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Simple Summary: The classical approach to study the immune response against a tumor was mixing
immune cells with tumor cell suspensions in several experimental settings. These models lack the
appropriate tissue architecture in which the immune response takes place and do not consider other
cellular and extracellular players of the tumor microenvironment essential to understand the anti-
tumor immune response. Thus, to confirm in vitro data, in vivo experiments have been extensively
performed, using animal models that may not fully reproduce what happens in humans. Indeed, in
animal-based studies, tumors are artificially generated in a short time, and immune cell subsets and
receptor-ligands pairs, involved in tumor cells recognition by the immune system, are often different
from human counterparts. To reduce the number of animals used, and possibly replace animal
models, alternative methods of culture have been developed. Herein, some of these approaches will
be described, highlighting their advantages and disadvantages, focusing on natural killer cells as the
first line of anti-tumor effector cells able to contrast tumor growth.

Abstract: Several approaches have shown that the immune response against tumors strongly affects
patients’ clinical outcome. Thus, the study of anti-tumor immunity is critical to understand and
potentiate the mechanisms underlying the elimination of tumor cells. Natural killer (NK) cells are
members of innate immunity and represent powerful anti-tumor effectors, able to eliminate tumor
cells without a previous sensitization. Thus, the study of their involvement in anti-tumor responses
is critical for clinical translation. This analysis has been performed in vitro, co-incubating NK with
tumor cells and quantifying the cytotoxic activity of NK cells. In vivo confirmation has been applied
to overcome the limits of in vitro testing, however, the innate immunity of mice and humans is
different, leading to discrepancies. Different activating receptors on NK cells and counter-ligands on
tumor cells are involved in the antitumor response, and innate immunity is strictly dependent on the
specific microenvironment where it takes place. Thus, three-dimensional (3D) culture systems, where
NK and tumor cells can interact in a tissue-like architecture, have been created. For example, tumor
cell spheroids and primary organoids derived from several tumor types, have been used so far to
analyze innate immune response, replacing animal models. Herein, we briefly introduce NK cells
and analyze and discuss in detail the properties of 3D tumor culture systems and their use for the
study of tumor cell interactions with NK cells.

Keywords: spheroids; organoids; alternative culture methods; immune response; innate immunity;
NK cells

1. Introduction

In late 1980s, the seminal findings of Rosenberg and colleagues on the so-called
lymphokine activated killer (LAK) cells have shown that LAK-killing of tumor cells can
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eliminate both autologous and heterologous tumor cells in vitro, and cure mice from
melanoma [1–4]. The transfer to the clinic of Rosenberg’s findings by the systemic admin-
istration of interleukin 2 (IL2) showed several drawbacks, such as the capillary leakage
syndrome [5,6] leading to fatal outcome in some patients [6]. Indeed, IL2, essential for the
generation of LAK cells, gave rise to relevant, unpredictable adverse effects in humans,
not affecting murine models [1–6]. More recently, the key role of the immune response
became evident testing immune-checkpoint (IC) blockers (B) to reactivate the anti-tumor
immune response in host bearing tumors [7–11]. In this case, using appropriate tools such
as humanized monoclonal antibodies (hmAb) to programmed cell death receptor 1 (PD1),
programmed cell death receptor ligand 1 (PDL1) or cytotoxic activated T lymphocyte
4 receptor (CTLA4), it is possible to reactivate the adaptive anti-tumor-specific immune
response [7–11]. This strategy is effective when IC-inhibited tumor-specific T cells are
already present in the host, thus targeted hmAb can relieve the tumor microenvironment
(TME)-mediated immunosuppression [11–16].

The study of the molecular mechanisms underlying IC-immunosuppression and
patient-specific immune response is difficult in animal models [15,16]. Humanized murine
models and patient-derived tumor xenografts (PDX) have been extensively used, with
some success. However, it is conceivable that the complex cross-talk among the different
cellular and extracellular matrix components of TME is not completely and adequately
reconstructed in these hybrid animal models. One example among the others is the species-
specificity of some fundamental immunomodulatory cytokines [17–26].

The innate immunity arm of the anti-tumor immune system has become more and
more relevant to improve patient’s response to conventional anti-tumor therapies [27–33].
Unfortunately, innate cells such as natural killer (NK) cells do not display similar phe-
notypic and functional features in mice and humans [27–29]. To better understand how
innate cells can be used to fight cancer, suitable and feasible 3D culture models composed
of tumor cells, tumor stromal cells and immune effectors have been set up and used to
evaluate the anti-tumor effect of NK cells.

2. Developing 3D Culture Models

The addition of appropriate scaffolds and flow-based systems could mimic the archi-
tecture of the tumor tissue and the dynamic conditions faced by immune cells approaching
and invading the tumor [15,16]. It is evident that the molecular events detected in conven-
tional culture systems, consisting of a mixture of different cell types, cannot be compared to
what happens in a 3D-growing tumor mass. On the other side, human tumor cells injected
in mice do not find the micro (cell and matrix component) and macro environment (vascular,
lymphatic and nervous systems) in which the original tumor mass developed [15,16].

As a possible alternative, several 3D culture systems have been proposed and validated
by the EU Reference Laboratories (EURL-ECVAM), as preclinical models, for the selection
of anti-tumor drugs [15,16,25], starting from the simplest model of tumor cell homotypic
spheroids, composed of a single cell type, through more complex spheroids with tumor
and mesenchymal stromal cells (MSC), such as tumor associated fibroblasts (TAF) [16].
Patient-derived organoids, generated from tumors and usually composed of tumor cells at
different stage of differentiation, have been used to study and improve the anti-tumor effect
of immune cells [34–41]. Some of these developing systems are summarized in Figure 1.

Herein, we will consider the 3D systems used to study NK-tumor cell cross-talk and
the possible improvements of these models to better understand this interaction.
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Figure 1. Representative 3D models to study NK-tumor cell interactions. (A) Colorectal cancer (CRC) cell spheroids from 
DLD1 CRC cell line (left) infiltrated with NK cells (right) labelled with the green fluorescence probe carboxy fluorescein 
succinimidyl ester (CFSE). (B) Collagen scaffolds repopulated with mesenchymal stromal cells and Hodgkin’s lymphoma 
cells (scanning electron microscopy, SEM, upper) or analyzed by immunofluorescence (IF, lower) for the expression of 
CD30 antigen (HL cells, red) and Ki67 (proliferating antigen, green); (C) CRC organoids in a GeltrexTM dome (left), or 
labelled (middle) with 4′,6-diamidino-2-phenylindole (DAPI, blue), cytokeratin 2 (green), Ki67 (red), or merge (lower im-
age); organoids analyzed by confocal microscopy upon NK cell (green labeled with CFSE) infiltration at different Z-stages 
(right). The dimension bars are shown in each panel. 
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tumor cell targets, without priming [42–45]. This functional definition has been flanked 
by the identification of phenotypic features identifying NK cells like lymphocytes express-
ing CD16, the low affinity receptor for fragment crystallizable region of immunoglobulin 
G, FcγRIIIA [42–44,46,47]. Additionally, the neural cell adhesion molecule (NCAM), 
called CD56, is a typical marker of peripheral blood (PB) NK cells [46,47]. PBNK cells ex-
press CD56 at two detectable levels, the so called CD56low and CD56high NK cells, which 
display a high and a low anti-tumor potential, respectively [46,47]. Of note, CD56low and 
CD56high PBNK cells can produce low and high amounts of cytokines such as IFNγ and 
GM-CSF [46,47]. Thus, based on the expression of CD16 and CD56 surface molecules, dif-
ferent NK cell subsets can be distinguished (see Figure 2). 

Figure 1. Representative 3D models to study NK-tumor cell interactions. (A) Colorectal cancer (CRC) cell spheroids from
DLD1 CRC cell line (left) infiltrated with NK cells (right) labelled with the green fluorescence probe carboxy fluorescein
succinimidyl ester (CFSE). (B) Collagen scaffolds repopulated with mesenchymal stromal cells and Hodgkin’s lymphoma
cells (scanning electron microscopy, SEM, upper) or analyzed by immunofluorescence (IF, lower) for the expression of
CD30 antigen (HL cells, red) and Ki67 (proliferating antigen, green); (C) CRC organoids in a GeltrexTM dome (left), or
labelled (middle) with 4′,6-diamidino-2-phenylindole (DAPI, blue), cytokeratin 2 (green), Ki67 (red), or merge (lower image);
organoids analyzed by confocal microscopy upon NK cell (green labeled with CFSE) infiltration at different Z-stages (right).
The dimension bars are shown in each panel.

3. Natural Killer Cells as Anti-Tumor Effectors

Originally, NK cells have been identified as a lymphocyte subset able to recognize
tumor cell targets, without priming [42–45]. This functional definition has been flanked by
the identification of phenotypic features identifying NK cells like lymphocytes expressing
CD16, the low affinity receptor for fragment crystallizable region of immunoglobulin G,
FcγRIIIA [42–44,46,47]. Additionally, the neural cell adhesion molecule (NCAM), called
CD56, is a typical marker of peripheral blood (PB) NK cells [46,47]. PBNK cells express
CD56 at two detectable levels, the so called CD56low and CD56high NK cells, which dis-
play a high and a low anti-tumor potential, respectively [46,47]. Of note, CD56low and
CD56high PBNK cells can produce low and high amounts of cytokines such as IFNγ and
GM-CSF [46,47]. Thus, based on the expression of CD16 and CD56 surface molecules,
different NK cell subsets can be distinguished (see Figure 2).
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Figure 2. Phenotype of peripheral blood (PBNK) and tissue resident (TRNK) NK cells. The large majority of PBNK (A) 
express CD16 and through this receptor for the Fc portion of immunoglobulins can activate the ADCC that induces the 
release of perforin and granzymes to kill target cells. A minority of PBNK does not express CD16, but displays high surface 
amounts of CD56 (CD56bright) antigen; these PBNK cells are similar to tissue TRNK (B). NK cells express a plethora of 
activating (green) or inhibiting (red) receptors that can interact with the corresponding ligands expressed on tumor cells 
within the tumor microenvironment (TME). Other cells of the TME, such as tumor/cancer associated fibroblasts 
(TAF/CAF), dendritic cells (DC) or antigen presenting cells (APC) and macrophages (MΦ) are also depicted. The engage-
ment of activating receptors triggers cytolysis of tumor cells and/or the release of cytokines while the interaction of inhib-
iting receptors with corresponding ligands impair NK cell-mediated activities. The final net effect (triggering or inhibition) 
is determined by the balance of these positive and negative signals. The receptors and ligands mentioned in the figure are 
analyzed in detail in the text. Acronyms. LFA1: lymphocyte function antigen 1; ICAM1: intercellular cell adhesion mole-
cule 1; NCR: Natural Cytotoxicity Receptor; ViAg: viral antigen; ?: not yet identified ligands; NKG2D: NK related group 
2D; ULBPs: UL binding proteins; MICA/B: MHC-related molecule A/B; DNAM1: DNAX adhesion molecule 1; PVR: polio 
virus receptor; KIR: killer immunoglobulin receptor; CLIR: C-lectin inhibitory receptor; ILT: Immune lymphocyte tran-
script; HLA-I: human histocompatibility antigen; TIGIT: T cell immunoreceptor with Ig and ITIM domains; PVRL2: po-
liovirus receptor related 2; LAIR1: Leukocyte associated inhibitory receptor 1; NKRP1A: NK related protein 1A; CLEC2D: 
C-type lectin domain family 2 member D; PD1: programmed death receptor 1; PDL1: programmed death receptor ligand 
1; Tim3:T-cell immunoglobulin and mucin-domain containing−3; Per: perforin; GrB: granzyme B; ADCC: antibody de-
pendent cellular cytotoxicity. 
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Figure 2. Phenotype of peripheral blood (PBNK) and tissue resident (TRNK) NK cells. The large majority of PBNK (A)
express CD16 and through this receptor for the Fc portion of immunoglobulins can activate the ADCC that induces the
release of perforin and granzymes to kill target cells. A minority of PBNK does not express CD16, but displays high surface
amounts of CD56 (CD56bright) antigen; these PBNK cells are similar to tissue TRNK (B). NK cells express a plethora of
activating (green) or inhibiting (red) receptors that can interact with the corresponding ligands expressed on tumor cells
within the tumor microenvironment (TME). Other cells of the TME, such as tumor/cancer associated fibroblasts (TAF/CAF),
dendritic cells (DC) or antigen presenting cells (APC) and macrophages (MΦ) are also depicted. The engagement of
activating receptors triggers cytolysis of tumor cells and/or the release of cytokines while the interaction of inhibiting
receptors with corresponding ligands impair NK cell-mediated activities. The final net effect (triggering or inhibition)
is determined by the balance of these positive and negative signals. The receptors and ligands mentioned in the figure
are analyzed in detail in the text. Acronyms. LFA1: lymphocyte function antigen 1; ICAM1: intercellular cell adhesion
molecule 1; NCR: Natural Cytotoxicity Receptor; ViAg: viral antigen; ?: not yet identified ligands; NKG2D: NK related
group 2D; ULBPs: UL binding proteins; MICA/B: MHC-related molecule A/B; DNAM1: DNAX adhesion molecule 1; PVR:
polio virus receptor; KIR: killer immunoglobulin receptor; CLIR: C-lectin inhibitory receptor; ILT: Immune lymphocyte
transcript; HLA-I: human histocompatibility antigen; TIGIT: T cell immunoreceptor with Ig and ITIM domains; PVRL2:
poliovirus receptor related 2; LAIR1: Leukocyte associated inhibitory receptor 1; NKRP1A: NK related protein 1A; CLEC2D:
C-type lectin domain family 2 member D; PD1: programmed death receptor 1; PDL1: programmed death receptor ligand 1;
Tim3:T-cell immunoglobulin and mucin-domain containing−3; Per: perforin; GrB: granzyme B; ADCC: antibody dependent
cellular cytotoxicity.

Roughly, CD16+CD56low PBNK cells are potent antitumor effector cells and display a
strong intracytoplasmic expression of cytotoxic molecules such as perforins and granzymes,
whereas CD16-CD56high PBNK cells play a regulatory role due to the production of cy-
tokines [46–48]. Of note, tissue-isolated NK cells display a surface phenotype more similar
to CD16-CD56high than CD16+CD56low PBNK cells suggesting that tissue resident (TR),
and thus tumor infiltrating NK cells are not prone to kill tumor cells. Thus, NK cells are
surface CD3/TCR- with a different level of expression of CD16 and CD56 [49,50]. It is
not clear to date whether resident NK cells are derived from PBNK cells and whether
the two subsets described are different functional stage of the same NK cell at least in
humans [51,52] (see Figure 2). Furthermore, several markers of NK cells are shared with the
so-called innate lymphoid cells (ILC) including CD56, CD69, CD161, NKp30, NKp44 and
NKp46 (these last three receptors called natural cytotoxic receptor, NCR) [49–55]. Indeed,
NK cells have been considered among the different cells that belong to ILC1 subset of
ILC [51,52], although it has been claimed that ILC1 and NK cells derive from different
progenitor cells [53–55]. These molecules play a key role in NK cell-mediated activation
and interaction with target cells (see Section 2).



Cancers 2021, 13, 3417 5 of 22

4. Basic Interaction between Natural Killer Cells and Tumor Cells

A plethora of receptors expressed on NK cells, and the interaction with the correspond-
ing ligands on tumor target cells, can lead to two main effect: activation or inhibition of
NK cells [56–59]. These receptors–ligands pairs have been described extensively in several
reviews that cover both murine and human NK cell features, and their detailed description
is beyond the scope of this review. Recent reports can be consulted for a more comprehen-
sive description of these characteristics [60–68]. Briefly, activating or inhibiting receptors
can be found on NK cells [56–59], and their engagement eventually results in the killing
or the protection from the killing of the target cell [56–59]. It is commonly accepted that
NK cells do no kill self-healthy cells, because they recognize the self-MHC [56–59,64]. This
recognition is mediated by receptors belonging to the Killer Ig like superfamily (KIR) and
C-lectin type family (CLIR), that have been characterized in detail in other reviews [57–59].
When self-MHC or the receptors for MHC are covered in vitro by specific mAbs, NK cells
can kill several self-cell types including tumor cells [57–59]. This killing is mediated by
activating NK cell receptors whose engagement triggers intracellular calcium increase and
activation of Akt kinase, inducing the release of cytotoxic granules at the NK-target cell
interface [69–73]. Physiologically, the NK cell-mediated killing can occur when self-cells
do not express MHC-class I, for instance when tumors downregulate these antigens to
escape from the T cell-mediated antigen specific killing [74–77]. Nevertheless, several
conflicting reports on the topic underline the complexity of self-recognition by NK cells
and its regulation [56–59,78,79].

NK cells recognize and bind to the tumor target through several receptors [42,44,46,58].
The lymphocyte function associated antigen 1 (LFA1), a protein heterodimer composed
of CD11a and CD18 chains, interacts with the intercellular adhesion molecule (ICAM) 1
expressed on target cells. ICAM1 is upregulated by IFNγ, induced by the inflammation
that can accompany tumor growth [80–85]. Several other molecules, such as DNAM1,
NKG2D and NCR, strengthen this binding and trigger the activation of killing [42,44,46,58].
DNAM1 and NKG2D receptors bind the corresponding counter-ligands on target cells,
poliovirus receptor (PVR) and nectin 2 [86] or the UL binding proteins (ULBP1–6) and the
MHC-related molecule A and B (MICA/B) [86–91]. Upon this binding NK cells can kill
target cells through mainly two different mechanisms: release of lytic factors and enzymes
(perforins and granzymes), and action of death inducing molecules such as FasL and tumor
necrosis factor (TNF)α [92–94].

At the surface of NK cells are also expressed several receptors that deliver, upon
engagement with counter-ligands, an inhibitory signal, blocking cytolysis and cytokine
release [95–110]. These receptors, in addition to those involved in the recognition of
self-MHC-class I mentioned above, include the leukocyte associated inhibitory receptor
1 (LAIR1) [95–97], some sialic acid-binding immunoglobulin-type lectins (siglecs 7 and
17) [98,99], the T cell immunoreceptor with Ig and ITIM domains (TIGIT) [100,101], the T
cell activation increased late expression (Tactile, CD96) [102–104], the programmed cell
death receptors 1 (PD1) [105–107], and the T-cell immunoglobulin and mucin-domain
containing−3 (Tim 3) [108–110]. Thus, NK cells can kill a tumor target only when positive
signals overwhelm negative ones [98]. This balance does not only rely on the expres-
sion of activating and inhibiting receptors on NK cells, but also on the expression of the
corresponding counter ligands on target cells [95–110] (Figure 2).

The knowledge of the large majority of the molecular mechanisms involved in NK
cell-mediated cytolysis has been derived from experiments in conventional culture systems,
using tumor target cell suspensions labelled with radionuclide probes and incubated in
V-bottomed well plates [111–116]. In these culture conditions, NK cells aggress carcinoma
epithelial cells (the large majority of solid tumor tissues) as single cells with a spherical
shape. These conditions are not similar to what happens in vivo, where tumor cells of
epithelial origin grow attached to extracellular matrix in a compact 3D structure. Further-
more, the labelling with a radioactive probe limits the analysis of NK-tumor interactions to
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short-time assays, due to the toxicity of the probe itself. Thus, some of the findings found
in conventional assays are far from the in vivo situation.

5. Tumor Cell Spheroids as a 3D Model to Study Tumor Cell Biology and
Tumor-Natural Killer Cross-Talk

To transfer in a clinical setting the powerful anti-tumor immune activity of NK
cells reported in vitro, several animal models have been used to confirm in vitro observa-
tions [18–26]. Unfortunately, these models are not fully appropriate, as human neoplastic
cells are usually ectopically injected in immunocompromised animals to avoid xenogeneic
reaction [18–26]. Furthermore, some side effects of the immunotherapy, such as capillary
leakage syndrome, have not been detected in animals [1–6]. The implant of patient derived
xenograft tissue (PDX) in non-obese diabetic severe combined immunodeficient gamma
(NOD-SCIDγ or NSG) mice has been extensively used [18,22,24]. The anti-PDX effects of
human immune cells, in these humanized mice, only partially resemble the development
of a tumor in humans, as tumor microenvironment is complex and composed of different
cellular and extracellular components that cannot be replaced by murine cells [18–26].
Recently, it has become evident that the replacement of animal experimentation, whenever
possible, can be achieved by using 3D culture systems [15,16]. Thus, tumor cell spheroids
(this paragraph) and organoids (next paragraph) have been created to study the biological
behavior of tumor and immune cells [34,116,117]. Some of the advantages and disad-
vantages of the above-mentioned models to study immune response are summarized in
Table 1.

Spheroids can be derived from either established cell lines or primary isolated tumor
cells [35,118–128]. Usually, spheroids are obtained culturing tumor cells in ultra-low
adherent plasticware or by hanging drop methods, forcing tumor cells to aggregate and
generate tumor sphere in static or microfluidic systems [15,16,126–136]. The spheroids
can be composed of a single (homotypic) or, less frequently, different (heterotypic) cell
types [15,16,125,126]. Of note, it has been reported that spheroids can be obtained from
patients’ tumor-specimens digestion, and self-immune cells can be challenged with self-
spheroids to analyze the effect of different drugs and plan their application into the
clinic [15,16,117,119,123]. By this way, the 3R (Reduce–Reuse–Recycle) policy has become
more and more followed, trying to replace, reduce and refine the use of animal-based
assays [134,135]. Herein, we will describe the experimental data derived from spheroid
models where the cross-talk between NK and tumor cells have been analyzed.

5.1. NK Cells Interaction with Colorectal Carcinoma (CRC) Cells
5.1.1. CRC Biological Features and CRC Spheroids

Several reports have considered CRC spheroids as a good tool to study in a 3D system
the features of tumor cells and their interactions with immune cells [125–127,136–138]. The
interest on CRC is related to the strong clinical relevance of this tumor and the impact
of immune infiltration on patient prognosis [139–141]. Indeed, CRC is the third cancer
diagnosed in males, the second in females and it is the second cause of cancer-related death
in USA [142–144]. CRC has been subdivided into four groups, the Consensus Molecular
Subtypes (CMS), based on clinic, pathologic and molecular profiling data [145]. CRC
is a very heterogeneous inter and intra patient disease [142–145]. Recent advances in
treating tumors with ICB, are not effective in most CRC, except for microsatellite instability
(MSI)-high cancers, showing high neoantigens load [143]. The studies of CRC biology in
immunocompetent animal models are limited [146–148]. This prompts to generate models
to study patients’ immune response variability and drug sensitivity, and to characterize the
interaction of immune cells with 3D CRC-derived spheroids [119,120,125–127,136]. Tumor
cell spheroids can be obtained applying different culture methods [125–133] (Figure 3).



Cancers 2021, 13, 3417 7 of 22

Table 1. Advantages and disadvantages of in vitro and in vivo tumor cell culture models to study interactions with immune cells.

Model Type Advantages Disadvantages

Conventional cultures of established tumor cell lines Relative low cost Limited 3D interaction
Low care to culture Limited cell to cell interaction

Low expertise to culture Limited cell to matrix interaction
Easy genetic modification Limited microenvironment and intercellular communication

Fast growth Limited or lack of cellular polarization
Minimal culture requirement Genotypic and phenotypic selection of clones after several splitting

Easy drug testing Inter and intra laboratories culture selection
Easy/scalable experimental replicates Needs frequent authentication

Easy co-culture experiments with immune cells
Patient-derived tumor cell suspension Representative of the original tumor immediately after isolation Difficult genetic stabilization (heterogeneity)

Ideal for TME and single cell studies Difficult to culture
Derived cell lines only partly representing the original tumor

Low number of cells for functional experiments
Cell lines-derived or patient-derived spheroids Several plasticware tools to get spheroids from single cells Relative higher cost compared to conventional cultures

Increment of cell to cell and cell to matrix interactions Difficulties in getting heterotypic spheroids
Easier growth quantification compared to organoids Reduced architectural microenvironment

Limited culture needs Difficulties in getting spheroids
Cultured in well-defined media without serum Difficulties in setting functional assays

Difficult experimental standardization
Need of advanced microscopy equipment for analysis

Patient-derived organoids Partial preservation of cellular interactions and partial polarization Reciprocal cell interaction and gradient of factors are not always polarized as in vivo
Genetically engineered Medium-high care to culture

Identification of different cell types in the same organoid High culture cost
Cultured in well-defined media Reduced architectural microenvironment

Partial maintenance of genetic features and heterogeneity Interaction with stromal components not like in vivo and difficult to set in standard
organoid medium

Culture with self-immune cells Difficulties in setting functional experiments
Low-medium frequency of efficient generation from patient

Difficulties in standardization
Needs of advanced microscopy equipment for analysis

Animal models Genetically determined High cost and strong specific skill
Patient derived xenografts improve study of drug efficacy Not necessary mirror human cell physiology

Humanized-mice partly resemble in vivo physiology The stromal components derive from the animal model
Difficulties to study immune cell interactions

Cultures in artificial scaffolds and organ on chip,
associated with fluidic systems Replaces animal models or reduces the number of animals used High cost and specific expertise requested

Resembles more physiological conditions Difficult to standardize
Needs new approaches to assess functional activity
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5.1.2. Generation of CRC Spheroids and Molecules Involved in NK Cell Mediated
Recognition of Tumor Cells

Usually, tumor cells are seeded onto ultra-low adherent culture wells [125–127]: this
impairs adhesion of tumor cells to plastic substrate and favors the cell-to-cell aggregation.
The size of spheroids can be controlled culturing the same number of cells in each well,
and this is allowed when tumor cells are put in very little U or V bottomed wells or in
hanging-drop plates [129–133]. Spheroids can be embedded into hydrogel drops that
solidify at warm temperature, or by calcium addition, and be used as models of initial
tumor growth [149–154]. This approach allows the contemporary assay of a large number
of similar-sized spheroids, incubated with drugs and/or immune cells [154]. On the other
hand, spheroids of different size can be randomly obtained when tumor cells are plated
onto larger, flat-bottomed plates [125–127]. These different approaches can be used to
standardize the results. Standardization is easier, having a lot of replicates of the immune-
tumor cell interaction, when NK cells are faced with a spheroid of a defined size. Indeed,
standardization is a key point to translate in vitro data to the clinic [155–159]. However, the
use of spheroids of different size can characterize the behavior of NK cells when challenged
with tumors showing different mass density, or inner hypoxic areas [126].

In this context, it has been shown that the NKG2D receptor plays a key role in the
recognition of CRC spheroids derived from either established cell lines such as HT29 and
DLD1, as well as primary cell suspension from tumor biopsies [119]. This finding is in
line with previous observations obtained in conventional culture systems, supporting the
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notion that 3D culture can validate data from in vitro experiments in a more physiological
microenvironment [119]. In this model, the contemporary targeting of NKG2D ligands
MICA/B on tumor cells, and the inhibitory receptor NKG2A on NK cells, led to a synergistic
effect in blocking tumor cell growth, even if it expressed the NKG2A ligand HLA-E [119].
The authors also originated patient-derived spheroids, mainly composed of a mixture of
TAF (due to the initial 2D condition and the presence of serum) and a minor population of
tumor epithelial cells. These spheroids were attacked by TIL (either NK or T cells) upon
stimulation with IL15 [119]. The use of self-peripheral blood lymphocytes and self-TIL
could aid to select appropriate drugs combinations targeting tumor cell growth without
impairing the immune response [119].

5.1.3. Invasion and Killing of CRC Spheroids

Haploidentical allogeneic NK cells are an efficient tool to eliminate hematological
cancer cells [160], and they have been evaluated as a therapeutic tool for killing CRC
spheroids [120,161]. NK cells activated in vitro by the lymphoblastic R69 cell line, without
IL2, can kill CRC spheroids derived from Caco−2, HT29 and HCT116 independently
from the expression of PDL1 on tumor cells [162]. An inverse correlation between the
effector/target ratio used in cytotoxicity assays against spheroids and NK cell infiltration
has been shown [160]. At high E:T ratio allogeneic NK cell can kill CRC cells in spheroids
without any apparent infiltration, this observation could be intuitive, as lots of NK cells
covering the entire spheroid surface would kill all epithelial cells before being able to
attempt any invasion of the disaggregating spheroid. On the other hand, the ability of
NK cells to kill or invade a tumor spheroid could be triggered by a different balance
of stimuli. In this perspective, it is important to define whether a so-called spheroid
effectively displays a spherical 3D structure [126]. Indeed, the microscopic observation of
a sphere as well as of a discoid is visualized as a circle in x–y axis. The spherical shape
can be assessed by the use of microfluidic systems [126]. By this equipment [126], we
characterized the exact shape and measured the mass density of CRC cell line spheroids.
Mass density is the ratio between the weight and the volume of a spheroid, and it can
be considered a parameter typical for each CRC cell line. Interestingly, this parameter
changed during both spheroid infiltration by NK cells and NK cell-mediated killing of
tumor cells [126]. These findings indicate that mass density can characterize a tumor cell
spheroid, and its evaluation can provide new insights on how tumor cells respond to NK
cell aggression. Of course, epithelial tumor spheroids lack many other components of TME,
and only the analysis of complex heterotypic spheroids could complete the picture. The
achievement of such a model is complex, as many paracrine stimuli would be activated
and difficultly monitored. However, it is of note that mass density, and possibly other
undefined biomechanical features, could give a deeper characterization of tumor behavior
and responsiveness to immunotherapy.

5.2. NK Cells Interaction with Other Solid Tumor Spheroids

The cross-talk between NK cells and solid tumor cells has also been assessed using
spheroids of neuroblastoma, ovarian, cervical and breast carcinomas [121,123,163–165].
Neuroblastoma spheroids have been used to assess NK-cell mediated cytotoxicity upon
treatment with nutlin-3a, a small molecule that antagonizes the inhibitory effect of MDM2
on p53. The reactivation of p53 triggered the upregulation of DNAM1 ligands on neu-
roblastoma cells activating NK cell recognition and killing [165]. NK cells cultured with
spheroids of ovarian cancer cells (IGROV1, SKOV3, OVCAR3) can downregulate the ex-
pression of DNAM1, the same happens co-culturing ovarian cancer specimens with NK
cells [121]. The inhibitory effect mediated by DNAM1 downregulation was enforced by
the upregulation of the inhibitory receptor TIGIT that can interact, like DNAM1, with PVR
and nectin 2, while the levels of CD96, the third receptor for DNAM1 ligands, remained
unaffected. These findings indicate that tumor cell line-derived spheroids are a suitable tool
to analyze the response of NK cells. Triple negative breast carcinomas (TNBC, HCC1806
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and MDA-MB231cell lines) spheroids have been used to assess the immunotherapeutic
effect of the bispecific antibody targeting mesothelin and triggering CD16 by a Fab-like
domain (MesobsFab) [164]. MesobsFab triggered NK cell-mediated killing and infiltration
of tumor spheroids.

Finally, it has been reported that the expression of NKG2D ligands (NKG2DL) was
partially downregulated in spheroids of the human cervix squamous cell carcinoma line
SiHa and the cervical epidermoid carcinoma CaSki, compared to classical monolayer
culture conditions [123]. This downregulation was due, at least in part, to the shedding
of NKG2DL, that were detected in the culture medium. Though, these spheroids were
infiltrated by NK cells that efficiently killed tumor cells through the activation of NKG2D-
NKG2DL interaction. Indeed, anti-NKG2D-blocking antibodies strongly inhibited NK
cell-mediated killing [123].

6. Tumor Cell Organoids: A More Reliable 3D Model to Study Tumor Cell Biology and
Tumor-NK Cells Interactions?

Tumor organoids can be derived mainly by two procedures: using (a) an air–liquid
interface (ALI) method, embedding the tissue sample en-bloc, without immersion in culture
medium [166,167], or (b) matrix-embedded epithelial cells derived from tissue diges-
tion, and continuously growing by the activity of Wnt and other mitogenic and stem
factors [40,168,169] (Figure 3B). These approaches can be used to generate organoids from
different tumor specimens [40,166–169] and both can be used to study immune system–
tumor cell interactions [40,166–169]. The ALI method has been described quite recently, and
allows to study tumor infiltrating lymphocyte (TIL) phenotype and functional activities for
a discrete period and a few culture passages [166]. In this system, TIL can be expanded in
the complex microenvironment of the original tumors [166]. Though, the complex structure
of the tissue is progressively lost, along time [166]. Tumor associated fibroblasts are present,
as smooth muscle alpha actin (SMA) and vimentin positive cells; this may be due to the
non-enzymatically based procedure of generation of these organoids, and the presence
of serum in the culture medium [166]. However, also myofibroblasts are progressively
lost during culture. Thus, this model should be analyzed in short-term experiments for
the evaluation of tumor and stroma patient-specific features. The survival of specific cell
populations can be improved by the exogenous addition of growth factors. For example,
CD3+ T lymphocytes (either CD4 or CD8), CD68+ macrophages, NKT cells and NK cells
can be maintained for about two months in the presence of exogeneous IL2 [166].

On the other hand, matrix-embedded pure epithelial organoid cultures are generated
by the proliferation and partial differentiation of epithelial stem cells, such as Lgr5+ cells.
The presence of a very defined culture medium, allows to preserve the epithelial stem
cell population by appropriate mitogenic stimuli and inhibition of differentiating signals,
though it is not permissive for mesenchymal cell growth [170]. These organoids can be
indefinitely expanded in culture and allowed to growth in different sizes. This model has
been used to proof the possibility of deriving anti-tumor specific T lymphocytes in vitro,
able to recognize and kill self-tumor cells [170]. In this case, while the generation of CD8 T
cells was tumor antigen specific, the CD4+ T cell subset could respond to matrix mouse
components. Thus, this system is more suitable to study cytotoxic T cell immune response,
than CD4-mediated help. In the next paragraph, we discuss the reports regarding the
interaction between organoids and NK cells, while the studies on T cell-mediated immune
response are not considered, being treated in specific reviews [168–171].

6.1. How NK Cells Modify Their Behaviour upon Interaction with Organoids
6.1.1. Co-Culture Conditions of Organoids and Immune Cells

Data on how NK cells interact with organoids are scanty and it is relevant to clarify the
exact culture conditions in which the experiments have been performed. Usually, immune
cells are cultured in conventional RPMI1640 medium supplemented with fetal calf serum,
while organoids should be cultured in chemically defined media, with specific growth
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factors and supplements (such as epidermal growth factor, EGF, fibroblast growth factor,
FGF, Wnt3a, R-spondin1, noggin, B27, N-acetyl cysteine, and chemical inhibitors of the
TGF-β and p38 pathways) [168–171]. It is not well-defined whether these different culture
conditions may affect the cross-talk between immune and epithelial cells. Furthermore,
immune cells should be supported by the addition of exogeneous IL2 or other immune
cell stimulating triggers. It has been reported that unfractionated self-peripheral blood
mononuclear cells (PBMC) can be co-cultured for a long time with epithelial cell organoids
from CRC or non-small cell lung carcinoma (NSCLC) in the presence of IL2, IFNγ, anti-
CD3 and anti-CD28 antibodies coated to plastic for 28 days. Anti-PD1 blocking antibodies
were used to limit the inhibition of the immune response mediated by the interaction of T
lymphocytes-expressed PD1, with PDL1 on epithelial organoids [168–171]. Under these
complex experimental conditions, it has been shown for the first time to our knowledge,
that an efficient T lymphocyte-specific immune response against self-tumor organoids
can be elicited. This is the proof of principle that the presence of specific anti-tumor T
lymphocytes in a given patient can be assessed in vitro [170].

6.1.2. Culture Requirements of NK Cells

NK cells require only IL2 (or another cytokine such as IL12, or IL7, or IL15, or IL21)
to proliferate, differently from T lymphocytes, because they express the βγ chains of IL2
receptor [172–174]. These cytokines can enhance the basal cytolytic activity of NK cells
and trigger an evident cytotoxic effect against carcinoma cells [172–176]. The expression of
PD1 is limited to a minor population of polyclonal activated NK lymphocytes and mainly
in selected donors [107,177]. Thus, the addition of anti-PD1 antibodies to a culture of
NK cells with organoids is not needed. Peripheral blood NK cells, in pancreatic ductal
adenocarcinoma (PDAC) patients, display CD16 and CD57 upregulation, while these
markers are downregulated in the scanty NK cells infiltrating the tumor, showing also
reduced NKG2D and NKp30 activating receptors expression [178]. The co-culture of PBMC
from these patients, with self-organoids, determined a phenotype switch of NK cells, with
downregulation of CD16, and low CD57, as observed in PDAC tumors. It is of note, that
PDAC patients with a fraction of PB CD56low CD16- NK cells over 1% (the median level of
this subset), showed less PDAC recurrence than patients with less than 1%. This would
indicate that the TME of organoids co-cultured with self-PB NK cells in vitro could induce
the selection of NK cell subsets mimicking patient’s situation. Thus, in vitro 3D systems
can mimic pathophysiological conditions, supporting their role for a better understanding
of the innate immune response against cancer [178].

6.1.3. Interactions of NK Cells and CRC-Derived Organoids

Patients-derived CRC organoids have been used for preclinical assessment of the
chimeric antigen receptor (CAR) NK cells [179]. Using the standardized CAR-NK92 model,
it was possible to quantify the CAR-mediated cytotoxicity against CRC organoids. First,
it has been shown that the cytolytic activity of the CAR-NK92 cell line was strongly
impaired by the presence of nicotinamide in the organoid medium, whereas the depletion
of this compound did not affect the viability of organoids. Luciferase/GFP expressing
CRC organoids were used as targets for EPCAM-specific CAR-NK92, in nicotinamide-free
medium. These co-cultures were dynamically monitored, by confocal microscopy imaging
and subsequent automatic analysis of recovered data. The cytotoxicity of CAR-NK92 cells
against EPCAM+ organoids was quantified evaluating both the decrease of luciferase/GFP
fluorescence and the area occupied by organoids [179]. In the same model, it has been
shown that engineered EGFRvIII-CAR-NK92 cells can kill transduced EGFRvIII-organoids,
but not non-transduced organoid controls. This indicates that organoids can be used
as a tool to quantify CAR-NK92 cytotoxicity and that EGFRvIII-CAR-NK cells might be
used as a therapeutic tool, as the EGFRvIII form of EGFR is a peculiar feature of several
tumors [180,181].
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6.2. Improvements of 3D Culture Systems and Therapeutic Relevance of Studies in 3D Models
6.2.1. Limitations of Spheroids and Organoids as 3D Culture Models

Both tumor spheroids and tumor organoids have limitations in mimicking the physi-
ological conditions where NK cells interact with tumor cells. First, immune cells should
reach a tumor by extravasation, interacting with the endothelial cell layer [182–185]. After-
wards, NK cells need to degrade the extracellular matrix, to reach tumor tissue [186–188].
In some instances, they can encounter mesenchymal stromal cells (MSC) that are in close
proximity to tumor cells. MSC themselves can be influenced by the growing tumor and can
be activated. MSC proximal to the tumor mass do not show altered markers, compared to
healthy MSC, resembling reactive MSC instead of tumor-infiltrating MSC [189–191]. Thus,
MSC close to the tumor have some features of repairing tissue MSC [189–191]. Addition-
ally, NK cells come across with several healthy cells before reaching tumor cells [192–194].
It is conceivable that NK cells may interact with a tumor-budding spheroid during the
progressive growth of the neoplastic mass [195–198]. The infiltration of the tumor will
be different if NK cells reach the tumor from its periphery, or from a vessel generated
inside the tumor mass. In this context, the study of the NK-tumor cell interaction has
to consider the dynamic conditions that accompany tumor growth and its vasculariza-
tion [195–198]. It is evident that, within a tumor mass, a strong heterogeneity is present
due to the differential expression of altered genes (mutations, up and down regulation
of genes, chromosomal/copy number alterations) in different cell populations, and the
heterogeneity of the metabolic state of these cells [199–203]. The expression of mutated
genes can be dependent on the metabolic state and the primary source of energy used by
tumor cells, and vice versa, some mutations trigger metabolic responses [204–207].

6.2.2. Microfluidic Model to Study the NK Cell Distribution in Tumor Spheroids

The influence of metabolism on tumor growth/mutation and the immune response
could be tested by the generation of microfluidic models [126,208–211]. For example,
two parallel capillary-like structures layered with endothelial cells have been plated in
an extracellular matrix hydrogel; in the middle space, between these capillaries, a breast
cancer spheroid was co-plated. This model was used to study a therapeutic antibody
and NK cells distributions starting from the vessel lumen [212]. NK cells could sense
the tumor, actively approaching and infiltrating the spheroid, apparently better than the
passive diffusion of the therapeutic antibody. Indeed, antibodies diffused in the hydrogel,
but they initially localized only on the outer surface of the spheroid, next to the artificial
vessel. Only at 24 hrs the whole periphery of spheroid was covered by the antibody, though
it could not penetrate inside the spheroid. NK cells sensed spheroids through several
chemokine receptors and penetrated into the inner portion of the spheroid. These NK cells
can kill tumor cells both at the periphery and inside the tumor mass [212]. This model is
of great interest because the differential penetration of therapeutic antibody and NK cells
in an artificial system that resembles the TME can provide information on how the anti-
tumor immune response can be regulated. However, it does not take into consideration
the plethora of activating and inhibiting signals that NK cells can receive during their
localization, as mentioned in Section 3.

6.2.3. Heterotypic Spheroids to Better Mimic TME

The use of heterotypic spheroids would be essential to better understand the complex
interaction between anti-tumor effector cells and TME [122,125,213]. Recently, several
reports have demonstrated the possibility to reconstitute in vitro the conditions to gen-
erate heterotypic spheroid [122,125,213]. The combination of carcinoma cells, fibroblasts
and immune cells was used to create 3D heterotypic spheroids with the hanging drop
method [122]. In particular, the co-culture of the CRC cell line LS174T and fetal fibroblasts
MRC-5 led to the generation of spheroids with a highly compact core of fibroblasts sur-
rounded by carcinoma cells [122]. This kind of spheroids were infiltrated by monocytes
and to a lesser extent by CD3+ T cells. This model was used to assess the localization
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and functional effects of IgG-IL2v, that is a variant of IL2 linked to IgG, able to interact
only with lymphocytes expressing βγ chains of IL2R such as NK, CD8+ cytolytic effector
cells and CD4+ helper T cells, but not regulatory T cells expressing high levels of CD25.
IgG-IL2v could increase T cells and CD3-CD56+CD69+ NK cells infiltration of spheroids,
and the killing of the peripheral layer of epithelial carcinoma cells. In this model, the use of
T cell bispecific [TCB) antibodies, targeting carcinoembryonic antigen (CEA) or fibroblast
activating protein (FAP), showed that T cells could be selectively activated to localize and
kill either carcinoma cells or fibroblasts. This heterotypic model could be suitable to assess
the efficiency of different therapeutic tools [123].

6.3. Future Perspectives and Applications of NK-Tumor Cell Interaction in 3D Models

As reported in the previous paragraphs, 3D models are a suitable tool to dissect how
patient-derived NK cells may influence the growth of a tumor mass (Figure 4).
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Figure 4. 3D culture models for NK/effector-tumor cell interaction. (A) Spheroids and organoids allow a more holistic
approach to study the interactions between tumor and effector cells, provided the use of chemically defined media with
components that do not alter the phenotypic and functional features of epithelial cells and lymphocytes and avoid factors
that can metabolically inhibit one or another of these two cell populations. (B) The use of specific stimuli such as growth
factors or cytokines can mimic in vivo conditions like in conventional cultures. The 3D structure of tumor mass forces the
lymphocytes to interact with tumor cells and penetrate into spheroids and/or organoids. This interaction should trigger
mechanisms of lymphocyte invasion, while also tumor cells respond to this trigger. (C) Endpoints and assays involved
in effector lymphocyte/tumor cell 3D cultures analysis. NK/effector cell-mediated cytotoxicity and cytokine release
through imaging software tools and time-lapse recording, including computerized microfluidic systems. NK/effector cell
phenotype can be assessed using different methodological approaches, such as fluorescence activated cell sorting (FACS),
immunohistochemistry (IHC) or mass cytofluorimetry (CyTOF). Drug testing, including combinatorial drug regimens, can
be performed evaluating spheroid/organoid size and the differences of metabolism and oxygenation of the tumor mass, as
it happens in vivo. The response of tumor cells, as well as that of NK cells, can be analyzed in detail applying genomic and
proteomic analysis at the single cell level upon the disaggregation of the 3D culture model.

Tumor spheroids and organoids allow the study of the molecular mechanisms mediat-
ing lymphocyte and NK cell infiltration of a tumor mass [126]. During this process, it is
relevant to analyze the immune synapse between activating and/or inhibiting NK cells
receptors and their counter-ligands on tumor cells. NK cell cytoskeleton rearrangements
could be analyzed to define if the simultaneous interaction with more than one single tumor
cell may influence the redistribution of the cytotoxic granules. During the infiltration of
spheroids from the periphery to the center, NK cells probably activate/deactivate different
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molecular mechanisms allowing migration, protein digestion and matrix/cell interactions.
These mechanisms do not play a role in conventional 2D or cell suspension-based culture
system. This would suggest that 3D culture models could shed new light on the NK cell
signal transduction triggered during infiltration.

Another challenge in a 3D culture models is the quantitative analysis of the cyto-
toxicity of NK cells in tumor cells. This can be achieved evaluating different parameters
in tumor cells: caspase activation, increment/reduction of fluorescent probes (passive
markers, active substrates, or reporter constructs), and residual living cells quantifica-
tion [119,121,123,128,160,163,165,166,168,170,171,178,179]. The quantitative analysis of
killing has been assessed mainly by image analysis [119,126,128,212,214,215]. This proce-
dure needs appropriate equipment, a long time for the acquisition of large sets of images
at different zeta planes of the 3D structure, and the complex informatic analysis with
advanced software [214,215]. Furthermore, the accuracy and precision of results depends
on the sensitivity of the equipment and the algorithms of the software [214,215]. The devel-
opment of easier and standardized quantification assays dedicated to these 3D models is a
must, as the conventional cytotoxic tests are clearly insufficient to define the behavior of
tumor cells during the interaction with effector cells [126,128].

7. Conclusions

The immune system can deeply interact with tumor cells in a hostile TME. While the
reactivation of the adaptive immunity by ICB is an additional therapeutic tool against cancer,
several solid tumors do not show relevant responses to ICB therapy [7–9,13,77,98,143,160,177].
NK cells can successfully eliminate tumor cells, but are regulated by a complex balance
of positive and negative signals, delivered from the receptor ligands expressed on tumor
cells. The role of MHC class I molecules in shaping NK cell self-reactivity is essential. Thus,
to fully understand NK cell interaction with self-tumor cells, appropriate culture models
should be developed. 3D culture systems, such as spheroids and organoids derived from
patients’ specimens, would allow a deeper analysis of the complex structural architecture of
NK-tumor cell recognition/killing. Moreover, they can represent a tool to test therapeutic
approaches and novel drugs in an autologous setting. These dynamic models, associated
with microfluidic chips, can give new insights on the phenotypic and functional features of
NK cells, and their application in cancer therapy.
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