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Abstract

We previously showed that adeno-associated virus 2 (AAV2) mediated subretinal delivery of human interferon-alpha (IFN-a)
could effectively inhibit experimental autoimmune uveoretinitis (EAU). In this study we investigated whether subretinal
injection of both AVV2.IFN-a and AAV2.IL-4 had a stronger inhibition on EAU activity. B10RIII mice were subretinally injected
with AAV2.IFN-a alone (1.56107 vg), AAV2.IL-4 alone (3.556107 vg), and AAV2.IFN-a combined with AAV2.IL-4. PBS, AAV2
vector encoding green fluorescent protein (AAV2.GFP) (56107 vg) was subretinally injected as a control. IFN-a and IL-4 were
effectively expressed in the eyes from three weeks to three months following subretinal injection of AAV2 vectors either
alone or following combined administration and significantly attenuated EAU activity clinically and histopathologically.
AAV2.IL-4 showed a better therapeutic effect as compared to AAV2.IFN-a. The combination of AAV2.IL-4 and AAV2.IFN-a was
not significantly different as compared to AAV2.IL-4 alone. There was no difference concerning DTH (delayed-type
hypersensitivity) reaction, lymphocyte proliferation and IL-17 production among the investigated treatment groups,
suggesting that local retinal gene delivery did not affect the systemic immune response.
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Introduction

Uveitis is a common eye disease [1] and is one of the major

causes of visual handicap within the working population world-

wide [2], often with an autoimmune cause [3]. Clinical features

include inflammation of the choroid and retina with cellular

infiltration and macular edema [4]. Treatment of uveitis

commonly involves the use of corticosteroids and other immuno-

suppressive agents [5]. However, long-term application of these

drugs frequently leads to adverse side effects systemically and

locally. Furthermore, not all uveitis patients appear to respond to

immunosuppressive treatment.

IFN-a has been shown to have immunoregulatory and

immunosuppressive effects, and has been shown to be beneficial

in the treatment of patients with uveitis [6,7]. In addition, Th1

cells have been shown to be responsible for the development of

uveitis and endogenous Th2 cells have been assigned a protective

role. In this regard, IL-4, a Th2-secreted anti-inflammatory

cytokine, may help to prevent the development of Th1 related

autoimmune diseases. Earlier studies have shown that IL-4 was

effective in the treatment of NOD mice, a spontaneous model of

autoimmune type 1 diabetes [8]. It was also effective in the

treatment of experimental autoimmune encephalomyelitis (EAE),

a well known model for multiple sclerosis [9].

Currently, gene therapy has achieved remarkable success in

human and animal models in various retinal diseases [10,11,12,13]

and some studies are now in the clinical trial stage [14].

Experimental autoimmune uveoretinitis (EAU), an animal

model that shares many features with human uveitic disorders

such as Behcet’s disease [15], can be induced in susceptible

animals such as the B10.RIII mouse strain by immunization with

retinal specific antigens that are often recognized immunologically

by lymphocytes of human uveitis patients including interphotor-

eceptor retinoid binding protein (IRBP) or its immunodominant

epitopes. Because of the clinical and pathological features in

common with human uveitis, EAU induced by IRBP in B10.RIII

mice is considered as a useful tool to explore new therapeutic

strategies. In the past several years, a few studies on AAV-

mediated gene therapy have been attempted in the EAU model

[16,17]. In a recent study we developed a recombinant AAV2

vector containing the human IFN-a gene and revealed that

subretinal injection of AAV2 vector harboring the IFN-a gene

showed a significant therapeutic effect on the development of EAU

[18].
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In the current study, we examined if subretinal administration

of IFN-a combined with another immunoregulatory cytokine, IL-

4, would be more effective in the treatment of EAU in B10RIII

mice and if AAV-mediated transgene subretinal delivery had an

effect on the systemic IRBP-specific immune responses following

EAU induction.

Materials and Methods

Ethics Statement
This study was carried out according to the ARVO Statement

for the Use of Animals in Ophthalmic and Vision Research. The

study was specifically approved by the Ethics Committee of the

First Affiliated Hospital of Chongqing Medical University,

Chongqing, China (Permit Number: 2009-201009). All surgery

was performed under anesthesia, and all efforts were made to

minimize animal suffering.

Animals and Reagents
B10RIII mice were purchased from Jackson Laboratory (Bar

Harbor, ME). All animals were housed under standard (specific

pathogen free) conditions. Human interphotoreceptor retinoid

binding protein peptide spanning amino acid residues 161–180

(IRBP161–180, SGIPYIISYLHPGNTILHVD) was synthesized by

Shanghai Sangon Biological Engineering Technology & Services

Ltd. Co. Complete Freund’s adjuvant (CFA) containing 1.0 mg/

ml mycobacterium tuberculosis (H37RA, ATCC 25177) was

obtained from Sigma-Aldrich (St. Louis, MO).

Vectors
The recombinant adeno-associated virus vector harboring the

human interferon alpha 2a gene (AAV2.IFN-a) or mouse in-

terleukin-4 gene (AAV2.IL-4) was prepared according to pre-

viously mentioned methods [18] as follows. Total mRNAs were

extracted from human PBMCs and mouse splenocytes respectively

and first-strand cDNA was synthesized with the Superscript III

Reverse Transcriptase system (Invitrogen, Carlsbad, CA, USA).

The coding sequence of human interferon alpha 2a was obtained

from GenBank database (http://www.ncbi.nlm.nih.gov/genbank/

, GenBank accession number BC074936) and the specific primers

were designed (forward, 59 GGGGTACCATGGCCTT-

GACCTTTGCTTT 39 and reverse, 59 CTGTCGACT-

CATTCCTTACTTCTTAAACTTT 39) to amplify the human

IFN-a coding sequence. The mouse interleukin-4 coding sequence

was obtained from GenBank database (http://www.ncbi.nlm.nih.

gov/genbank/, GenBank accession number NM_021283) and was

PCR-amplified with the specific primers (forward, 59

GGGGGTACCATGGGTCTCAACCCCCAGC 39 and reverse,

59 TCTGTCGACCTACGAGTAATCCATTTGCATG 39). The

PCR product was inserted into pMD 18-T Vector (TaKaRa,

Japan). After DNA sequencing verification, the IFN-a or IL-4

coding sequence was obtained by digestion with KpnI and SalI, and

subcloned into an AAV2 expression plasmid backbone between

the sites of KpnI and SalI. Recombinant AAV vector containing the

IFN-a or IL-4 gene was prepared by using the triple transfection

procedure of 293 cells, followed by CsCl density gradients (Vector

Gene Technology Company Ltd (Beijing, China)).

Subretinal Injection
0.5 ml of AAV vector was injected subretinally into the right eye

of each B10RIII mouse, leaving the other eye as an internal

control. Subretinal injection was performed as previously de-

scribed [18,19] and all procedures were operated under sterile

conditions.

Assay of Interferon-a and Interleukin-4 in Injected Mice
Mice were sacrificed at various time points after subretinal

injection of AAV vectors. The undiluted serum was collected for

immunoassay. For ocular fluid samples, AAV vector injected eyes

and contralateral eyes were enucleated and ocular fluid samples

were prepared as previously described [18]. All procedures were

conducted on ice. IFN-a and IL-4 concentrations were de-

termined using commercially available ELISA kits according to

the manufacturer’s directions (PBL Interferon Source, USA). The

detection limits were 12.5 pg/ml and 15 pg/ml for IFN-a and

IL-4, respectively.

Induction and Clinical Assessment of EAU
Mice were immunized subcutaneously at the base of the tail and

both thighs with 50 mg human IRBP161–180 peptide in 100 ml PBS,
emulsified 1:1 v/v in complete Freund’s adjuvant (CFA) supple-

mented with 1.0 mg/ml Mycobacterium tuberculosis strain (MTB). A

total of 200 ml emulsion was given for one mouse. EAU activity

was examined clinically by slit lamp microscopy from day 8 to 21

after immunization. The clinical severity of ocular inflammation

was assessed by two independent observers in a masked manner,

and scored on a scale of 0–5 in half-point increments, according to

five separate criteria described previously [18].

Histopathology
Eyes were enucleated on day 14 following IRBP immunization

and were fixed in 4% buffered formaldehyde for 1 hour at room

temperature. Tissues were embedded in paraffin. Serial 4–6 mm
sections were cut through the papillary-optic nerve axis and

stained by haematoxylin and eosin. At least four sections of each

eye cut at different levels were prepared and evaluated histolog-

ically. The intensity of EAU was graded in a masked fashion on

a scale of 0 to 4, as described earlier [20]: (0) no change; (0.5) mild

inflammatory cell infiltration, no damage; (1) infiltration, retinal

folds and focal retinal detachments, few small granulomas in

choroid and retina, perivascularitis; (2) moderate infiltration,

retinal folds and detachments, focal photoreceptor cell damage,

small- to medium-sized granulomas, perivasculatis and vasculatis;

(3) medium to heavy infiltration, extensive retinal folding with

detachment, moderate photoreceptor cell damage, medium-sized

granulomatous lesions, subretinal neovascularization; (4) heavy

infiltration, diffuse retinal detachment with serous exudates and

subretinal bleeding, extensive photoreceptor cell damage, large

granulomatous lesion and subretinal neovascularization.

Delayed-type Hypersensitity (DTH)
Delayed-type hypersensitity (DTH) was assessed on day 19 after

immunization with IRBP161–180 peptide. 10 mg of IRBP161–180

Figure 1. Scheme of the AAV2 vector construct. The transgene is
under the control of a CMV promoter and followed by BGH poly (A). The
expression cassette is flanked by ITRs. CMV promoter, human
cytomegalovirus immediate early promoter; hIFN-a, human interferon-
alpha; BGH poly (A), BGH poly-adenylation signal; ITR, AAV2 inverted
terminal repeats.
doi:10.1371/journal.pone.0037995.g001
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peptide in 10 ml PBS was injected into the right pinna of each

mouse, the left pinna was injected with PBS as a control. Ear

thickness was measured 48 hours after IRBP161–180 peptide

challenge. The specific response was calculated as the difference

between ear thickness before and after the IRBP161–180 peptide

injection.

IRBP-specific Lymphocyte Responses
The spleen and draining lymph nodes were removed from

immunized mice on day 21. A single cell suspension was prepared

by mechanical disruption and followed by a passage through

a sterile stainless steel screen. For proliferation and cytokine assay,

cells (26106 cells/ml) were cultured in triplicate with RPMI 1640

medium (Gibco, Grand Island, NY, USA) containing 2 mM L-

glutamine, 561025 M 2-ME, 0.1 mM nonessential amino acids,

1 mM sodium pyruvate and 10% FBS in the presence of 10 mg/
ml IRBP161–180, 1 mg/ml Concanavalin A (Sigma) or medium

alone for 72 hours. Proliferation was detected by a modified MTT

Figure 2. The expression of transgenes following subretinal
injection. In the AAV2.IFN-a injected eyes, the level of IFN-a increases
from 14 days (the first time point tested) to three months after
injection. For the eyes receiving AAV2.IFN-a combined with AAV2.IL-4
injection, IFN-a level reaches a peak on day 42 and remains at
a moderate level until three months after injection (a). IL-4 expression is
similar in eyes receiving an injection of AAV2.IL-4 alone as compared to
eyes receiving AAV2.IL-4 combined with AAV2.IFN-a (b). Results are
expressed as the mean6standard deviation.
doi:10.1371/journal.pone.0037995.g002

Figure 3. Clinical evaluation of EAU activity. EAU was induced in
groups of mice receiving subretinal vector or PBS injection. Severe
uveitis is observed in the PBS (a) and AAV2.GFP injected eyes (b) as
compared to the AAV vectors treated eyes (c–e). Three AAV vector

Gene Therapy in EAU
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assay using a cell counting kit (Cell Counting Kit-8; Sigma) as

described previously [21]. IL-17 concentration in the supernatants

was measured using a commercially available ELISA kit according

to the manufacturer’s directions (R&D System, Minneapolis, MN)

with a detection limit of 15 pg/ml.

Statistical Analysis
Severity of EAU was performed by the Kruskal-Wallis analysis

followed by the Mann-Whitney U test with Bonferroni correction.

DTH and IRBP-specific immune responses were analyzed using

ANOVA. P,0.05 was considered to be significantly different.

Data are expressed as mean6standard deviation (SD). All

experiments were repeated at least twice.

Results

AAV Vectors
The IFN-a or IL-4 gene was driven by the human cytomeg-

alovirus (CMV) promoter and was followed by a BGH poly(A)

signal (Fig. 1). Titers of recombinant vectors used were

361010 vg/ml and 7.161010 vg/ml for AAV2.IFN-a and AA-

V2.IL-4, respectively. AAV2.GFP was used as a vector control

(161011 vg/ml).

IFN-a and IL-4 Expression in vivo Following Subretinal
Injection of AAV Vectors
Mice were subretinally injected with AAV2.IFN-a (1.56107 vg)

alone, AAV2.IL-4 (3.556107 vg) alone, and AAV2.IFN-a com-

bined with AAV2.IL-4. Two weeks following subretinal injection,

the IFN-a and IL-4 level in ocular fluid samples obtained from

injected eyes was assayed by ELISA. Data showed that the

expression of IFN-a and IL-4 was detectable two weeks following

subretinal injection in each group. In the eye receiving an injection

of AAV2.IFN-a (1.56107 vg) alone, the level of IFN-a was

0.128 ng/ml on day 14, and 0.66 ng/ml on day 21 (Fig. 2a). The
level increased further up to day 42 and started declining on day

90. Following the combined AAV2.IFN-a and AAV2.IL-4 vector

injection, expression of IFN-a was observed on day 14, reached

a peak on day 42 and remained detectable until three months after

injection (Fig. 2a). For the expression of IL-4, the eyes injected

with the AAV2.IL-4 vector alone and injected with the combined

AAV2.IL-4 and AAV2.IFN-a showed a similar expression profile

from 14 days to three months after subretinal injection (Fig. 2b).
For all mice receiving subretinal injection of either AAV2.IFN-

a alone, AAV2.IL-4 (3.556107 vg) alone, or AAV2.IFN-a com-

bined with AAV2.IL-4, IFN-a or IL-4 remained undetectable in

undiluted serum and in the contralateral uninjected eyes over time

(data not shown).

The Effect of AAV Vectors on EAU
EAU was successfully induced in B10RIII mice following

immunization with 50 mg human IRBP161–180 peptide emulsified

in CFA as evidenced by conjunctival hyperemia, ciliary injection,

corneal edema, posterior synechiae, aqueous flare and cells. The

treated groups show significantly attenuated EAU over time as
compared with controls (f). Data are presented as mean6standard
deviation. The clinical score shows that compared with controls, the
AAV2.IFN-a treated group (p = 0.019, Mann-Whitney U test), the
AAV2.IL-4 treated group (p,0.0001) and the combined treated group
(p,0.0001) developed a significantly reduced EAU (g). Each point
represents an individual eye. The average scores of each group are
denoted by the horizontal bars.
doi:10.1371/journal.pone.0037995.g003

Figure 4. Histological examinations on day 14 of EAU. Images of
histological analysis show severe intraocular inflammation in PBS (a,b)
and AAV2.GFP injected eyes (c,d) compared with AAV2.IFN-a treated

Gene Therapy in EAU
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inflammatory signs became apparent between days 8 and 9

following immunization, reached a peak by day 12 and was

followed by a gradual regression. None of the control mice

receiving CFA alone developed EAU.

To test the effect of AAV vectors on the development of EAU,

mice were divided into five groups. Three experimental groups

were subretinally injected with either AAV2.IFN-a alone, AA-

V2.IL-4 alone or AAV2.IFN-a combined with AAV2.IL-4.

Another group of mice was injected with AAV2.GFP as a vector

control and the fifth group consisted of control mice receiving

a subretinal injection with PBS. All groups of mice were

immunized with IRBP161–180 peptide emulsified in CFA three

weeks after subretinal vector or PBS injection.

Clinical signs were monitored after immunization by slit lamp

microscopy. In PBS or AAV2.GFP injected eyes, a severe

inflammatory reaction including conjunctival hyperemia, ciliary

injection, corneal edema, aqueous cells and posterior synechiae

was observed (Figs. 3a, b). A mild uveitis as manifested by

conjunctival hyperemia or ciliary injection was observed in

AAV2.IFN-a alone treated, AAV2.IL-4 alone treated, AA-

V2.IFN-a and AAV2.IL-4 combined treated eyes (Figs. 3c–e).
Severity of EAU was clinically scored on a scale from 0 to 5. A

significantly decreased activity of EAU throughout the course of

the disease was observed in the three AAV vector treated groups as

compared with the PBS or AAV2.GFP injected controls (Fig. 3f).
Clinical scoring on day 12 following EAU induction showed that

the severity of EAU in AAV2.IL-4 alone injected eyes and

AAV2.IL-4 combined with AAV2.IFN-a treated eyes was

significantly decreased when compared with PBS and AAV2.GFP

injected controls (p,0.0001). Eyes receiving an injection of

AAV2.IFN-a alone also showed a significantly decreased in-

flammation compared with the PBS (p = 0.001) or AAV2.GFP

group (p = 0.013). AAV2.IL-4 treatment showed a much more

dramatically increased blockade of EAU than AAV2.IFN-a treat-

ment (p = 0.001). Subretinal injection of both AAV2.IL-4 and

AAV2.IFN-a showed a stronger inhibitory effect on EAU activity

as compared with AAV2.IFN-a administration alone (p,0.0001)

and a trend of increased inhibition when compared with

AAV2.IL-4 alone, although the difference did not reach statistical

significance. (Fig. 3g).

Histological analysis showed a severe uveitis in the AAV2.GFP

injected and PBS injected control mice as evidenced by massive

infiltration of inflammatory cells into the iris, vitreous cavity,

throughout all retinal layers and the choroid, intensive retinal

vasculitis, destruction of the retinal architecture with severe folding

and detachment, as well as photoreceptor damage (Figs. 4a–d).
However, in AAV2.IFN-a alone treated, AAV2.IL-4 alone

treated, AAV2.IFN-a and AAV2.IL-4 combined treated eyes,

only scattered infiltration of inflammatory cells into the vitreous

body and retina was observed (Figs. 4e, g, i). Additionally, the
inflammatory changes in the anterior segment of treated eyes were

less than those in the AAV2.GFP injected eye and PBS injected

eyes (Figs. 4f, h, j). Pathological grading showed that the

AAV2.IFN-a alone treated eyes showed a significantly decreased

uveitis when compared with PBS and AAV2.GFP injected controls

(p = 0.01, p = 0.012). AAV2.IL-4 alone injected eyes and AA-

V2.IL-4 combined with AAV2.IFN-a treated eyes showed more

significantly decreased inflammation compared with controls

(p,0.0001) than AAV2.IFN-a alone (Fig. 4k).

Effects of Subretinal Injection of AAV Vectors on the
IRBP-specific Systemic Immune Response
DTH reactions in vivo and lymphocyte responses to IRBP161–180

in vitro were assayed to evaluate the impact of AAV2 vector

subretinal injection on the systemic immune response. Results

showed that there was no significant difference in the DTH

reactions against IRBP between AAV2.IL-4 injected mice,

AAV2.IFN-a injected mice, AAV2.IL-4 combined with AA-

V2.IFN-a treated mice, AAV2.GFP injected control mice and

PBS injected controls (p.0.05) (Fig. 5 a).

Lymphocytes from spleen and lymph nodes were isolated and

incubated for 72 hours in vitro with IRBP161–180 peptide, ConA

(positive control), or medium alone (negative control) respectively.

The proliferation and IL-17 production of lymphocytes were

assayed in lymphocytes obtained from AAV2.IL-4 injected mice,

AAV2.IFN-a injected mice, AAV2.IL-4 combined with AA-

V2.IFN-a treated mice, AAV2.GFP injected control mice and

PBS injected controls. The result showed a similar response in

proliferation and IL-17 production of lymphocytes incubated with

ConA among the five groups of mice. A somewhat lower response

in IL-17 production and proliferation of lymphocytes was

observed in all the tested groups when exposed to IRBP161–180
peptide. There was no difference concerning IRBP-specific

lymphocyte proliferation and IL-17 production among all tested

groups (p.0.05) (Fig. 5 b,c). Lymphocytes from the tested groups

did not show a detectable proliferation and IL-17 production

when cultured with medium alone.

Discussion

In this study, we investigated the effect of ocular gene therapy

on the development of uveitis by subretinal injection of

recombinant AAV2 vector harboring genes encoding the immu-

noregulatory cytokines IFN-a and IL-4. Experiments were

designed to deliver AAV2.IFN-a alone, AAV2.IL-4 alone, and

AAV2.IFN-a combined with AAV2.IL-4, respectively. The results

showed an effective expression of the transgene for at least three

months without detectable spreading to the systemic circulation or

contralateral control eye. Subretinal administration of AAV2.IFN-

a alone, AAV2.IL-4 alone, and AAV2.IFN-a combined with

AAV2.IL-4 significantly reduced EAU development clinically and

histologically. The IFN-a and IL-4 combination vector showed

a somewhat more potent therapeutic effect on the development of

EAU as compared with the IL-4 vector alone, but the difference

did not reach statistical significance. It is possible that experiments

using lower amounts of vector would be able to show a synergistic

effect. Further studies are needed to address this issue.

Autoreactive effector CD4+ T cells play a crucial role in the

pathogenesis of autoimmune and autoinflammatory uveitis.

Currently these effector cells are divided into the IFN-c producing

Th1, the IL-4 and IL-10 producing Th2, and the IL-17 producing

Th17 cells. Abundant evidence is now available to show that both

the Th1 and Th17 cells are responsible for uveitis whereas the Th2

cells are regulatory [22,23,24]. Most attention for the regulatory

capacity of Th2 cells has been directed towards a role for IL-10

[24] and the therapeutic use of IL-4 as mentioned in our study has

received little attention so far. Although some studies have

reported that the administration of recombinant cytokines showed

therapeutic efficacy in clinical uveitis [25], many therapeutic

(e,f), AAV2.IL-4 treated (g,h), and AAV2.IFN-a combined with AAV2.IL-4
treated eyes (i,j). (haematoxylin eosin staining, original magnifica-
tion6100). EAU was significantly reduced in AAV2.IL-4 treated group,
AAV2.IL-4 combined with AAV2.IFN-a treated group as compared with
controls (k) (p,0.0001, Mann-Whitney U test). The AAV2.IFN-a treated
group also shows a significantly decreased uveitis (p = 0.005). Each
point is the score of an individual eye. The mean scores of each group
are denoted by the horizontal bars.
doi:10.1371/journal.pone.0037995.g004

Gene Therapy in EAU

PLoS ONE | www.plosone.org 5 June 2012 | Volume 7 | Issue 6 | e37995



regimens require daily administration due to the short half-life of

the cytokine molecules and swift clearance from circulation.

Furthermore, extremely high doses are administered systemically

to reach a therapeutically active intraocular concentration of the

cytokine, and achieving such high systemic levels can potentially

result in deleterious side effects [26]. Our previous study showed

Figure 5. Systemic IRBP-specific immune responses in each group. DTH responses were elicited on day 19 of EAU and evaluated on day 21.
Data show no significant difference of ear swelling among all the tested groups (p.0.05) (a). IRBP-specific lymphocyte proliferation (b) and IL-17
production in vitro (c) show no significant difference among the five tested groups (P.0.05). Results are presented as mean6standard deviation. 5–6
animals per group were used and each experiment was performed three times.
doi:10.1371/journal.pone.0037995.g005
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that the continuous expression of therapeutic cytokine IFN-a by

retinal cells after subretinal injection of AAV2 vector containing

the IFN-a gene was able to suppress inflammation in mice

undergoing EAU [18]. Inflammation could however not to be

completely blocked by subretinal injection of AAV2.IFN-a and

a combination of immunoregulatory factors might be attempted to

get a better protection because of the complex interplay of both

pro- and anti-inflammatory molecules involved in EAU de-

velopment. We therefore designed experiments to explore whether

administration of IFN-a, combined with another immunoregula-

tory cytokine such as IL-4, could achieve a better therapeutic effect

on the development of EAU.

IFN-a in the treatment of uveitis has been widely reported in

the past several decades. According to previous reports, systemic

administration of IFN-a in patients with Behcet’s disease and other

immune-related disorders could help to upregulate Tregs and

inhibit IL-17-expressing cells [27,28,29]. Additionally, other

reports have shown that circulating levels of TNF-a and TNF-

a2R in patients with Behcet’s disease were decreased after IFN-

a treatment [30]. Another cytokine, IL-4, has been successfully

used in autoimmune animal models in the past few years [8,9,31].

Delivery of IL-4, basically, helps to excite a Th2 response and may

be beneficial in those autoimmune diseases, whose development

depends on the polarization of Th1 cells. Recently, IL-4 has been

reported to be able to induce the development of CD25+CD4 T

cells with regulatory capacity and that these cells play a prominent

role in the development of Ag-specific CD25+CD4 Tregs in vivo

[32], which has been thought protective to EAU. Local delivery of

IL-4 has been shown to increase the recruitment of Treg cells by

increasing the synthesis of chemo-attractant cytokines in inflamed

CNS areas [9]. Generally, contribution to upregulate the local

Treg population by IL-4 in vivo could be another arm of the anti-

inflammatory pathways. However, the expression of inflammatory

cytokines, chemokines as well as the target cell in ocular lesions

remains to be clarified and the exact mechanisms through which

IFN-a and IL-4 function in the treatment of EAU need to be

investigated further in future studies. Our current experiments

suggest that the inhibitory effect on the development of uveitis is

mediated via a local and not due to a systemic effect, since we were

not able to detect an effect of local cytokine vector delivery on the

DTH reaction against IRBP nor on the IRBP specific lymphocyte

response in mice undergoing IRBP induced EAU. Consistent with

these results, a similar phenomenon in this study and previous ones

is that AAV2-mediated transgene expression was restricted to the

injected eye without detectable spreading in the blood. The fact

that the systemic immune response is not affected by retinal gene

delivery may avoid the possibility of systemic immunosuppressive

side effects.

In conclusion, we have now confirmed that AAV2-mediated

subretinal delivery of IFN-a and IL-4 could effectively attenuate

EAU in mice in the absence of systemic immunosuppression. A

combined delivery of IL-4 and IFN-a did not result in a synergistic

effect. A further understanding of the exact mechanisms by which

the released IFN-a and IL-4 exactly inhibit EAU will contribute to

the development of efficient and safe retinal gene therapy in

uveitis.
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