], adversarial loss [1, 2], and
perceptual loss [2], are presented in the denoising model.
Different network architectures and loss function may have
a profound impact upon the learning process of the network.
According to literature [8], the complexity of the denoising
model is determined by the network architecture, and the
loss function is related to what the denoising model learns
from images and data.

In practice, we found the denoising methods with gener-
ative adversarial network could get better results than those
with CNNs. However, these methods have difficulties of net-
work training and the gradients disappearance [15]. To solve
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this problem, here, we propose an improved GAN with the
Wasserstein distance (SSWGAN) to reduce the noise of the
low-dose CT images. Specifically, denoising low-dose CT
images can be looked as a translation of low-dose CT images
into normal-dose CT (NDCT) images. Our proposed GAN
could estimate the distance of distribution between low-
dose CT and normal-dose CT. In the process, the perceptual
loss based on VGG could preserve as many image details as
possible when suppressing the noise. The SSIM loss pre-
serves the structural and textural details after the denoising
process, and L1 loss keeps the sharpness of the denoised
image, especially in the low contrast regions. In summary,
our contributions are as follows:

(i) An improved WGAN network is introduced as the
denoising model

(ii) A novel hybrid loss function is introduced to
enhance the denoising model performance

(iii) Compared with a few latest network models, we
found our disadvantages and presented the Q-AE
model to improve our generator architecture

2. Related Work

2.1. LDCT Denoising Methods. Generally, the LDCT denois-
ing methods can be divided into three classes:

(a) Projection Filtering [16-18]. Their advantage is the
higher computation efficiency. However, they always
result in the loss of spatial resolution and edge blur
in images

(b) Iteration Reconstruction [19-25]. They outperform
in increasing the signal to noise ratio, but they need
more computing resources and the accuracy model
of the noises

(c) Postprocessing [26-28]. They can be performed on
the images directly and have the lower calculating
costs so that they have been implied in the CT imag-
ing system and analysis system. There are some
residual problems in the processed images yet

With the rapid development of deep learning techniques,
associated denoising models have achieved an impressive
performance of denoising LDCT images [29, 30]. The learn-
ing process includes two major components: network archi-
tecture and loss function. The architecture determines the
complexity of the denoising model and the loss function
controls what the denoising model learn. Recently, lots of
methods were proposed. Yi etal [31] summarized these
methods and made a comprehensive comparison. Next, we
mainly described the approaches with novel network archi-
tecture and the ones with improved loss function,

(1) Network Architecture. Chen et al. [32] first proposed
the low-dose CT image denoising method based on
convolution neural network (CNN), who obtained
better effects in visual sense and measurements.

Computational and Mathematical Methods in Medicine

Then, Chen et al. [13] improved the network struc-
ture and they developed a residual encoder CNN
(RED-CNN). The results were better than the origi-
nal CNN. However, their network was complex
and time-consuming. To overcome the disadvan-
tages of RED-CNN, Zhang et al. [33] proposed a
novel network. Compared with RED-CNN, there
were less parameters in their network and their
results were better

(2) Loss Function. Minimizing the MSE based on the dif-
ference between the denoised images and the NDCT
easily led to overblurred [1, 2], which was proved to
correlate poorly with the human perception of image
quality [34, 35]. According to literature [8], the opti-
mal MSE estimator suffered from the regression-to-
mean problem, which made denoised LDCT look
oversmoothed, unnatural, and implausible. The
adversarial loss (AL) could result in a sharp image
locally indistinguishable from the NDCT image but
it does not exactly correspond to the NDCT image
globally [36] since the AL optimizes the distance
between distributions of the denoised results and
NDCT images. Later, many methods presented the
perceptual loss (PL) to make denoised images look
more similar to NDCT images in the high-level fea-
ture space [2]. However, there are other features to
be applied in the images, such as the sharpness and
structural similarity index. Here, we extend the
wise-used hybrid loss function including AL and
PL. Our proposed hybrid loss function includes four
terms: AL, PL, sharpness loss, and similarity loss to
enhance the denoising performance more effectively

2.2. Wasserstein GAN Framework. Recently, the GAN [34]
architecture was developed as a novel way to model the dis-
tribution of the given data. But it has the difficulties of net-
work training and the gradient disappearance [8]. To deal
with these limitations, the GAN with the Wasserstein dis-
tance (WGAN) was widely used [37, 38], which made use
of the Wasserstein distance as the measurement of the differ-
ence between the distribution loss and perceptual loss [37].
Besides, gradient penalty was employed as a regular acceler-
ated method for training network (WGAN-GP) [39]. It was
important that WGAN-VGG [40] was an approach for low-
dose CT, which achieved promising denoised CT images
[41], and the perceptual loss was utilized by VGG [41] that
pretrained on natural images. WGAN-VGG could overcome
the problem of image overblur. Also, SMGAN [42] com-
bined the L1 loss and the multiscale structure loss so that
it outperformed the WGAN-VGG in convergence accuracy
[40]. But sometimes, the reconstruction images were fuzzy.
Besides, the gradient penalty term weakened the express
ability of GAN [43]. Furthermore, researchers found the
denoising model without deconvolutional layers, which is
the transpose of convolutional layers [44], implies that the
input and the output of the denoising model may have dif-
ferent sizes. To keep the size of denoised CT images equal
to that of the input, U-net architecture are used in denoising
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F1Gure 1: The framework of our SSWGAN network for denoising LDCT images.

LDCT images [45-51]. Shan et al. [8] proposed the convey-
ing path-based convolutional U-net denoising model, which
is called as CPCE. Fan et al. [15] improved the method and
proposed a denoising framework, who replaced the inner
product in current artificial neurons with a quadratic opera-
tion on input data. Their method is called the Q-AE.

3. Denoising Framework

3.1. Principle and Model of Denoising. Generally, the noise
distribution in CT images is treated as the combination of
quantum Poisson and electronic Gaussian noise. But the
noise in reconstruction images is complex, and its distribu-
tion is always nonuniform. Besides, the relationship between
NDCT and LDCT cannot be described with an accuracy
mathematical model. So only with conventional methods,
we could hardly obtain better results of denoising LDCT
images. Fortunately, the uncertain noise model can be esti-
mated by deep learning techniques, because of its strong
ability of capturing features.

Denoising LDCT images can be represented as the below
model. Assume that x € RN*N represents the NDCT image
and y € RV represents the corresponding LDCT, our goal
is to confirm a function G which maps y to x:

G:y—x. (1)

The generative and adversarial abilities of GAN can be
applied to extract features from deep levels with the spatial
information of reconstruction images, so that GAN can
identify the noise and effective image details. GAN usually
includes a pair of neural networks: a generator G and a dis-
criminator D [52, 53]. The generator G can learn the real
distribution of NDCT, and the discriminator D can make
the best effort to distinguish between real or fake samples
generated by G. This pair of networks is often trained alter-
natively, so the competition encourages the generated sam-
ples to be hardly distinguished from real ones. Finally, we
could obtain CT images of better quality.

3.2. The Structure of our GAN. Mathematically, G and D
could be formed as a two-role minimax game:

minmax

Ex~Pdm(x) [lOg D(x)] + Ey~Py(y) [log (1 - D(G(y)))]’

(2)

GD

where E represents the expectation value, Pg,, and P, repre-
sent real and noise distributions, respectively. In the regular
GAN, the Jensen-Shannon (JS) divergence is utilized to
compute the similarity of two kinds of data distribution
[54]. But, as mentioned above, the JS divergence easily
results in gradient vanishing. Here, we adopt the Wasser-
stein distance [38] instead of JS divergence to ensure the
training stability of the neural network. The main structure
of our network is shown in Figure 1. As shown in the figure,
there are four parts in our SSWGAN network, which is the
generator, discriminator, sharpness detection network, and
hybrid loss function, respectively.

3.2.1. The Architecture of our Generator. As shown in
Figure 2, the proposed generator G is different from the tradi-
tional noise reduction models. Here, we utilize the ADNet [55]
with 17 layers as our generator. There are four parts in our
generator network, which represents sparse block (SB), feature
enhance block (FEB), attention block (AB), and reconstruc-
tion block (RB), respectively. In particular, SB could reduce
noise with dilated and common convolution to achieve the
optimal balance between performance and efficiency. FEB
combines the global and local feature information to improve
the representation ability of models. AB is often applied to
extract the implied noise in the complex background accu-
rately. Utilizing both FEB and AB could both improve the effi-
ciency and reduce the complexity of training the network
model. RB generates the NDCT images of better quality with
the obtained noise map and given LDCT images.

3.2.2. The Architecture of our Discriminator. As shown in
Figure 3, the input of the discriminator is the NDCT gener-
ated by G and the real NDCT. Our discriminator D is
designed to distinguish the real one from the two NDCT
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F1GURE 2: The framework of our generator. As shown in the figure, it could learn the noise and then generate the denoised output according

to the input LDCT.
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F1GURE 3: The framework of our discriminator. As shown in the figure, it could learn to judge that if the input is generated by G or a real

NDCT image.

images. The discriminator includes 6 convolution layers and 3
full-connected layers. Among the convolution layers, there are
64 filters in the first two layers, 128 filters in the middle two
layers, and 256 filters in the final two layers. After each convo-
lution operation, there is an activation function ReLU [56].
The step size of convolution is 1 and the filter size is 3 x 3.
The end of the discriminator is fully-connected layers, and
there are 1024 outputs, 512 outputs, and 1 output, respectively.
With the discriminator, we could obtain the difference of the
generated NDCT and real NDCT.

3.2.3. Sharpness Detection Network. Numerous noise reduc-
tion methods are poor in fuzzy edge. Traditional nonlinear
optimization algorithms are to average adjacent pixels or uti-
lize the self-similar patch. However, when the noise level is
high, these optimization algorithms are not efficient because
of the high similarity between noise and edge. Although the
discriminator of GAN could output more clear images and
distinguished images from the candidates, it is not efficient
in the low contrast regions because the antagonism loss used
in GAN could not ensure that the images are able to be
reconstructed accurately.

Recently, a few more flexible and complex methods
were proposed, which mainly made use of the statistical
differences of the specific properties between the fuzzy
regions and the sharp regions, such as the gradient infor-
mation [57] and discrete cosine coefficient [58]. Other
methods utilized the sparse coding way to decompose local
paths and obtained sharper images by quantifying the
local sharpness. Also, the other methods could generate
sharp images, for example, the one based on depth map

estimation [59]. It is hard to make a mark in the low con-
trast regions of medical images, so we introduce a sharpness
detection network, represented by S, and use the method pro-
posed by Yi and Eramian [60] because of its strong sensitivity
in low contrast regions. When implementing SSWGAN, we
transfer the NDCT results generated by G to the sharpness
detection network S and compare the sharpness images of
our generated results with the images of real ones. Because
the sharpness images are shown with grayscale, the pixel
values represent the local sharpness. With the sharpness
images, we can calculate the mean square error between the
two sharpness images and update the weight of network
according to the calculated results.

3.2.4. Hybrid Loss Function. The main challenge of the train-
ing network is to preserve as much texture detail as possible
when reducing noise. The hybrid loss function can keep the
training process of SSWGAN within bounds. With the hybrid
loss function, the differences between the generated NDCT
images and real NDCT images can be measured and the
weights of generator G can be updated by back propagation
(BP). In order to improve the denoising network, our hybrid
loss function includes four parts, which is adversarial loss, per-
ceptual loss, sharpness loss, and structural similarity loss,
respectively.

(1) Adversarial Loss. As described in Ref [2], minimizing the
least-squares loss could approximate the distribution of LDCT
according to the NDCT, and finally, we could obtain better
denoised images. However, it does not match well the corre-
sponding NDCT in detail. Here, we introduce the adversarial



Computational and Mathematical Methods in Medicine 5

Generator loss

0 10 20 30 40 50 60 70 80 90 100

Epoch
(a)
0
-0.2
-0.4 |
o -0.6
Q
g
2 -08--
2
(=}
-
§ C12 AR
3
= -14
MY | P T Lo
B L R A -
-2 | T I | T | I | |
0 10 20 30 40 50 60 70 8 90 100
Epoch
(b)
10 . .
e
2 64 L L o L
2 . )
i . . . .
2 : :
g a4 L S L S
I | |
5 : :
A 2 e [
o ... L G G G
-2 1 I I I I
0 20 40 60 80 100
Epoch
()

F1GURE 4: The training curves for different terms of our loss function, which is generator loss (a), Wasserstein distance (b), and discriminator
loss (c).



Computational and Mathematical Methods in Medicine

LDCT NDCT BM3D CNN200 WGAN  SMGAN Ours

F1GURE 5: Denoising results of the different algorithm on the MDLCT dataset. From left to right, the subgraph indicates the detail of
different images: the low-dose CT (LDCT), normal-dose CT (NDCT), BM3D, CNN200, WGAN, SMGAN, and our framework.
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FI1GURE 6: Denoising results of the different algorithm on the lung CT images dataset. From left to right, the subgraph indicates the detail of
different images: the low-dose CT (LDCT), normal-dose CT (NDCT), BM3D, CNN200, WGAN, SMGAN, and our framework.
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FI1GURE 7: Denoising results of the different algorithm on the Piglet CT images dataset. From left to right, the subgraph indicates the detail of
different images: the low-dose CT (LDCT), normal-dose CT (NDCT), BM3D, CNN200, WGAN, SMGAN, and our framework.
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F1GURE 8: Denoising results of the different algorithm on the thoracic CT images dataset. From left to right, the subgraph indicates the detail
of different images: the low-dose CT (LDCT), normal-dose CT (NDCT), BM3D, CNN200, WGAN, SMGAN, and our framework.

TaBLE 1: Quantitative results for Figure 5 (the results of MDLCT dataset) utilizing different methods. Low dose indicates the noisy low-dose
images, and others are the results of different methods.

Quantitative measurements LDCT BM3D CNN200 WGAN SMGAN Ours

PSNR/dB 24.4411 25.4434 27.8083 28.1414 27.5667 28.8961
SSIM 0.7882 0.7937 0.8362 0.8428 0.8394 0.8596
FSIM 0912 0.9306 0.9675 0.9484 0.9660 0.9762

TaBLE 2: Quantitative results for Figure 6 (the results of lung CT images dataset) utilizing different methods. Low dose indicates the noisy
low-dose images, and others are the results of different methods.

Quantitative measurements LDCT BM3D CNN200 WGAN SMGAN Ours
PSNR/dB 14.5911 24.7603 33.1926 33.7454 34.6880 35.5760
SSIM 0.2008 0.6750 0.8804 0.9281 0.9310 0.9533
FSIM 0.9232 0.9540 0.9683 0.9565 0.9630 0.9769
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TaBLE 3: Quantitative results for Figure 7 (the results of piglet CT images dataset) utilizing different methods. Low dose indicates the noisy

low-dose images, and others are the results of different methods.

Quantitative measurements LDCT BM3D CNN200 WGAN SMGAN Ours
PSNR/dB 39.93 41.46 44.18 4431 44.83 45.10
SSIM 0.9705 0.9733 0.9794 0.9802 0.9816 0.9885
FSIM 0.9155 0.9422 0.9614 0.9550 0.9677 0.9765

TaBLE 4: Quantitative results for Figure 8 (the results of thoracic CT images dataset) utilizing different methods. Low dose indicates the

noisy low-dose images, and others are the results of different methods.

Quantitative measurements LDCT BM3D CNN200 WGAN SMGAN Ours
PSNR/dB 25.66 30.86 33.57 33.60 33.73 34.03
SSIM 0.4485 0.6552 0.8001 0.8018 0.8049 0.8159
FSIM 0.9103 0.9486 0.9630 0.9565 0.9670 0.9744

loss to let our G generate denoised CT images as real as possi-
ble. Adversarial loss could be described as follows:

Loan(G. D) = ~E,[D(x)) + E,[D(G(2))] + Mg (| VD(®)], - 1)°]-

(3)

Here, the first two items represent the Wasserstein distance,
and the final item represents the gradient vanish one utilized for
network normalization. G and D are the generator and discrim-
inator. E is a set of data samples with specific distribution. X is
the generated NDCT image, and A is the penalty coefficient.
Minimize adversarial loss can keep more texture details.

(2) Perceptual Loss. The most important for medical images
is to keep the necessary features used in pathologic diagnosis
[61]. Mean squared error (MSE) is always utilized as the loss
function, which can result in images aliasing and details lost.
Perceptual loss can calculate the distance between the gener-
ated images and the real images in the feature space of
human perception instead of the distance in pixel space.
With the perceptual loss, the generated denoised NDCT
images could preserve the origin feature in real NDCT
images, which is not achieved with other loss function. The
perceptual loss can be described as follows:

Lnccpio (6) = By | [9(G0) - (02|, (4

where ¢ is the feature extractor, and ||-||; is the Frobenius
norm. Here, we adopt the pretrained VGG-19 network
[41] as the extractor, w, h, d represent the width, height,
and depth, respectively. Because VGG-19 takes the color
images as the input and CT images are often in grey scale,
we convert the CT images into RGB channel as the input
of VGG-19. There are 16 convolution layers and 3 full-
connected layers in VGG-19. Among the convolution layers,
the output of the 16th layer is the extracted feature of VGG

and is used as the loss function:
1
Lv6e(6) = By | 1 IVGG(G0) - VG| (5)

(3) Sharpness Loss. Here, we propose a sharpness loss used in
sharpness detection network to evaluate the sharpness of
images. The generator G is asked to not only generate the
image as similar to the real one as possible but also generate
the clear image as close to the real image as possible. The
sharpness loss is described in mathematical form:

Lonarp (G) = () [[IS(G(7)) = S@) 1] (6)

where |-, is L, distance.

(4) Similarity Loss. In medical CT images of different dose
levels, the feature correlation is usually strong. Structural
similarity index (SSIM) includes three parts, which is lumi-
nance, contrast, and structure. SSIM is a better evaluating
indicator than MSE and peak signal-to-noise ratio (PSNR)
in visual tasks. To measure the similarity between denoised

CT images and normal-dose version, the SSIM can be
described:

2 +C, 20,0,+C, o0,+C
SSIM(X,)/)_ A"lx[’ty 1 % x7y 2 xy 3

T2 2 2 2 >
pitp,+Cp ox+oy+Cy 00,+C

(7)

where y,, p1,, 0, 0, and 0, represent the means, standard
deviations, and the cross-correlation of two images, respec-
tively, and C,, C,, and C; are the constants. Besides, when
x and y are more similar, the value of SSIM is closer to 1.
Thus, we set the loss function for SSIM as follows:

Lgsin(G) =1 = SSIM(x, y). (8)
It is worth noting that the SSIM loss can be back-

propagated to update the parameters of our network, when
giving its property of differentiability. Here, we make use
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FIGURE 10: Denoising results of the different algorithm on the MDLCT dataset. From left to right, the subgraph indicates the detail of
different images: our framework, Q-AE, CPCE-3D, and NDCT images.

of SSIM to calculate the overall similarity between the
NDCT images and LDCT images.

In summary, the overall objective function of our
adapted SSWGAN is represented as follows:

Lsswean = @Lwcan(G D) + BLyerceptual (G) + VLsharp (G)
+ wLgg(G)s

©)

where a, f3, y, and w are weight coeflicients of the above four
terms.

4. Results and Discussion

4.1. Dataset for Experiments. To show the capacity of our
proposed denoising SSWGAN for LDCT image, four real
clinical CT image datasets were applied in our study in order
to avoid overfitting problem. The four datasets were
MDLCT dataset authorized by Mayo Clinic for “2016
NIH-AAPM-Mayo Clinic Low Dose CT Grand Challenge,”

TaBLE 5: Quantitative results for Figure 10 (the results of MDLCT
dataset) utilizing different methods. Low dose indicates the noisy
low-dose images, and others are the results of different methods.

Quantitative measurements Ours Q-AE CPCE-3D
PSNR/dB 28.8961 32.712 30.137
SSIM 0.8596 0.95266 0.905

the lung CT image dataset [62], the real piglet CT image
dataset [63], and the thoracic CT image dataset [64].

The MDLCT dataset includes 2378 NDCT images and
the corresponding simulated LDCT (quarter dose) from
ten anonymous patients [12]. The matrix of each CT images
is 512 x 512, and the thickness is 3.0 mm. Inspired by Ref.
[57], we divided the dataset into two groups. One of the
groups includes 2168 paired images from nine patients used
in the training process. The other one contains 210 paired
images from the last patient utilized as the test dataset. Dur-
ing the training stage, we extracted the patches whose size
was 55 x 55. Totally, we extracted approximately 106 paired
patches used for capturing local details instead of wasting
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huge memories, which improved the efficiency of the
training.

The lung CT images dataset is created from a patient
with the method proposed in Ref. [64], including 663 slices.
The CT scans of the patient are from The Cancer Imaging
Archive (TCIA). The piglet CT image dataset contains 900
images with 100KVp, 0.625mm thickness. The thoracic
CT image dataset includes 407 pairs of CT images from an
anthropomorphic thoracic phantom. The current tube for
NDCT and LDCT images is 480 m As and 60 m As, respec-
tively, with a peak voltage of 120 KVp and slice thickness of
0.75 mm. We randomly selected 30% of images using in the
test stage, and the size of each image is 512 x 512.

4.2. Parameter Setting. Our framework is implemented within
Python’s platform, Pytorch, and TensorFlow. All experiments
run on a personal computer (Intel i5 7400 with 16 G random
memory) and accelerated by a NVDIA RTX 2080 GPU with
16 G memory.

The generator and discriminator of our SSWGAN are
both optimized utilizing the adaptive momentum estimation
(Adam) proposed in Ref. [65]. The size of our mini-batch is
96. The learning rate is set to 10 used for training 100
epochs and set to 10 used for training 100 epochs. The
coeflicients of our hybrid loss function are set a=0.005,
B=0.0995, y=0.95, w=0.95, and A =10, respectively. As
shown in Figure 4, our network can be convergent after
training 100 epochs.

4.3. Image Evaluation Criteria. To evaluate the quality of
generated images, we adopt three objective evaluation cri-
teria, which are PSNR [12], SSIM [35], and feature similarity
index (FSIM) [66]. PSNR calculates the average pixel differ-
ence between the generated NDCT images and real NDCT
images, which is used for evaluating the denoising ability
of different methods. SSIM calculates the structural differ-
ence between the generated NDCT images and real NDCT
images, which is used for evaluating the similarity of two
images. FSIM calculates the feature difference between the
two images, which represents the feature-preserving ability
of different methods.

5. Experimental Results and Discussion

Note that, we describe the advantages of our algorithm
framework in two ways: (1) compared with other widely
used traditional LDCT denoising methods and (2) compared
with the latest LDCT denoising methods based on GAN.

TaBLE 6: Quantitative results for Figure 10 (the results of MDLCT
dataset) utilizing different methods. Low dose indicates the noisy
low-dose images, and others are the results of different methods.

Quantitative Our CPCE- Our

.. Q-AE .
measurements originals 3D  improvement
PSNR/dB 28.8961  32.712 30.137 32.848
SSIM 0.8596  0.95266 0.905 0.95649

5.1. The Comparison between Ours and the Traditional
LDCT Denoising Algorithms. To demonstrate, our proposed
method has advantages in denoising LDCT images, and we
compare ours with other widely used traditional LDCT
denoising methods including BM3D [67], CNN200 [12],
WGAN [2], and SMGAN [42]. Among these methods,
BM3D is one of the most popular traditional approaches uti-
lized for denoising LDCT images. CNN200, WGAN, and
SMGAN are three representative denoising methods based
on CNN. CNN200 adopts the encoder-decoder convolu-
tional neural network with MSE loss. WGAN and SMGAN
make use of Wasserstein distance and sharing similar net-
work architecture. But their loss function is different
between each other.

Figure 5 gives the visual results for the MDLCT dataset.
As shown in Figure 5, there are much noise in LDCT images,
which results in the blurred images and hard to distinguish
the structure and details of images. The corresponding
NDCT image is much clearer and of better quality in com-
parison. The third subgraph is the denoising result of
BM3D, where there is a small part of noise. Affected by sig-
nificant blocky, some edges and small structures are too
blurred. The fourth subgraph shows the result of CNN200.
From the fourth image, it can be found that this method
suppresses noise to some degree; however, there are still
some noise and artifacts in the images which are after
denoising. From the fifth image and sixth image, the denois-
ing methods based on GAN not only reduce most noise and
artifacts but also preserve structural details. Compared with
the fourth image, there are less noise in the fifth one. But
some edge details are loss. The sixth subgraph is the result
of SMGAN. It can be seen that SMGAN smoothens the
images excessively, and some crucial structures, like the
region of porta, are over blurred. From the right image, it
can be seen that our framework outperforms in the content
details and textural information than the other methods.

As shown in Figures 6-8, all images are denoised results
of the above methods based on lung CT images dataset,
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F1GURE 12: Quantitative results of the lung CT images dataset, piglet CT images dataset, and thoracic CT images dataset utilizing our original
network and improved network. Seen from the figure, sub-Fig (a) is the PSNR results, sub-Fig (b) is the SSIM results, and sub-Fig (c) is the

FSIM results.

piglet CT images dataset, and thoracic CT images dataset.
We can obtain the same conclusion from the comparison
of all methods in Figures 6-8 as the one in Figure 5. Our
method could perform better in reducing artifacts and noise.
Our denoised images are closer to the real NDCT images.

We computed the SSIM, FSIM, and PSNR of all
denoised images. The results are listed in Tables 1-4, respec-
tively. Here, we evaluated the average values of the dataset.

In Table 1, the results are calculated for the images of the
MDLCT dataset. Our framework obtains the best results in
aspects of SSIM, PSNR, and FSIM. Our PSNR value is aver-
agely 2.7287 dB higher than other methods, the SSIM of our
framework is averagely 0.0385 higher than others, and our
ESIM result is averagely 0.0414 higher than others. The
result of Table 1 shows that our framework gains the best
results in respect of all quantitative measurements. From
Tables 2-4, we can get the same conclusion, that is to say,
it is important to point out that our statistical value is near-
est to that of the NDCT images and obtained the best match-
ing textural statistics to NDCT image than other methods.

Besides, to exhibit that our framework has the advantage
in terms of convergence, taking results of the MDLCT data-
set as an example, we evaluated the quantitative measure-
ments 1-SSIM (the smaller the values, the better the image
is) during the training process of different methods. The
results can be seen in Figure 9.

As shown in Figure 9, WGAN-VGG and WGAN-MSE
are convergent at the point, where the epoch number is 60.
CNN200 and SMGAN could achieve convergence at the
point, where the epoch number is 45. Our framework can
be convergent at the point where the epoch number equals
30. The efficiency of our method is higher than other
methods, and it can be seen in Figure 9 that our images
under convergence are of better quality.

5.2. The Comparison between Ours and the Latest LDCT
Denoising Algorithms Based on GAN. To compare with the

TaBLE 7: Quantitative results for Figure 12 utilizing our original
network and improved network. “Ori” indicates the results of our
original network, and “Imp” indicates the results of our improved
network.

Lung CT

Quantitative . Piglet CT Thoracic CT
images . .
measurements images dataset images dataset
dataset
(Ori) 35.5760  (Ori) 45.10 (Ori) 34.03
PSNR/dB
(Imp) 36.3950 (Imp) 45.962 (Imp) 35.2649
SSIM (Ori) 0.9533  (Ori) 0.9885 (Ori) 0.8159
(Imp) 0.9645 (Imp) 0.9892  (Imp) 0.8651
(Ori) 0.9769  (Ori) 0.9765 (Ori) 0.9744
FSIM

(Imp) 0.9774 (Imp) 0.9767  (Imp) 0.9759

latest LDCT denoising algorithms based on GAN including
the CPCE algorithm [8] and the Q-AE algorithm [15], we
conduct experiments on the MDLCT dataset. Figure 10
shows the results.

Seen from the above figure, we found both of the algo-
rithms perform better than ours. Our image suffers from
the oversmoothed details and the loss of texture information
(indicated by red arrow and green arrow). The quantitative
results can be seen in Table 5. From the results, our pro-
posed denoising framework is not good as the latest algo-
rithms based on GAN.

To analyse the reason why our algorithm is not so good,
we compare our network architecture and loss function with
the latest algorithms based on GAN. Then, we found the dis-
advantages of our proposed framework. First, our generator
does not involve the deconvolutional layers. As described in
literature [15], it easily implies that the input and the output
may have different sizes. More seriously, the texture is lost.
Then, the convolutional layers do not preserve enough fea-
tures. To overcome these shortcomings, we improve our
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TaBLE 8: Quantitative results for Figure 13 (the results of MDLCT dataset) utilizing different loss function.
Quantitative measurements Adversarial loss Perceptual loss Sharpness loss Structural similarity loss Hybrid loss
PSNR/dB 24.66 26.86 26.57 25.60 28.8961
SSIM 0.8485 0.7552 0.8301 0.8058 0.8596
FSIM 0.9485 0.9446 0.9635 0.9665 0.9762

framework. Inspired by the literature [15], we modified the
architecture of our generator, and it can be seen in Figure 11.

Seen from the above figure, we replace our original
SSWGAN with (network). We keep our loss function
unchanged. After improving our network architecture, we
compare the new obtained results with the latest denoising
methods. The quantitative results are seen in Table 6. From
the results, our improved method outperforms better.

Figure 12 and Table 7 show the quality assessment index
of the comparison between our improving result and origi-
nal result on lung CT images dataset and piglet CT images
dataset, including the PSNR, SSIM, and FSIM. The results
show that our improvement is better than the originals. This
is largely due to that the (network) with Q-AE model could
give a high-order nonlinear sparse representation with a rea-
sonable model complexity.

5.3. Discussions and Analysis. In our framework, we propose
the SSWGAN with hybrid loss function to denoise the
LDCT images. Then, inspired by the latest algorithm, we
improve our network architecture. The major difference
between ours and other methods is the utilization of hybrid
loss function except the network architecture. When deep
learning approaches are presented in image processing, we
can obtain better results than the state-of-the-art LDCT
denoising methods because we can capture high-level
abstract features from training data. To a large extent, the

loss function of deep learning influences the LDCT image
restoration process. Here, we compared different loss func-
tion performance on LDCT image restoration: (1) only
with adversarial loss, (2) only with perceptual loss, (3)
only with the sharpness loss, (4) only with the structural
similarity loss, and (5) with the hybrid loss. Also, we took
the MDLCT dataset as an example. The results were
shown in Figure 13.

Seen from Figure 13, the adversarial loss makes the edge
sharper (shown as Figure 13(a)). The perceptual loss makes
the edge more obvious (shown in Figure 13(b)), and it easily
results in the artifacts. The sharpness loss can generate a
clear image (shown in Figure 13(c)), however, it losses part
of details. The structural similarity loss can preserve more
details and image structures while reducing noise. For evalu-
ating the quality of images, we adapt the PSNR, SSIM, and
FSIM. The results are shown in Table 8.

From Table 8, we can find that although any one of the
four loss functions has advantages, only with one kind of
loss function, the quality of image is lower than the image
with hybrid loss function. In addition, with hybrid loss func-
tion, we could achieve gradient penalty and acceleration of
convergence.

Since (parameter) of our hybrid loss function can make
impact on the denoising results. Here, we try to find the rela-
tionship between our chose parameters and the quality of
the denoised images. In order to determine the optimal
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FIGURE 14: The effect of the parameter f3 in our hybrid loss function on the validation set from the MDLCT dataset. Under the detail images,
the noise level of each CT image (the difference between each result and the LDCT image). From the left to the mid column ([0, 0.995]), the
noise level of CT image gradually decreases as the f3 increases. From the mid column to the right column ([0.995, 3.0]), the noise level of CT

image increases as the f3 increases.

weighting parameter for each loss item in our hybrid loss
function, we often rely on our experimental experience.
When we need to select the optimal parameters, first, we
fix B, y, and w and select the optimal a. Then, we fix «, 7y,
and w and determine the optimal . The process of deter-
mining the optimal y is the same as determined optimal .
Finally, we obtain the best value of w based on optimal a,
B, and y. When choosing the value of parameter, we are used
to measuring the denoising performance with different
values, as shown in Figure 14. Here, we take the parameter
B as an example and use the MSE as the metric.

The results demonstrate that the chosen parameters have
influence on the denoising performance.

6. Conclusions

In this paper, we propose a novel framework for denoising
low-dose CT images, which utilize noise learning and
enhanced a SSWGAN with hybrid loss function, including
adversarial loss, perceptual loss, sharpness loss, and struc-
tural similarity loss. First, in order to obtain a noise-free
CT image, our generator can learn the noise distribution
from the LDCT image and then reduce the noise from the

input. After training offline with pairs of the low-dose and
normal-dose CT images, our method can reduce the noise
of original CT images better than the state-of-the-art
methods. In the future, we shall improve our network to
obtain noise-free CT images of better quality by denoising
the low-dose CT images.
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