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ABSTRACT

Blood in healthy organisms is seen as a ‘sterile’ environment: it lacks proliferating microbes. Dormant or
not-immediately-culturable forms are not absent, however, as intracellular dormancy is well established. We highlight here
that a great many pathogens can survive in blood and inside erythrocytes. ‘Non-culturability’, reflected by discrepancies
between plate counts and total counts, is commonplace in environmental microbiology. It is overcome by improved
culturing methods, and we asked how common this would be in blood. A number of recent, sequence-based and
ultramicroscopic studies have uncovered an authentic blood microbiome in a number of non-communicable diseases. The
chief origin of these microbes is the gut microbiome (especially when it shifts composition to a pathogenic state, known as
‘dysbiosis’). Another source is microbes translocated from the oral cavity. ‘Dysbiosis’ is also used to describe translocation
of cells into blood or other tissues. To avoid ambiguity, we here use the term ‘atopobiosis’ for microbes that appear in places
other than their normal location. Atopobiosis may contribute to the dynamics of a variety of inflammatory diseases.
Overall, it seems that many more chronic, non-communicable, inflammatory diseases may have a microbial component
than are presently considered, and may be treatable using bactericidal antibiotics or vaccines.

Keywords: ‘sterile’ blood microbiome; culturability; dormancy; dysbiosis; atopobiosis; Parkinson’s disease; Alzheimer
disease

INTRODUCTION

‘Overall, it seems inevitable that the availability of these meth-
ods will cause the catalog of disease states recognized as having
a microbial contribution to their etiology to expand enormously
in the short term, particularly as improved methods for resusci-
tation of small cell numbers are found’ (Davey and Kell 1996).

Over the years, a variety of diseases thatwere previously con-
sidered non-communicable have been found to have a micro-
bial component, the role of Helicobacter pylori in ulcerogenesis

(Marshall and Warren 1984) being a particularly well-known ex-
ample. There have also been hints for a microbial component to
many other non-communicable diseases, but culturing the rele-
vant organisms has rarely been successful. However, there is in-
creasing recognition that microbesmay be present in forms that
are not easily culturable, and a number of recent articles have
brought these possibilitiesmore sharply into focus. Our aim is to
review these developments. The manuscript structure is shown
in Fig. 1.

Received: 26 January 2015; Accepted: 2 March 2015
C© FEMS 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

567

http://www.oxfordjournals.org
mailto:dbk@manchester.ac.uk
http://creativecommons.org/licenses/by/4.0/


568 FEMS Microbiology Reviews, 2015, Vol. 39, No. 4

Figure 1. An overview figure summarizing the contents of this manuscript.

A note on terminology: viable, culturable, dormant and
sterile

In this field, much confusion has arisen historically because of
a failure to recognize that most microbes reproduce by binary
fission and that this reproduction must be a minimal property
or hallmark of a microbial cell that possesses ‘life’ or is ‘alive’
(Proal, Albert andMarshall 2011). Thus, aswith Schrödinger’s cat
(e.g. Primas 1981; Gribbin 1985), we cannot say that an individ-
ual microbial cell ‘is’ alive, only (if true) that it ‘was’ alive, since
it will by then have become two cells. This implies that being
alive is not best treated as though it were an innate property of a
cell, but the definitionmust be operational, and include both the
cell and the ‘environment’ (experiment) used to detect the status
a posteriori (Kell et al. 1998).

Thus, as with Postgate (e.g. Postgate 1967, 1969, 1976), we
equate viability with culturability, and stress that culturability—
the ability to reproduce—is to be determined operationally.
Other methods that do not determine culturability are not tests
of viability per se, but merely measure what they measure (e.g.
the content of a chemical such as ATP, membrane permeability
to a dye, enzymatic activity, macromolecular sequences and so
on). In addition, it is impossible in principle to (cor)relatemacro-
scopic measurements of a culture with the ability of individual
cells to divide (Kell et al. 1991; Davey and Kell 1996). In other
words, if the macroscopic ATP content of say a starving culture
were to decrease by 50%, we would not know if all of the cells
had lost half their ATP or half of the cells had lost all of their ATP
(or anything in between). The culturability of the former would
likely be 50% and of the latter 100%, despite the same macro-
scopic ATP content.

A lack of culturability may mean that a cell is non-viable
under the circumstances tested, but viability or non-viability
are not the only two possible states here. An apparent non-
culturability of a surviving cell also admits another possibility,
for which the natural term is ‘dormant’ (Kaprelyants, Gottschal
and Kell 1993; Epstein 2013). This is that the cell is not presently
culturable (viable), but it is not ‘dead’ (in the sense of an oper-
ationally irreversible loss of viability) in that it may be induced
to return to a state of culturability (by a process or processes
typically referred to as ‘resuscitation’). This also means that the
term ‘viable-but-non-culturable’, while quite common in use, is
in fact an oxymoron that is to be discouraged (Kell et al. 1998).
The eminent microbial physiologist Howard Gest is similarly

Table 1. Operational definitions of viable, non-viable and dormant
microbes. These are the three terms we consider best suited to de-
scribe the macroscopic physiological states of microbes as regards
their ability to replicate. We note that the terms ‘not immediately
culturable’ (NIC) and ‘active but not culturable’ (ABNC) can also have
some utility (Kell et al. 1998), while dormant cells are sometimes
referred to as ‘persisters’. Other variants of ‘dormancy’ that have
been used include ‘anabiosis’ (Keilin 1959) and ‘cryptobiosis’ (e.g.
Clegg 2001; Neuman 2006); all these terms imply a reversible state
between the appearance of being living and non-living in differ-
ent circumstances. This definition of dormancy also likely includes
cells that may operationally be ‘injured’, and possibly wall-less L-
forms (Domingue and Woody 1997; Mattman 2001; Allan, Hoischen
and Gumpert 2009; Domı́nguez-Cuevas et al. 2012; Errington 2013;
Mercier, Kawai and Errington 2013, 2014) provided they are or may
become culturable. ‘Sterile’ refers to an absence of operationally vi-
able organisms as defined in this table.

Term Properties

Viable Capable of observable replication, i.e.
culturable, by any stated means.

Non-viable Incapable of observable replication by any
stated means normally capable of effecting
replication in the relevant organism.

Dormant Not viable in the sense of not being more or
less immediately culturable, but may be
returned to a state of viability or culturability
by preincubation under suitable conditions.

scathing about the term ‘unculturable’ (Gest 2008), noting that
one just needs to try harder to culture organisms. Table 1 shows
the three terms best suited to discuss these issues, while Fig. 2
shows a diagrammatic representation of the macroscopic phys-
iological microbial states we mostly consider.

The assessment of replication potential (culturability) of in-
dividual cells may be done microscopically (e.g. by microscopic
counts) or macroscopically (e.g. via colony formation on an agar
plate or through the ‘most probable number’ technique). The
latter has the advantage of potentially assessing dormancy in
the absence of any contaminating culturable cells that might
proliferate during the assay (Kaprelyants, Mukamolova and Kell
1994; Votyakova, Kaprelyants and Kell 1994; Kell et al. 1998). For
assessing culturability (=viability), we do not therefore include
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Figure 2. A diagrammatic representation of the major macroscopic physiological states of microbes and their interrelationships.

other strategies in which cells do not actually divide, such as the
so-called direct viable count of Kogure, Simidu and Taga (1979).
Thus, we here highlight the point that the possibility of micro-
bial dormancy means that a system that appears to be devoid
of culturable microbes may still contain dormant cells or forms
that may become culturable.

The ‘sterile’ blood microbiome brought into question

The circulation is a closed system and the blood in healthy or-
ganisms was first believed to be a sterile environment (Drennan
1942; Proal, Albert and Marshall 2014). This definition is used
in the most usual sense of an absence of culturable microbes,
since blood can of course provide a suitable growth medium
for microbes (as in blood culture; Wilson and Weinstein 1994;
Weinstein 1996; Schroeter et al. 2012; cf. Valencia-Shelton and
Loeffelholz 2014), and any bacteraemia or sepsis, even at 1–
10 cells mL−1 (Murray 2015), is potentially life-threatening (e.g.
Vincent et al. 2009; Eleftheriadis et al. 2011; Havey, Fowler and
Daneman 2011; Montassier et al. 2013). However, the principle
of the presence of truly sterile blood in healthy humans has
been challenged, as operationally it does notmean that dormant
or non-culturable forms of organisms are absent (Kaprelyants,
Gottschal and Kell 1993; Kell et al. 1998; McLaughlin et al. 2002)
(see Table 1). Nearly 50 years ago, the existence of a novel bacte-
riological system was noted in 71% of blood samples taken from

diseased humans and from 7% of supposedly healthy humans,
when RBCs were lysed (Domingue and Schlegel 1977). A year
later, corynebacteria-like microorganisms developing in hemo-
cultures were shown within RBCs (Tedeschi et al. 1978), and in
2001 it was found that even ‘healthy’ blood specimens can con-
tain bacterial 16S ribosomal DNA (Nikkari et al. 2001). Domingue
and Woody (1997) and Domingue (2010) summarizes much of
this earlier literature. L-forms are bacterial variants that lack
some or all of a cell wall. Nonetheless they can divide, especially
in osmotically stabilized media, by processes that variously in-
volve membrane blebbing, tubulation, vesiculation and fission
(Allan, Hoischen and Gumpert 2009; Errington 2013; Mercier,
Kawai and Errington 2014). While it remains unclear whether
what was seen in these earlier studies (Domingue and Woody
1997; Domingue 2010) may have been L-forms (Mattman 2001),
that could in time revert to normal bacteria under the correct
conditions (Casadesús 2007), L-forms are becoming a topic of
considerable current research (Devine 2012; Domı́nguez-Cuevas
et al. 2012; Mercier, Kawai and Errington 2013, 2014).

The presence of a blood bacterial microbiome has also been
associated with a variety of infectious, as well as non-infectious
disease states (Huang et al. 2006; Thwaites and Gant 2011;
Nielsen et al. 2012; Prajsnar et al. 2012; Wang et al. 2012a; Ki-
bru et al. 2014; Sato et al. 2014). It is, for example, known that
H. pylori can exist not only in the gastric mucosa but also in
peripheral blood, where it could cause bacteremia (Huang et al.
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2006), and could contribute to Parkinson’s disease (PD) or related
pathologies that precede motor symptoms (Nielsen et al. 2012).
Helicobacter pyloriwas also previously implicated in the develop-
ment of anemia (Wang et al. 2012b; Kibru et al. 2014). Staphylo-
coccus aureus can also use neutrophils as ‘Trojan horses’ to dis-
seminate infection (Thwaites andGant 2011; Prajsnar et al. 2012),
while many other pathogens, such as Listeria monocytogenes (Xa-
yarath and Freitag 2012), Salmonella typhimurium (Eisenreich et al.
2010; Claudi et al. 2014; Holden 2015) and Yersinia pestis (Isberg
1991), are well known to persist intracellularly; Gest (2008) gives
other historical examples. The same is true for viruses, which
are not discussed here.

The presence of an aberrant bloodmicrobiota (as assessed by
sequencing) has been implicated in type II diabetes and cardio-
vascular disease (Amar et al. 2011, 2013; Sato et al. 2014). There
is also growing evidence that periodontal disease and gingivi-
tis are closely linked to cardiovascular disease (Yang et al. 2013;
Ramı́rez et al. 2014). Oral bacterial translocation into the blood
has been implicated in the development of periodontal disease-
induced endocarditis andmyocardial and/or cerebral infarction,
especially in patients with heart valve dysfunction (Koren et al.
2011; Amar and Engelke 2014; Seringec et al. 2014).

Wewill argue in the next sections that the existence of poten-
tially viable (but possibly non-proliferating) pleomorphic bac-
teria in the blood of healthy humans (McLaughlin et al. 2002)
may therefore be of some significance in pathology. If such a
microbiome can disrupt homeostasis, it can ultimately play a
fundamental role in disease development and progression. It
has therefore been proposed that the blood microbiota might
therefore represent or contribute to the first step in the kinetics
of atherosclerosis (Sato et al. 2014), cardiovascular disease and
type II diabetes (Amar et al. 2011), and therefore ultimately serve
as biomarkers for cardiovascular disease risk (Amar et al. 2013).
However, in the quest to use the bloodmicrobiota as biomarkers,
the question of detectability and cultivability are key concepts.

In particular, the existence of a blood microbiome is only
really meaningful and of scientific interest if it represents an
undisturbed state, and is not, for instance, an artefact caused
by the external introduction of microbes through human in-
tervention, reagent contamination (Schroeter et al. 2012; Salter
et al. 2014) and so forth. We therefore rehearse the evidence
that while such artefacts are certainly possible, and must be
excluded rigorously, the phenomenon of a human blood micro-
biome cannot be dismissed as such an artefact in toto.

Evidence that these observations are not due to
contamination

While contamination from reagents (e.g. Schroeter et al. 2012;
Salter et al. 2014), or simply poor sterile technique with nee-
dles and so on, can lead to an artefactual appearance of a blood
microbiome, we consider that the following arguments, taken
together, exclude the thought that the entire (and consider-
able) literature on a blood microbiome can be explained via
contamination.

(I) The first argument is that there are significant differences
between the blood microbiomes of individuals harboring
disease states and nominally healthy controls, despite the
fact that samples are treated identically (see later). Some
similar arguments apply to the assessment of drug trans-
porters under different conditions (Kell and Oliver 2014).

(II) A second argument is that themorphological type of organ-
ism (e.g. coccus versus bacillus) seems to be characteristic
of particular diseases.

(III) A third argument is that in many cases (see below) relevant
organisms lurk intracellularly, which is hard to explain by
contamination.

(IV) A fourth argument is that there are just too many diseases
where bacteria have been found to play a role in the patho-
genesis, that all of them may be caused by contamination.

(V) Finally, the actual numbers of cells involved seem far too
great to be explicable by contamination; given that blood
contains more than 109 erythrocytes mL−1, if there was
just one bacterial cell per 100 000 erythrocytes (see below
and Amar et al. 2011), this will equate to 104 bacteria mL−1.
These are not small numbers.

It is important to point out that molecular methods have been
used frequently to detect active sepsis. These selfsame meth-
ods are also used in environmental biology (as we pointed
out in this review), without undue concern about the poten-
tial for contamination. Contamination will always be a concern,
of course, as noted by Nikkari et al. (2001), but many papers
since 2001 have documented strategies for detecting prokaryotic
DNA in blood and serum using appropriate and careful controls
(Anthony et al. 2000; Mylotte and Tayara 2000; Jiang et al. 2009;
Varani et al. 2009; Mancini et al. 2010; Chang et al. 2011; Grif et al.
2012a; Fernández-Cruz et al. 2013; Gaibani et al. 2013). Also, de-
tecting bacteria in blood cultures during sepsis is considered the
standard diagnostic tool for blood stream infections (Muñoz et al.
2008; Varani et al. 2009), and some laboratories consider that e.g.
PCR testing should always be a complement for the traditional
blood culture test (Grif et al. 2012b).

The role of dormancy

Dormancy inmicrobiology is of coursewell known, even for non-
sporulating bacteria, and has been defined as a stable but re-
versible nonreplicating state (Mariotti et al. 2013; see also Table 1
and Kaprelyants, Gottschal and Kell 1993; Kell et al. 1998, 2003).
The importance of dormant or non-cultured (as opposed to ‘non-
culturable’) organisms has long been recognized in environmen-
tal microbiology (e.g. Mason, Hamer and Bryers 1986; Amann,
Ludwig and Schleifer 1995; Eilers et al. 2000; Hugenholtz 2002;
Keller and Zengler 2004; Pham and Kim 2012; Epstein 2013), be-
cause of the 100-fold or greater difference between microscopi-
cally observable cells and those capable of forming a colony on
an agar plate (‘the great plate count anomaly’, see below).

Of the four main possibilities, what we do not know in gen-
eral is whether the ‘missing’ cells

(i) are incapable of growth on the enrichment/isolationmedia,
(ii) are killed by the enrichment/isolation media (e.g. Tanaka

et al. 2014),
(iii) have lost viability irreversibly (i.e. are operationally dead) or
(iv) are in a dormant or not-immediately-culturable state from

which we might resuscitate them (to effect culturability) if
only we knew how.

The fact that typical isolation media and incubation conditions
do not admit the measurable growth of all strains is certainly
well known (indeed it is the basis for selective isolation media!),
and it took a good while to learn how to culture pathogens such
as H. pylori (Marshall and Warren 1984; Marshall 2006), Legionella
pneumophila (Feeley et al. 1978; Saito et al. 1981; Meyer 1983),
Tropheryma whipplei (Maiwald and Relman 2001; Maiwald et al.
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2003; Renesto et al. 2003) and so on (Singh et al. 2013). Themajor-
ity of bacteria that persist in a ‘non-culturable’ form in wounds
(e.g. Dowd et al. 2008; Percival et al. 2012), or in diseases such
as cystic fibrosis (Lewis 2010) or tuberculosis (Young, Stark and
Kirschner 2008; Zhang, Yew and Barer 2012), and even simply
in conventional cultures of Escherichia coli (e.g. Koch 1987; Bal-
aban et al. 2004; Keren et al. 2004a,b; Gerdes and Maisonneuve
2012; Amato, Orman and Brynildsen 2013; Germain et al. 2013;
Maisonneuve, Castro-Camargo and Gerdes 2013; Maisonneuve
and Gerdes 2014; Holden 2015), where phenotypic culture dif-
ferentiation is well established (Koch 1971), are also ‘normally
culturable’ by established means. Thus, the existence of oper-
ationally ‘non-culturable’ forms of only moderately fastidious
bacteria is very well established, and more and more bacteria
previously thought ‘unculturable’ are being brought into culture
(e.g. Zengler et al. 2002; Keller and Zengler 2004; Stevenson et al.
2004; Gich et al. 2005; Kamagata and Tamaki 2005; D’Onofrio et al.
2010; Nichols et al. 2010; Vartoukian, Palmer and Wade 2010;
Dedysh 2011; Pham and Kim 2012; Puspita et al. 2012, 2013; Stew-
art 2012; Allen-Vercoe 2013; Narihiro and Kamagata 2013; Singh
et al. 2013;Walker et al. 2014; Lagier et al. 2015a,b; Ling et al. 2015).

In environmental microbiology, some bacteria pass through
the usual 0.2 μm filters, and have been referred to as ‘ultrami-
crobacteria’ (Macdonell and Hood 1982; Morita 1997). It was pro-
posed (Kaprelyants, Gottschal and Kell 1993) that rather than
being small (starved) forms of normal bacteria they were more
likely to be normal forms of small bacteria, and this seems to
have been accepted (Lysak et al. 2010; Sahin et al. 2010; Duda et al.
2012; Soina et al. 2012).

The ability to culture certain kinds of soil bacteria by prein-
cubation in weak broth is also well established (e.g. Bakken and
Olsen 1987; Kaprelyants, Gottschal and Kell 1993), and our own
experiments showed very high levels of resuscitability of dor-
mant cells of Micrococcus luteus (e.g. Kaprelyants and Kell 1993;
Kaprelyants, Mukamolova and Kell 1994; Kaprelyants et al. 1996,
1999; Kell et al. 1998, 2003; Mukamolova et al. 1998a,b, 1999,
2002a,b). In a similar way, substrate-accelerated death of non-
or slowly growing microorganisms has been known for decades
(Postgate 1967; Calcott and Postgate 1972; Calcott and Calvert
1981).

Thus, any of several well-established mechanisms may con-
tribute to the (often) large differences observable between mi-
croscopic counts and the number of operationally culturable
microbes, with the greatest likelihood being that we simply
have to develop more and better methods to bring these strains
back into culture, i.e. to resuscitate them. In particular, however,
this ‘great plate count anomaly’ has, of course, been brought
into much sharper focus because of the advent of culture-
independent, sequence-basedmeans for detecting and (to a cer-
tain extent) enumerating microbes (though not, of course, of as-
sessing their culturability).

Sequence-based methods for detecting
non-proliferating microbes

The vast majority of microbial species remain uncultivated and,
until recently, about half of all known bacterial phyla were iden-
tified only from their 16S ribosomal RNA gene sequence (Lasken
and McLean 2014). Also, single-cell genomics is a powerful tool
for accessing genetic information from uncultivated microor-
ganisms (Lasken 2012; Rinke et al. 2013; Cavanagh et al. 2014;
Clingenpeel et al. 2014). Bacterial single-cell genome sequenc-
ing and bioinformatics are, however, challenging (Pallen, Loman
and Penn 2010; Didelot et al. 2012; Loman et al. 2012; Fricke and
Rasko 2014).

The development of sequence-based methods for microbes
(and especially non-eukaryotes) owes much to the pioneering
work of Carl Woese and colleagues, who recognized the util-
ity of small subunit ribosomal RNA (based on both its essen-
tiality and the small but significant sequence variations) and
applied it with great effect in molecular phylogenetics (Woese
and Fox 1977; Woese, Kandler andWheelis 1990). Notwithstand-
ing modern reinterpretations of the taxonomic details derived
therefrom (e.g. Williams et al. 2013), there can be little doubt
that this work drew the attention of microbiologists to the po-
tential of sequence-based methods for detecting microbes that
were then invisible to methods based solely on culture, e.g. in
clinical microbiology (Didelot et al. 2012; Loman et al. 2012; Proal
et al. 2013; Fricke and Rasko 2014). rRNA remains a widely used
strategy for detecting specificmicrobes. This has of course led to
metagenomics, the large-scale sequencing of macromolecules
and indeed (statistically) entire genomes from complex (non-
axenic) environments, increasing the requirement for a full set
of complete reference sequences (Kyrpides et al. 2014) and not
just those of 16S rRNA (Yarza et al. 2013). Even the coupling of
sequences to activities has now become possible (e.g. Radajew-
ski et al. 2000; Wang et al. 2012c).

Microbiome analyses: latest technologies employed

More recently, gut metagenomics has been systematized with
NIH’s Human Microbiome project (HMP) and the European
MetaHIT project aiming to deciphering the structure and func-
tion of the human gutmicrobiota (Fredricks 2013; Robles-Alonso
and Guarner 2014). The HMP has developed a reference collec-
tion of 16S ribosomal RNA gene sequences collected from sites
across the human body (Koren et al. 2013; Ding and Schloss 2014).
This information can be used to associate changes in the micro-
biome with changes in health, and particularly also the blood
microbiome. The Integrative Human Microbiome Project (iHMP,
http://hmp2.org), the second phase of the NIH HMP, aims to
study the interactions by analyzing microbiome and host ac-
tivities in longitudinal studies of disease-specific cohorts and
by creating integrated data sets of microbiome and host func-
tional properties (The Integrative HMP (iHMP) Research Network
Consortium 2014), ultimately allowing us to analyze host and
microbial DNA (genome) and RNA (transcriptome) sequences
(Morgan and Huttenhower 2014). However, in the HMP study,
the main anatomic sites where samples are collected are skin,
mouth, nose, colon and vagina (ElRakaiby et al. 2014). So far aswe
are aware, these projects do not focus on the blood microbiome
(which is probably unsurprising when most commentators as-
sume that it does not exist).

The gut microbiome is by far the largest numerically, and our
purpose here is not to review it in any detail, since this has been
done very well in terms of

(i) its constitution (Lozupone et al. 2012; Weinstock 2012),
(ii) temporal variation (Caporaso et al. 2011; Flores et al. 2014;

Thaiss et al. 2014),
(iii) changes associated with diet (Muegge et al. 2011),
(iv) obesity (Turnbaugh et al. 2006, 2009),
(v) age and geography (Delzenne and Cani 2011; Delzenne

et al. 2011; Yatsunenko et al. 2012),
(vi) inflammation (Cani et al. 2008, 2012),
(vii) the immune system (Kau et al. 2011; McDermott and Huff-

nagle 2014)
(viii) and various pathologies (Pflughoeft and Versalovic 2012;

Schulz et al. 2014).
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It was implied that a better understanding of microbiome-
encoded pathways for xenobiotic metabolism might also have
implications for improving the efficacy of pharmacologic inter-
ventions with neuromodulatory agents (Gonzalez et al. 2011),
and that the exploration of microbiome andmetagenomemight
give us insightful new perspectives regarding human genet-
ics and how the microbiota contribute to immunity, as well as
to metabolic and inflammatory diseases (Cho and Blaser 2012;
Blaser et al. 2013; Blaser 2014; Leslie and Young 2015). This
is because it is assumed in such studies that it is the small-
molecule products of the gut microbiome that can appear in
the human serum metabolome, and thus influence the rest of
the human body (e.g. Wikoff et al. 2009; Holmes et al. 2011;
Le Chatelier et al. 2013, and see Table 2). Here we also need
to mention lipopolysaccharide (LPS), a main constituent of the
Gram-negative outer membrane that induces the production of
cytokines and/or chemokines, which in turn regulate inflamma-
tory and innate and subsequent adaptive immune responses
(Glaros et al. 2013; Rhee 2014; Ronco 2014). The release of LPS
may therefore change gut homeostasis, may play a role in e.g.
inflammatory bowel disease and necrotizing enterocolitis (Rhee
2014), and may certainly act as an acute phase protein in sepsis
(Ding and Jin 2014).

By contrast, our theme here is that it is additionally the mi-
crobes themselves that can pass from the gut (and other ‘exter-
nal’ surfaces) into the human body, a phenomenon sometimes
known as ‘dysbiosis’, albeit this term is more commonly used
with another meaning. We here need to discriminate a changed
(pathologic)microbiota in the place of origin from the results of a
translocation of microbiota to other areas of the body. In the fol-
lowing sections, we use the term dysbiosis to describe changes
in a microbiome in its main origin (typically the gut), and we
coin the term ‘atopobiosis’ to describe microbes that appear in
places other than where they should be.

The origin of detectable but non-proliferating microbes
appears to be mainly via ‘atopobiosis’ of the gut
microbiome

Dysbiosis, also known as dysbacteriosis, particularly referring to
microbial imbalance in the digestive tract, has been widely dis-
cussed (e.g. Scher and Abramson 2011; Scanlan et al. 2012; Amar
et al. 2013; Bested, Logan and Selhub 2013; Duytschaever et al.
2013; Vaarala 2013). Core to this literature is the idea that factors
that lead to significant changes in the gut microbiota composi-
tion (dysbiosis) ultimately result in pathology (Larsen et al. 2010;
Amar et al. 2011, 2013; Bested, Logan and Selhub 2013; Burcelin
et al. 2013; DeAngelis et al. 2013; Fremont et al. 2013; Lanter, Sauer
and Davies 2014; Petriz et al. 2014; Power et al. 2014; Tojo et al.
2014). Table 3 gives a list of diseases, largely inflammatory dis-
eases, which have been associated with gut dysbiosis.

In addition, we argue here that as well as gut dysbiosis, a
derangement of the gut microbiome, what we are seeing here,
often called ‘translocation’ in the context of surgery (Swank
and Deitch 1996; MacFie 2004) and various diseases (Berg 1995)
(see Table 4 that lists diseases and conditions where bacterial
translocation is specifically implicated), is what might better be
called atopobiosis (Greek α̈τoπoς or atopos, in the wrong place),
i.e. an appearance of members of the gut (or other) microbiome
in thewrong place. Bacterial translocation is therefore discussed
in the context of the movement of gut origin microbes [that
changed from normal (dysbiosis)] that moved across the ‘intact’
gastrointestinal tract into normally sterile tissues, including
blood, where the organismsmay then directly cause infection or

inflammation leading to tissue injury, organ failure, etc. (Stein-
berg 2003; Wiest and Rath 2003; Balzan et al. 2007). We stress
that they may be found in both infectious and non-infectious
diseases as well as being translocated during surgery, and
that atopobiosis of bacteria originating in the oral cavity, e.g.
in periodontal disease, may also be significant in rheumatoid
arthritis, for instance (see below). Fig. 3 provides a schematic
representation of dysbiosis, bacterial translocation and
atopobiosis.

How do gut bacteria escape into blood?

If the gut microbiome is seen as the main source of the blood
microbiome, it is necessary to establish which kinds of condi-
tions might permit this in the absence of real physical damage
(as may, for instance, be caused by surgery) leading to micro-
bial translocation. Wiest, Lawson and Geuking (2014) mention
three possible points of entrance for bacteria into the surround-
ing (sterile) tissue:

(i) by dendritic cells via processes between epithelial cells, not
affecting tight junction function,

(ii) via injured/inflamed epitheliumwith dysfunctional epithe-
lial barrier,

(iii) and via M cells overlying Peyer’s patches as specialized
cells providing access of microbial products to antigen-
presenting cells.

We discuss bacterial translocation in this context in the fol-
lowing sections.

The role of M cells and Peyer’s patches in gut microbial
translocation and atopobiosis

While the gut epithelium represents the largest mucosal tissue,
the mechanisms underlying the interaction between the micro-
biome and the epithelial cells remain poorly understood (Math-
ias et al. 2014). Although this is a vast and complex field that
warrants a review of its own, we briefly argue that gut dysbio-
sis results in an atypical interaction of both the microbiota, as
well as their secretory products, with the gut epithelial layer.
This results in an altered barrier function, which may also lead
to changed mucosal immunity and ultimately to atopobiosis.
The gut epithelium is necessarily normally quite impermeable
to microbes, but there is increasing evidence that direct chem-
ical communication between the microbiota and the epithelial
cells regulates mucosal integrity (Venkatesh et al. 2014). A pos-
sible point of entry is by direct cellular uptake, and there is
one type of cell that can take up microbes, and these are the
M cells overlaying the Peyer’s patches (Kernéis et al. 1997; Jep-
son and Clark 1998; Clark and Jepson 2003; Corr, Gahan and
Hill 2008; Lelouard et al. 2010; Fukuda, Hase and Ohno 2011).
Peyer’s patches are seen as the ‘immune sensors’ of the gut ep-
ithelium. Considerable evidence exists that they provide a pri-
mary route for the limited translocation of microbes between
the gut epithelium and the blood system (Jung, Hugot and Bar-
reau 2010). These interactions with the cells of the gut may
suggest that changes in the intestinal microbiota also influ-
ence mucosal immunity (Sato, Kiyono and Fujihashi et al. 2014).
This is indeed the case, and gut dysbiosis has been shown to
play a significant role in the development of autoimmune dis-
eases, in particular inflammatory bowel diseases (Clemente et al.
2012; Morgan et al. 2012; Hold et al. 2014; Kostic, Xavier and
Gevers 2014; Owyang and Wu 2014; Ma et al. 2015). It was also
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Table 2. Some examples of small molecule gut metabolites whose secretion has been implicated in various disease states.

Metabolite Intermediates/products Synthesis
Role in health and
disease References

Amino acids The gut microbiota is not itself an important source
of amino acids during periods of adequate protein
intake. Some commensal members produce biolog-
ically active components from amino acids. Amino
acid supplementation in amousemodel of ulcerative
colitis has been shown to promote overall growth of
commensal microbiota. The effect was considered to
bemediated via the stimulatory effect onmucin pro-
duction by amino acid supplementation.

Faure et al. (2006); Devaraj,
Hemarajata and Versalovic
(2013); Bergen (2014)

Benzoates Benzoic acid, hippurate,
2-hydroxyhippurate

Gut microbiota in mice with active colitis displayed
enrichment for genes involved in benzoate degrada-
tion. Hippurate derives from plant food polyphenols
and is a conjugate of benzoic acid with glycine. In
humans a large portion of hippurate is believed to
be derived from precursors absorbed in the small in-
testines. It is reliably decreased in IBD.

Rechner et al. (2002);
Aronov et al. (2011); De
Preter and Verbeke (2013);
Rooks et al. (2014)

Bile acids Bile acids are synthesized from cholesterol in the
liver and further metabolized into secondary bile
acids by the gut microbiota. The amino acid sides
chain of glyco- and tauro-conjugated bile acids are
cleaved by bacterial bile salt hydrolase (BSH) enzyme
to yield unconjugated bile acids (cholic and chen-
odeoxycholic acids). These products will then be fur-
ther modified by gut bacteria to produce secondary
bile acids. A decrease in this conversion is positively
correlated with liver cirrhosis. Bile acids can mod-
ulate the composition of the microbiota in the gut,
where they function as signaling molecules and may
constitute a mechanism of quorum sensing. In turn,
the microbiota strongly affect bile acid metabolism
by promoting deconjugation, dehydrogenation and
dehydroxylation. It can also inhibit bile acid synthe-
sis in the liver by alleviation of farnesoid X receptor
inhibition in the ileum. Bile acids can induce FMO3
expression by an FXR-dependent mechanism.

Martin et al. (2007); Bennett
et al. (2013); Gérard (2013);
Kakiyama et al. (2013);
Martı́nez et al. (2013); Sayin
et al. (2013); Joyce et al.
(2014)

Lipids Cholesterol The gut microbiota impact on the host systemic lipid
metabolism. When administered as probiotics Bifi-
dobacteria and Lactobacillus can enhance dyslipidemia
and insulin resistance. Microbiota have an influence
on cholesterol metabolism and weight gain in the
host via the bacterial BSH mechanism.

Martin et al. (2007);
Martı́nez et al. (2009, 2013);
Yu et al. (2013); Joyce et al.
(2014)

Methylamines and
products of choline
metabolism

Methylamine,
dimethylamine,
dimethylglycine,
trimethylamine (TMA) and
trimethylamine N-oxide
(TMAO)

Cleavage of choline and phosphatidylcholine (PC) by
the gutmicrobiota via the enzyme choline TMA-lyase
produces TMA. Oxidation of TMA by hepatic flavin-
containing monooxygenase 3 (FMO3) forms TMAO.
Microbial metabolism of L-carnitine also produces
TMA via a novel Rieske-type protein. Risk for major
adverse cardiovascular events coincides with higher
levels of TMAO.

Wang et al. (2011); Craciun
and Balskus (2012); Koeth
et al. (2013); Tang et al.
(2013); Zhu et al. (2014)

Neurotransmitters Serotonin, melatonin,
glutamate, GABA,
noradrenaline, dopamine
and acetylcholine

It was recently discovered that gut microbiota pro-
duce tryptophan decarboxylase, the enzyme respon-
sible for decarboxylasing tryptophan to tryptamine.
Tryptamine promotes the release of serotonin by en-
terochromaffin cells. In a ratmodel it was shown that
Bifidobacteria treatment resulted in increased tryp-
tophan and kynurenic acid levels. Another study in
mice showed the potential of Lactobacillus rhamnosus
to modulate the GABAergic system. Decreased levels
of dopamine were measured in fecal samples from
active colitis mice.

Desbonnet et al. (2008);
Bravo et al. (2011); Rooks
et al. (2014); Williams et al.
(2014); O’Mahony et al.
(2015)
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Table 2. (Continued.)

Metabolite Intermediates/products Synthesis
Role in health and
disease References

Phytochemicals,
particularly
polyphenolic
compounds

Chlorogenic acids,
hydrolysable tannins and
flavonoids

A significant amount of polyphenols reaches the
colon and is believed to contribute to gut health
by promoting the growth of some commen-
sals. Polyphenolic bioconversion by microbiota
is paramount in the production of a large range
of bioactive molecules. The exact roles of these
molecules in health and disease are yet to be fully
understood. Nonetheless epidemiological stud-
ies have tied polyphenols to health benefits such
as antioxidative, anticarinogenic, antiadipogenic,
antidiabetic and neuroprotective properties. Gut
microbiota can also convert dietary polyphenols to
benzoate.

Tomas-Barberan et al.
(2014); Kahle et al. (2006);
Aronov et al. (2011); van
Duynhoven et al. (2011);
Cardona et al. (2013); Marı́n
et al. (2015)

Polyunsaturated
fatty acids (PUFA)

Omega 3 and 6 L. plantarum has genes encoding for the enzyme in-
volved in saturation metabolism of PUFA.

Kishino et al. (2013)

Short-chain fatty
acids (SCFAs)

Most abundant acetate,
propionate, butyrate; to a
lesser extent—formate,
fumarate, malonate,
succinate, caproate and
valerate

The SCFAs are produced from bacterial fermentation
of non-digestible polysaccharides. They play a role in
metabolic syndrome prevention and treatment. Evi-
dence point to their potential to promote metabolic
control in type 2 diabetes. SCFAs are a major source
of energy for colonocytes and also contribute up to
10% of the host’s daily caloric requirements. They
are further involved in the control of energy utiliza-
tion and maintenance of metabolic homeostasis via
the G Protein coupled Receptor 43 (GPR43) receptor.
SCFA products also dampen inflammatory response
through this receptor. SCFAs have also been shown
to affect cell proliferation and apoptosis (in cancer
cells), and in epigenetic machinery such as histone
acetylation by butyrate.

Bergman (1990); Maslowski
et al. (2009); den Besten et al.
(2013); Kimura et al. (2013);
Natarajan and Pluznick
(2014); Puddu et al. (2014)

Vitamins B-group vitamins, vitamin
B12; vitamin C, biotin,
vitamin K

It is well established that the gut microbiota synthe-
size a large number of vitamins de novo. This is im-
portant since humans lack biosynthetic pathways for
vitamins. The deleterious effects of vitamin deficien-
cies are well known. It has only recently been sug-
gested that vitamin B12may also contribute to shap-
ing the structure and function of microbial commu-
nities in the human gut.

Hill (1997); Cooke, Behan
and Costello (2006);
Arumugam et al. (2011);
LeBlanc et al. (2013);
Degnan, Taga and
Goodman (2014)

Other noteworthy bioactives
Conjugated linoleic acid (CLA), bacteriocin CLA is associated with a diverse array of biological

activities, and predominantly associated with acti-
vation of peroxisome proliferator activated receptors
(PPARs) and the associated switching on and off of
genes. Some Bifidobacteria and Lactobacillus species
have been shown to produce CLA. Bacteriocins are
peptides synthesized by bacteria and have narrow
(same species) or broad (across genera) spectrum ac-
tivity against other bacteria. A large number of ar-
chaea and bacteria are believed to produce at least
one bacteriocin.

Bowdish, Davidson and
Hancock (2005); Ross et al.
(2010)

Tetrathionate and nitric oxide Tetrathionate and nitric oxide are produced in an in-
flammatory environment and are central to the fit-
ness of several Enterobacteriaceae. Tetrathionate uti-
lization positively correlated with active colitis in a
mousemodel. Bacterial growth depends on the pres-
ence of nitrogen. Synthesis of amino acids by themi-
crobiome depends on the recycling of nitrogen back
into gastrointestinal organs.

Winter et al. (2010); Bergen
(2014); Rooks et al. (2014)
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Table 3. Various pathologies that have been associated with dysbiosis of the gut.

Condition References

Asthma Abrahamsson et al. (2014)
AD Karri, Martinez and Coimbatore (2010); Alam et al. (2014)
Atherosclerosis Koren et al. (2011)
Autism spectrum disorders Parracho et al. (2005); Finegold et al. (2010); Adams et al. (2011); Williams et al. (2011, 2012); De

Angelis et al. (2013); Kang et al. (2013)
β-Cell autoimmunity de Goffau et al. (2014)
Cardiovascular disease Amar et al. (2011)
Crohn’s disease Seksik et al. (2003)
Chronic fatigue syndrome Sheedy et al. (2009); Proal et al. (2013)
Cystic fibrosis Scanlan et al. (2012); Bruzzese et al. (2014) ;Sánchez-Calvo et al. (2008); Duytschaever et al. (2011,

2013); Madan et al. (2012)
HIV/AIDS Lozupone et al. (2013); McHardy et al. (2013); Vujkovic-Cvijin et al. (2013)
IgE-associated eczema Abrahamsson et al. (2012)
Inflammation Cani et al. (2008, 2012); Delzenne and Cani (2011); Delzenne et al. (2011)
Inflammatory bowel disease Conte et al. (2006); Clemente et al. (2012); Manichanh et al. (2012); Morgan et al. (2012);

Nagalingam and Lynch (2012); Bakhtiar et al. (2013)
Iron deficiency Balamurugan et al. (2010); Zimmermann et al. (2010); Dostal et al. (2012, 2014)
Liver disease Schnabl and Brenner (2014)
Multiple sclerosis Berer et al. (2011)
Obesity Delzenne and Cani (2011); Geurts et al. (2014)
Rheumatoid arthritis Detert et al. (2010); Berer et al. (2011); Scher and Abramson (2011); Bingham and Moni (2013);

Brusca, Abramson and Scher (2014); Catrina, Deane and Scher (2014); Cénit et al. (2014);
Demoruelle, Deane and Holers (2014); Taneja (2014)

Parkinson’s Disease Scheperjans et al. (2015); Vizcarra et al. (2015)
Sarcoidosis Almenoff et al. (1996)
Systemic lupus erythematosus Hevia et al. (2014); Zhang et al. (2014a)
Symptomatic atherosclerosis/stroke Karlsson et al. (2012)
Type 1 diabetes Brown et al. (2012); Owen and Mohamadzadeh (2013); Petersen and Round (2014)
Type 2 diabetes Larsen et al. (2010); Brown et al. (2012); Qin et al. (2012); Karlsson et al. (2013); Everard et al. (2014)

Table 4.Diseases and conditionswhere bacterial translocation (of gut or oral origin) and consequent chronic infection are specifically implicated

Diseases and conditions where
translocation of bacteria are present References

Communicable diseases

Fibrosis stage in HIV/HCV coinfection Balagopal et al. (2008); Montes-de-Oca et al. (2011); Page, Nelson and Kelleher (2011); Lin,
Weinberg and Chung (2013); Sacchi et al. (2015)

Hepatitis C virus (HCV) infection French et al. (2013); Munteanu et al. (2014)
HIV/AIDS infection Sandler and Douek (2012); Klatt, Funderburg and Brenchley (2013);

Vázquez-Castellanos et al. (2014)
Pneumonia in immunocompromised
patients

Sawa (2014)

Diseases usually seen as non-communicable

Abdominal compartment syndrome Mifkovic et al. (2013)
Alcoholic liver disease Chen and Schnabl (2014); Malaguarnera et al. (2014)
Allergic disease: bacterial translocation
during pregnancy

Abrahamsson Wu and Jenmalm (2015)

Atherosclerosis Epstein, Zhou and Zhu (1999); Kozarov et al. (2006); Erridge (2008); Renko et al. (2008); Epstein
et al. (2009); Nagata, de Toledo and Oho (2011); Rosenfeld and Campbell (2011); Hopkins (2013);
Dinakaran et al. (2014); Rogler and Rosano (2014); Trøseid et al. (2014)

Burn wounds Macintire and Bellhorn (2002); Sharma (2007); Aboelatta et al. (2013)
Cirrhosis Wiest and Garcia-Tsao (2005); Jun et al. (2010); Giannelli et al. (2014); Wiest, Lawson and

Geuking (2014)
Chronic kidney disease Anders, Andersen and Stecher (2013); Sabatino et al. (2014)
Metabolic syndrome Festi et al. (2014)
Non-alcoholic fatty liver disease Bieghs and Trautwein (2014)
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Table 4. (Continued.)

Diseases and conditions where
translocation of bacteria are present References

Obesity Vajro, Paolella and Fasano (2013); Sanz and Moya-Pérez (2014)
Pancreatitis Mifkovic et al. (2009); Guo et al. (2014); Oláh and Romics (2014)
Rheumatoid arthritis Ogrendik (2009b, 2013b); Ebringer and Rashid (2014); Koziel, Mydel and Potempa (2014)
Schizophrenia Severance et al. (2013); Severance, Yolken and Eaton (2014)
Sepsis and Septic shock∗ Tsujimoto, Ono and Mochizuki (2009); Wallet et al. (2011); Deitch (2012); Leli et al. (2014)
Stroke Syrjänen et al. (1988); Emsley and Tyrrell (2002); Emsley et al. (2003); Emsley and Hopkins (2008);

McColl, Allan and Rothwell (2009); Emsley and Chamorro (2010); Grau, Urbanek and Palm
(2010); Wang et al. (2012a); Chien et al. (2013); Dalager-Pedersen et al. (2014); Fugate et al. (2014)

Surgical procedures

Bariatric surgery Festi et al. (2014)
Cardiac surgery Allen (2014)
Multiple organ failure (MOF) Swank and Deitch (1996)
Sepsis due to surgery MacFie (2004); Puleo et al. (2011)

∗ ‘Sepsis’ is widely used to imply living microbes, but as is now well known it can also occur in the absence of any culturable microbes, including those incapable of

proliferation due to antibiotic activity. Sepsis may commonly result simply from the effects of molecules such as LPS on the generation of inflammatory cytokines
(Kotsaki and Giamarellos-Bourboulis 2012; Balakrishnan et al. 2013).

suggested that a changed gut microbiota represents the initial
site of autoimmunity generation, and might be a critical epige-
netic factor in autoimmune diseases such as rheumatoid arthri-
tis (Scher and Abramson 2011; Luckey et al. 2013; Brusca, Abram-
son and Scher 2014; Catrina, Deane and Scher 2014; Cénit et al.
2014; Taneja 2014). There is also evidence that regulatory T cells
in the gut are influenced bymicrobial factors, and that a changed
microbiota (dysbiosis)may influence the induction and suppres-
sor functions of these cells, in turn leading to a changed gut mu-
cosal immunity (Kinoshita and Takeda 2014).

We have earlier reviewed the literature that suggests that
dysbiosis can cause gut epithelial barrier dysfunction, and
thereby provide a point of entry into the body, including the
blood, resulting in atopobiosis. This is supported by recent re-
search that has suggested that bloodmicrobiota might be impli-
cated in various (cardiovascular and other) diseases. Sequence-
based techniques provided evidence for the presence of such
a blood microbiome. The question now arises as to whether
such a microbiome’s presence can be directly measured by e.g.
ultrastructural (microscopic) methods, since a consequence of
any translocation of microbes between the gut microbiome and
blood is that they should then be observable in blood. The next
sections will provide visual evidence of the presence of such
a microbiota in Alzheimer’s disease (AD) and PD. As shown in
Table 3, these conditions are known to be associated with the
presence of dysbiosis.

Direct measurement by ultrastructural (microscopic)
methods

Directmeasurement by ultrastructural (microscopic)methods of
analysis shows that microbes are in fact common constituents
of blood in inflammatory diseases [previously seen in PD—Fig. 8
in (Pretorius et al. 2014a and in AD—Fig. 2 in (Lipinski and Pre-
torius 2013). We show and annotate selected micrographs from
these papers in Fig. 4]. An important concern that needs to be
addressed, as is also the case with sequence-based methods, is
whether the presence of microbiota in whole blood is indeed
not the result of introduced external contamination. There is
in fact considerable evidence in the literature that bacteria as

well as other microorganisms can reside inside RBCs (e.g. Mi-
nasyan 2014), and thus able to cross the RBC membrane some-
how (see Table 5). Transmission electronmicroscopy (TEM) anal-
ysis showing bacteria inside cells would also tend to imply that
the bacteria were not externally introduced artefactually during
the preparation of the samples.

For the current paper, we have revisited our AD and PD
samples and figures from Pretorius et al. (2014a) and Lipinski
and Pretorius (2013) and noted the prevalence of bacteria in al-
most all of the AD and PD samples, in numbers much in ex-
cess of those seen in our database of thousands micrographs
from healthy individuals. Here we show additional micrographs
from the previously published samples (see Figs 5 and 6). In
both conditions (see Figs 5AD and 6PD), microbes were noted
in close proximity to RBCs, and in some cases RBCs extended
pseudopodia-like projections towards themicrobiota. SEM anal-
ysis of AD whole blood (Fig. 5) shows that mostly coccus-shaped
bacteria are present. White blood cells are seen in close proxim-
ity to these bacteria in AD patients (see Fig. 5A–C). SEM anal-
yses of PD patients (Fig. 6) show both coccus- and bacillus-
shaped bacteria in close proximity to RBCs. We also observed
that RBCs extend pseudopodia towards these bacteria and this
might be part of the mechanism by which the bacteria en-
ter the RBCs (see Fig. 6C–F). We also note possibly dividing
coccus-shaped bacteria in both these conditions, indicated with
blue arrows on Fig. 5A (AD patient) and Fig. 6D (PD patient).
This might suggest that these bacteria may be(come) cultur-
able under appropriate conditions (see also Soina et al. 2012;
Epstein 2013).

TEM analysis of the samples from Lipinski and Pretorius
(2013) and Pretorius et al. (2014a) showed the presence in-
side RBCs of cells that appeared to be microbial in nature
(unpublished data). These internalized cells further provide
evidence for a sustained presence of such a blood micro-
biota (and one hardly explained by contamination) (see Fig. 7A
and B: AD and C and D: PD). Bacteria are shown with ar-
rows in the micrographs. No bacterial membrane was noted;
therefore, the bacteria may be L-forms. There seems to be
bacterial species selectivity for a given disease, as our pre-
liminary observations suggest a prevalence for bacillus-type
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Figure 3. Schematic representation of dysbiosis, bacterial translocation and atopobiosis. (A)When intestinalmicrobiota are associatedwith dysbiosis, (B) the gut barrier

(1 and 2) becomes compromised; this leads to (C), a route of entry via the gut epithelia causing (D) bacterial translocation. Bacterial translocation is also associated with
a compromised systemic immune system barrier (3). Therefore, intestinal microbiota dysbiosis (A) followed by bacterial translocation (D) results in (E) atopobiosis. (F)
The results of bacterial translocation are seen in various conditions (see Table 4).

bacteria in AD, but both coccus- and bacillus-shaped bacteria
in PD patients.

Our observations suggest that the presence of bacteria in
these two diseases occurs in only a small fraction of the RBC
population, which is why we had not really noted them in our
previous studies (e.g. Bester et al. 2013; Pretorius et al. 2013,
2014a,b; Pretorius andKell 2014), and SEMandTEManalysis con-
firms this observation. We have never (or not yet) found bacte-
ria inside RBCs from healthy controls (these without overt, diag-
nosed diseases) when studying blood smears using TEM analy-
sis. Themicroscopy preparationmethods involve awashing pro-
cess, and this may wash away some of the bacteria, or RBCs and
white blood cells associated with bacteria. Therefore, the actual
quantification of the bacteria can only be done by other means;

however, dormancy and viability versus non-viability issues per-
tain (as discussed above).

We found a definite association between RBCs and bacteria,
with RBCs (see Figs 6 and 7) forming pseudopodia-like extension,
as if in the process of engulfing bacteria. Both coccoid (round)
and bacillary (elongated) bacteria were found in PD whole blood
SEM micrographs, but only coccoid forms in AD whole blood
SEMmicrographs. Samples from 25 diagnosed AD patients were
studied and bacteria were detected in 14 individuals from this
AD sample, while samples from 30 PD patients were studied,
in 21 of whom we detected bacteria. Obviously, the type of bac-
teria cannot be identified from ultrastructural observations. As
with the timeline of established cases such as the role of H.
pylori in ulcers and colon cancer, the next tasks are to bring
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Figure 4. Micrographs taken from previously published manuscripts. (A–C) Bac-
terial presence in PD, originally shown in Fig. 8A, C and G in Pretorius et al.

(2014a). (D) Bacterial presence in AD, originally shown in Fig. 2 in Lipinski and
Pretorius (2013).

thesemicroscopically observed bacteria into culture and to carry
out sequence-based studies to establish their role (if any) in
non-communicable diseases. However, to illustrate that the bac-
teria may indeed be engulfed by the RBCs, and to confirm that
the phenomenon is not due to external contamination, we show
TEM micrographs from both of the studied diseases (see Fig. 7,
AD and PD).

CONCLUDING REMARKS AND PROSPECTIVE
EXPERIMENTS

‘Non-culturable’ (which should be called ‘not-easily-culturable’
or ‘not-yet-cultured’) microbes are commonplace in the ‘envi-
ronmental microbiology’ of soil and water, and the blood cer-
tainly represents an ‘environment’. As we show here, there is
a large and scattered literature, increasing in size, to the effect
that there might be a (mainly dormant) microbial component
in a variety of chronic diseases that are normally considered to
be non-microbial or non-communicable in nature, even when
microbes appear absent by culturability criteria. Our previous

Table 5. Some microorganisms that are known to invade red blood cells.

Pathogen Type of microorganism Mechanism of invasion References

Anaplasma marginale A tick-borne pathogen that causes
the disease anaplasmosis in cattle.

Via major surface protein 1a (MSP1a) Kocan et al.
(2004)

Bartonella bacilliformis
B.quintana

Bartonella species are fastidious
Gram-negative bacteria, which
belong to the alpha group of the
domain Proteobacteria.

The Trw T4SS mediates attachment of Bartonella to
red blood cells in Bartonella lineage 4. Bartonella is
collected in pits and trenches that form as a result
of deformation factor. Invaginations supposedly
pinch off to carry the content in a vacuole structure
to the cytoplasm of the red blood cell where the
organism persists.

Iwaki-Egawa and
Ihler (1997);
Coleman and
Minnick (2001);
Rolain et al.
(2003); Eicher
and Dehio (2012)

Brucella melitensis Facultative intracellular
Gram-negative coccobacilli.

Invasion shown in mouse erythrocytes. Mechanism
to be identified.

Vitry et al. (2014)

Francisella tularensis Highly infectious bacterium,
which can cause severe disease
tularemia with an infection of
fewer than 10 bacteria

Via serum complement-dependent and
independent mechanisms.

Conlan (2011);
Horzempa et al.
(2011)

Mycoplasma suis A member or the hemotrophic
mycoplasma group that parasitize
erythrocytes in pigs.

Invasion occurs in a similar manner to that of P.
falciparum and B. bacilliformis. Attachment via MSG1
(GAPDH) protein.

Groebel et al.
(2009); Zhang
et al. (2014c)

M. bovis Small cell wall-less bacterium that
contributes to a number of chronic
inflammatory diseases in dairy
and feedlot cattle.

Undetermined. van der Merwe,
Prysliak and
Perez-Casal
(2010)

M. gallisepticum Mycoplasmas are small cell
wall-less prokaryotes.

Not known. Vogl et al. (2008)

Plasmodium falciparum The main malaria parasite, part of
whose life cycle involves
inhabiting RBCs.

Recognition of surface receptors precedes a
reorientation where the apical end is adjusted to
the erythrocyte. A tight junction that involves
high-affinity ligand receptor interactions is formed.
The tight junction moves from the apical to
posterior pole and is powered by the actin-myosin
motor of the parasite. The adhesive proteins at the
junction are proteolytically removed when the
posterior pole is reached, most likely by a rhomboid
resident protease in a process that facilitates
membrane resealing. The invasion process
produces a parasitophorous vacuole containing the
merozoite.

Cowman and
Crabb (2006)
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Table 5. (Continued.)

Pathogen Type of microorganism Mechanism of invasion References

Streptococcus pneumoniae Gram-positive bacterium which
causes infection-related diseases.

LPXTG motif-containing pneumococcal proteins,
erythrocyte lipid rafts and erythrocyte actin
remodeling are involved in the invasion mechanism.

Yamaguchi et al.
(2013)

Theileria sporozites Intracellular protozoan
transmitted by ixodid ticks. Infect
wild and domesticated ruminants.
Phylogenetically most closely
related to Babesia.

Occurs in a similar manner to sporozoite entry. Shaw (2003);
Bishop et al.
(2004)

Figure 5. RBCs with microbiota from patients with diagnosed AD (additional mi-

crographs from sample used in Lipinski and Pretorius 2013). These micrographs
are representative of bacteria found in smears of 14 of the 30 AD individuals.
(A and B) coccus-shaped bacteria associated with white blood cell; (B) coccus-
shaped bacteria associated with an erythrocyte and white blood cell; (C) two

white blood cells associated with coccus-shaped bacteria; (D) a string of cocci-
blue arrow shows possibly dividing coccoid bacteria; (E) an erythrocyte associ-
ated with coccus-shaped bacteria; (F) a high machine magnification of a coccus-
shaped bacteria associated with a dense matted fibrin deposit. Scale bar: 1 μm.

work (e.g. Bester et al. 2013; Pretorius et al. 2013, 2014a; Kell and
Pretorius 2014, 2015; Pretorius and Kell 2014) has implied iron
dysregulation as a regular accompaniment to, and probable con-
tributory factor for, a variety of similar diseases, all of which
have an inflammatory component. We argue here that there is
also amicrobial contribution to this in the blood, and it is not un-
reasonable that the microbial requirement for iron means that,
despite the oxidative stress it can entail (Touati 2000; Kell 2009,
2010), microbes may be anticipated to increase in prevalence
when iron is free (e.g. Ratledge 2007; Clifton, Corrent and Strong
2009; Sia, Allred and Raymond 2013; Chu et al. 2014) and avail-
able (D’Onofrio et al. 2010), probably behaving in a social manner
(Kell, Kaprelyants and Grafen 1995;West and Buckling 2003; Dig-
gle et al. 2007; Harrison and Buckling 2009).

Figure 6. RBCs with microbiota from patients with diagnosed PD (additional mi-
crographs from sample used in Pretorius et al. 2014a). Thesemicrographs are rep-
resentative of bacteria found in smears of 21 of the 30 PD individuals. (A) A col-

lection of coccus- and bacillus-shaped bacteria; (B) coccus- and bacillus-shaped
bacteria associated with erythrocyte; (C) bacillus-shaped bacteria in close prox-
imity with erythrocyte. Erythrocyte forms extensions towards bacteria; (D and E)
bacillus-shaped bacteria associated with elongated erythrocytes; (F) coccus- and
bacillus-shaped bacteria close to erythrocyte that extends pseudopodia towards
the bacteria. Coccus-shaped bacteria shown with pink arrows; bacillus-shaped
bacteria shown with white arrows. Dividing coccus-shaped bacteria shown with
blue arrow. Scale bar: 1 μm.

We have here pointed up the likelihood of a steady crop
of effectively dormant microbes being a feature of blood bi-
ology in chronically diseased humans, including those with
non-communicable diseases. As with any complex system, the
magnitude of any component is affected by the kinetics of every
relevant step; while the precise nature of all the interactions is
uncertain, Fig. 8 describes the general network—the first step in
any systems analysis (Kell 2006; Kell and Knowles 2006).

Consequently, we recognize that the analysis above has
largely been qualitative (the ‘presence’ of a microbial compo-
nent in a specific disease is a qualitative statement). However,
chronic, non-communicable diseases are very far from being
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Figure 7. TEM confirming the presence of bacteria inside erythrocytes of (A and
B) AD, (C and D) PD. (Additional micrographs from sample used in Lipinski and
Pretorius (2013) and Pretorius et al. (2014a). Arrows in each micrograph show the

presence of cellular inclusions, without visible membranes. Inclusions are not
typically noted in erythrocytes. We suggest that these inclusions are bacteria,
possibly as L-forms. Scale bar = 1 μm (A, C, D); 200 nm (D).

static (and thousands of human genes change their expression
at least 2-fold even on a diurnal basis; Zhang et al. 2014b). Thus, a
clear further issue is to seek to understand how the bloodmicro-
biomemay co-varywith the day-to-day dynamics of chronic dis-
eases. For example, rheumatoid arthritis has circadian rhythms
(Straub and Cutolo 2007) and is well known to provide signifi-
cant variations (‘flares’; Flurey et al. 2014) in severity at different
times. A reasonable strategy is thus to look for changes in a de-

tectable blood microbiome in this and other diseases that show
such flares. As with H. pylori and stomach ulcers (and cancer),
the simple prediction is that bactericidal antibiotics should be
of value in the treatment of such supposedly non-communicable
diseases. Indeed, this prediction is borne out for diseases such
as rheumatoid arthritis (Ogrendik 2009a, 2013a; Kwiatkowska
andMaślińska 2012) andmultiple sclerosis (Ochoa-Repáraz et al.
2009; 2011), while antipneumococcal vaccination has shown ef-
ficacy in preventing stroke (Vila-Corcoles et al. 2014). Of course,
events such as heart attacks and strokes (and see Table 4) may
also be seen as sudden increases in severity of an underlying
condition, and in some cases (such as the much increased like-
lihood of strokes after subarachnoid haemorrhages; McMahon
et al. 2013), analysis of changes in the blood microbiome might
prove predictive.

The obvious next tasks are thus to relate the number and
nature of blood microbes observed in cases such as the above
to microbial sequences and antigens that can be detected in
aliquots of the same samples (e.g. Salipante et al. 2013, 2015),
to determine the physiological state of the various microbes (in-
cluding e.g. whether they are L-forms), and to establishmethods
to bring them (back) into culture. Since microbes, inflammation
and various syndromes are such common co-occurrences (as
are coagulopathies; Kell and Pretorius 2015), longitudinal stud-
ies will have a specially important role, as they will both show
the dynamics and be able to help discriminate cause and ef-
fect during the time evolution of chronic, non-communicable
diseases in ageing populations. The immunogenicity of per-
sisters, and their ability to induce various kinds of inflamma-
tion, must be rather different from that of replicating organ-
isms, and this must be investigated. Armed with such collec-
tive knowledge, we might be better placed to develop thera-
peutics such as pre- and probiotics and bactericidal antibiotics
for use in such cases previously thought to lack a microbial
contribution.

Figure 8. Relationships between a dormant blood microbiome and chronic disease dyamics.
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GLOSSARY

16S ribosomal RNA: a component of the 30S small subunit of
prokaryotic ribosomes. The 16S rRNA gene is found in all bacte-
ria and archaea and consists of nine short hypervariable regions
that may be used to distinguish bacterial taxa.

Anabiosis: when an organism is in a state of very low
metabolic activity to the extent where it is hardly measurable
and in some cases come to a standstill. The physiological and
biochemical processes are arrested for different periods of time
but can be reversed.

Atopobiosis (Greek
,′
α τooπoς or atopos) appearance of the gut

or other microbiome in the wrong place.
Bacterial translocation: the passage of viable resident bac-

teria from the gastrointestinal tract to normally sterile tissues
such as the mesenteric lymph nodes and the other internal
organs.

Cryptobiosis: refers to latent life or a statewhere an organism
lacks any visible signs of life but is not dead in that it may revert
to a state of aliveness as usually defined. Its metabolic activity
becomes hardly measurable, or comes reversibly to a standstill.

Culturability: the ability of a cell to reproduce.
Direct viable count: the original method comprises incuba-

tion of samples with nutrients (yeast extract) and a single an-
timicrobial agent that specifically inhibits DNA synthesis but not
RNA synthesis (nalidixic acid). Cell division ceases as a result
of DNA synthesis inhibition but other cellular metabolic activ-
ities remain unaffected and therefore cells continue to metab-
olize nutrients and grow in size, which allows their detection
microscopically in situ.

Dormant: not viable in the sense of not beingmore or less im-
mediately culturable, but may be returned to a state of viability
or culturability by preincubation under suitable conditions.

Dysbiosis: derangement of the species distribution in the
normal microbiome.

L-forms: these bacteria are cell wall-deficient forms of nor-
mal bacteria. They are able to proliferate as sphaeroplasts or
protoplasts under certain conditions.

Metagenomics: direct genetic analysis of a collection of
genomes contained in an environmental sample.

Microbiome: the genetic sum of the ecological community
of commensal, symbiotic and pathogenic microorganisms that
lives on and inside our bodies.

‘Most Probable Number’ technique: is a method used to
quantify the concentration of viable microorganisms in a sam-
ple. It involves replicate liquid broth growth in 10-fold dilutions.
When a dilution lacks growth, it is assumed not to have any or-
ganisms. Back-calculation via a Poissonian distribution leads to
the ‘most probable number’ in the original sample

Non-axenic culture: contains more than one species, variety
or strain of organism.

Non-viable: incapable of observable replication by any stated
means normally capable of effecting replication in the relevant
organism.

Phylogenetics: a discipline of evolutionary biology that stud-
ies the relationships between organisms based on how closely
similar some of their macromolecular sequences are.

Pleomorphic: possessing the ability to change shape or size
in response to environmental stimuli.

Resuscitation: induction of apparently non-culturable cells to
a state of culturability.

Sterile: refers to an absence of operationally viable organ-
isms.

Viable: capable of observable replication, i.e. culturable, by
any stated means.
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