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Abstract

Despite a growing neuroimaging literature on the pathophysiology of major depressive disorder (MDD), repro-
ducible findings are lacking, probably reflecting mostly small sample sizes and heterogeneity in analytic
approaches. To address these issues, the Depression Imaging REsearch ConsorTium (DIRECT) was launched. The
REST-meta-MDD project, pooling 2428 functional brain images processed with a standardized pipeline across
all participating sites, has been the first effort from DIRECT. In this review, we present an overview of the moti-
vations, rationale, and principal findings of the studies so far from the REST-meta-MDD project. Findings from
the first round of analyses of the pooled repository have included alterations in functional connectivity within
the default mode network, in whole-brain topological properties, in dynamic features, and in functional lat-
eralization. These well-powered exploratory observations have also provided the basis for future longitudinal
hypothesis-driven research. Following these fruitful explorations, DIRECT has proceeded to its second stage of
data sharing that seeks to examine ethnicity in brain alterations in MDD by extending the exclusive Chinese
original sample to other ethnic groups through international collaborations. A state-of-the-art, surface-based
preprocessing pipeline has also been introduced to improve sensitivity. Functional images from patients with
bipolar disorder and schizophrenia will be included to identify shared and unique abnormalities across diag-
nosis boundaries. In addition, large-scale longitudinal studies targeting brain network alterations following
antidepressant treatment, aggregation of diffusion tensor images, and the development of functional magnetic
resonance imaging-guided neuromodulation approaches are underway. Through these endeavours, we hope to
accelerate the translation of functional neuroimaging findings to clinical use, such as evaluating longitudinal
effects of antidepressant medications and developing individualized neuromodulation targets, while building
an open repository for the scientific community.
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Introduction

Major depressive disorder (MDD) is the second leading
cause of health burden worldwide (Ferrari et al., 2013).
Unfortunately, objective biomarkers to assist in diagno-
sis are still lacking, and current first-line treatments are
only modestly effective (Borowsky et al., 2000; Williams
et al., 2011), reflecting our incomplete understanding of
the pathophysiology of MDD. Characterizing the neuro-
biological basis of MDD promises to support developing
more effective diagnostic approaches and treatments.

An increasingly used approach to reveal neurobiolog-
ical substrates of clinical conditions is termed resting-
state functional magnetic resonance imaging (R-fMRI)
(Biswal, 2012). Despite intensive efforts to characterize

the pathophysiology of MDD with R-fMRI, clinical imag-
ing markers of diagnosis and predictors of treatment out-
comes have yet to be identified. Previous reports have
been inconsistent, sometimes contradictory, impeding
the endeavour to translate them into clinical practice
(Yan et al., 2019). One reason for inconsistent results
is low statistical power from small sample size stud-
ies (Button et al., 2013). Low-powered studies are more
prone to produce false positive results, reducing the
reproducibility of findings in a given field (Ioannidis,
2005; Poldrack et al., 2017). Of note, one recent study
demonstrated that a sample size of thousands of par-
ticipants may be needed to identify reproducible brain-
wide association findings (Marek et al., 2022), calling
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for larger datasets to boost effect size. Another rea-
son could be the high analytic flexibility (Carp, 2012).
Recently, Botvinik-Nezer and colleagues (Botvinik-Nezer
et al., 2020) demonstrated the divergence in results when
independent research teams applied different workflows
to process an identical fMRI dataset, highlighting the
effects of ’researcher degrees of freedom’ [i.e. hetero-
geneity in (pre-)processing methods] in producing dis-
parate fMRI findings.pr

To address these critical issues, we initiated the
Depression Imaging REsearch ConsorTium (DIRECT) in
2017. Through a series of meetings, a group of 17 par-
ticipating hospitals in China agreed to establish the first
project of the DIRECT initiative, the REST-meta-MDD
project, and share 25 study cohorts, including R-fMRI
data from 1300 MDD patients and 1128 normal control
participants. On the basis of our previous work, a stan-
dardized preprocessing pipeline adapted from Data Pro-
cessing Assistant for Resting-State fMRI (DPARSF) (Yan
et al., 2016; Yan & Zang, 2010) was implemented at each
local participating site to minimize heterogeneity in pre-
processing methods. R-fMRI metrics can be vulnerable to
physiological confounds such as head motion (Ciric et al.,
2018; Ciric et al., 2017). Based on our previous work exam-
ining head motion impact on R-fMRI functional con-
nectivity (FC) connectomes (Yan et al., 2013) and other
recent benchmarking studies (Ciric et al., 2017; Parkes
et al., 2018), DPARSF implements a regression model
(Friston-24 model) on the participant- and group-level
correction for mean frame displacements as the default
setting.

Participating groups first preprocessed R-fMRI images
with a DPARSF standardized protocol at local hospi-
tals, then shared the final R-fMRI indices along with
demographic (age, sex, and education) as well as clinical
information (first episode/recurrent, medication usage,
illness severity, etc.). The REST-meta-MDD project was
intended to boost statistical power by pooling functional
data across centers, while minimizing the effects of het-
erogeneous analytical strategies and creating an openly
available dataset for the global scientific community. As
of 1 January 2020, the dataset of deidentified imaging
derivatives was made available for unrestricted sharing.
All researchers can obtain access to these R-fMRI indices
and corresponding demographic/clinical information via
http://rfmri.org/REST-meta-MDD, and perform any anal-
yses of interest without putting participant privacy or
confidentiality at risk.

Since its launch, DIRECT has encouraged indepen-
dent investigations. Data sharing was conducted in two
phases. In the initial coordinated sharing phase, all
researchers who sought access to the dataset needed
to submit a written proposal to the consortium review
board. The aims and research design of proposals were
evaluated to minimize conflicts with already approved
research proposals. The consortium also provided tech-
nical support for participating sites regarding prepro-
cessing and statistical analysis as these issues can be

challenging for clinical researchers. Through these prac-
tices, DIRECT sought to provide a platform that would
allow all participating sites to leverage the large R-fMRI
database and explore it independently. At the time of
writing, DIRECT investigators have published several
peer-reviewed research papers. Here, we review the prin-
cipal findings from these published studies, summarized
in Table 1, and discuss the implications of these results
and the future directions of DIRECT.

Principal Findings from DIRECT Studies
FC abnormalities in MDD

The first DIRECT study (Yan et al., 2019) concentrated on
a simple but surprisingly controversial theme: FC within
the default mode network (DMN) in depression. The DMN
was first recognized as a set of brain regions show-
ing reduced haemodynamic activity during externally
directed attention tasks and increased activity during
resting state or internally focused tasks (Raichle, 2010;
Raichle et al., 2001; Raichle & Snyder, 2007). By consensus,
MDD was considered to be characterized by enhanced
FC within the DMN, which was also proposed to be a
neural mechanism underlying rumination (Greicius et
al., 2007; Hamilton et al., 2015; Kaiser et al., 2015). How-
ever, previous findings regarding FC within the DMN in
patients with MDD were inconsistent (for a review, see
Yan et al., 2019). Thus, DIRECT first conducted a mega-
analytic investigation, that is, pooling individual-level
measures across sites and conducting regression anal-
ysis on this pooled dataset. Potentially confounding site
effects were corrected with a linear mixed model with a
random intercept for sites. Such an analytical approach
can boost statistical power to detect subtle effects and
allow for flexible control of confounders (Schmaal et al.,
2020). The mega-analysis also investigated the effects of
certain phenotypes: the number of episodes, medication
usage, and illness duration. Contrary to initial assump-
tions, FC in patients with MDD was significantly lower
than in HCs within the DMN (t = −3.762, P = 0.0002).
This effect was only observed in patients with recurrent
MDD (t = −3.737, P = 0.0002), and not in first episode
drug naı̈ve patients (t = −0.914, P = 0.361). Overall, MDD
patients were found to be characterized by a general yet
subtle decrease of FC within the DMN (Fig. 1A). This con-
tradicted some of the previous literature. However, pre-
vious studies showing increased DMN FC in MDD were
primarily conducted with Caucasian samples, while the
sample from REST-meta-MDD was homogeneously Chi-
nese. Ethnic differences in MDD have been consistently
reported. Compared with Caucasians, Asians have lower
prevalence rates (Ferrari et al., 2013), more psychosomatic
symptoms (Ryder et al., 2008), and different risk genes
(Bigdeli et al., 2017). Hence, one critical future direction
for DIRECT is to identify potential cultural and ethnic
differences by pooling cross-cultural samples with inter-
national collaborators (see an example of neurodevelop-
ment from Dong et al., 2020).

http://rfmri.org/REST-meta-MDD
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Table 1: A summary of DIRECT studies.

Study Modality Sample size Primary results

Yan et al., 2019. Proceedings
of the Natational Academy
of Sciences USA

fMRI: network FC 848 MDDs vs. 794 HCs MDD patients showed significantly reduced FC within DMN (t =
−3.762, P = 0.0002, Cohen’s d = −0.186) compared to HCs and
this effect could only be observed in recurrent MDD patients (t =
−3.737, P = 0.0002, Cohen’s d = −0.326).

Long et al., 2020.
NeuroImage: Clinical

fMRI: dynamic brain
network metrics

460 MDDs vs. 473 HCs MDD patients showed a higher temporal variability (F = 10.218,
P = 0.000216, FDR corrected), a lower temporal correlation
coefficient (F = 15.071, P = 0.0000333, FDR corrected), and a
shorter characteristic temporal path length (F = 8.768,
P = 0.000314, FDR corrected).

Liang et al., 2020.
NeuroImage: Clinical

fMRI: data-driven
clustering

690 MDDs vs. 707 HCs MDD patients could be grouped into two subgroups based on
FCs within the DMN with K-means clustering method. Subgroup
1’s FC within DMN was enhanced while Subgroup 2’s DMN FC
was decreased compared to HCs. The significance of clustering
was determined with bootstrapping at the level of P < 0.05.

Yang et al., 2021. Molecular
Psychiatry

fMRI: topological
feature

821 MDDs vs. 765 HCs Both global (Eglob: t = −2.601, P = 0.009) and local efficiency (Eloc:
t = −2.771, P = 0.006) were reduced in MDD patients compared
to HCs. Again, this effect was only significant in recurrent MDD
patients (Eglob: t = −3.893, P < 0.001; Eloc: t = −4.429, P < 0.001).

Liu et al., 2021. Progress in
Neuro-Psychopharmacology
and Biological Psychiatry

sMRI: VBM 572 MDDs vs. 481 HCs Significant differences regarding GMV were found in temporal
lobes, fusiform gyrus and thalamus among MDD patients with
GI, MDD patients without GI, and HCs.

Ding et al., 2021. Journal of
Affective Disorders

fMRI: PAS 753 MDDs vs. 451 HCs MDD patients were characterized with increased PAS scores in
DMN, FPCN, dorsal, and ventral attention network regions
compared to HCs.

Deng et al., 2021. Bipolar
Disorder

fMRI: VMHC 1004 MDDs vs. 898 HCs Decreased VMHC was found in DMN, VN, and SMN regions in
MDD patients compared with HCs.

Abbreviations: VBM, voxel-based morphometry; MDD, major depressive disorder; HC, healthy control; DMN, default mode network; VN, visual network; FPCN, fronto-

parietal control network; SMN, somato-motor network; GI, gastrointestinal; PAS, parameter of asymmetry; VMHC, voxel-mirrored homotopic connectivity; FC, func-

tional connectivity; GMV, grey matter volume.

Topological abnormalities of functional brain
networks in MDD

Subsequently, the topological properties of functional
brain networks in patients with MDD have been exam-
ined (Bullmore & Sporns, 2009; Yang et al., 2021) (Fig. 1B).
The individual-level R-fMRI data from the REST-meta-
MDD project allowed building a topological network
with a predefined brain atlas, i.e. Dosenbach’s 160 atlas
(Dosenbach et al., 2010). The effort focused on two essen-
tial features of networks, their global (Eglob) and local
efficiencies (Eloc) (Rubinov & Sporns, 2010). Both signifi-
cantly decreased global efficiency (t = −2.601, P = 0.009)
and local efficiency (t = −2.771, P = 0.006) were found
in patients with MDD compared to HCs. Once again,
this effect was only significant in patients with recur-
rent MDD (Eglob: t = −3.893, P < 0.001; Eloc: t = −4.429,
P < 0.001) and not in first episode drug naı̈ve patients
(Eglob: t = −0.224, P > 0.05; Eloc: t = −0.586, P > 0.05). The
high efficiency of both global and local information flow
in the brain or the ’small-world’ topology is thought to be
important for adapting to environmental demands (Bull-
more & Sporns, 2009, 2012). Accordingly, patients with
recurrent MDD may be less able to deal with distress from
negative life events due to their disrupted intrinsic func-
tional brain topology, making them vulnerable to relapse
into depression. The effects of antidepressant medica-
tions may also be involved. In a longitudinal study (Li et

al., 2021), FC was decreased in almost all brain networks
after patients were administered escitalopram or dulox-
etine for 8 weeks. Other factors, such as illness duration,
may also contribute. Since most recurrent MDD patients
have long histories of medication use, future studies
will need to collect more information on the medication
usage of patients to better identify medication effects on
the properties of functional brain networks of patients
with MDD.

Altered dynamic FC in MDD

Recent studies have highlighted the dynamic aspects of
intrinsic brain activity and its role in the pathology of
MDD (Demirtas et al., 2016; Hou et al., 2018; Wang et
al., 2020). However, most of these studies are prelimi-
nary and findings have been inconsistent. Accordingly,
a comprehensive study was conducted to characterize
altered dynamic FC in MDD at both local and global levels
(Long et al., 2020; Sizemore & Bassett, 2018). A dynamic
network-based framework based on the sliding-window
approach was used to estimate several spatio-temporal
dynamic network features such as temporal variabil-
ity, temporal clustering, and temporal efficiency. A total
of 460 patients with MDD and 473 HCs were selected
for statistical analysis according to their age, education,
imaging quality, etc. (for details of selection criteria,
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Figure 1: Principal findings from DIRECT studies. (A) Reduced FC within the DMN is revealed in patients with MDD compared to HCs (Yan et al.,
2019). (B) Both decreased global efficiency (Eglob) and local efficiency (Eloc) are found in MDD vs. HC contrast (Yang et al., 2021). (C) Alterations in
terms of temporal dynamic properties (increased variability, decreased temporal correlation coefficient, and characteristic temporal path length)
are observed in patients with MDD as compared to HCs (Long et al., 2020). (D) Altered PAS scores are primarily observed in DMN (red), VN (blue),
FPCN (yellow), and ventral and dorsal attention network (green) in MDD vs. HC contrast (Ding et al., 2021). (E) Reduced VMHC was found in DMN,
VN, and SMN regions in MDD vs. HC contrast (Deng et al., 2021). (F) Patients with MDD can be clustered into two subgroups according to FCs
within DMN (Liang et al., 2020). (G) Temporal and occipital regions, thalamus, prefrontal, and postfrontal gyrus show difference in GMV among
GI, non-GI MDD patients, and HCs (Liu et al., 2021). Abbreviations: PAS, parameter of asymmetry; GI, gastrointestinal; MDD, major depressive
disorder; HC, healthy control; DMN, default mode network; VN, visual network; FPCN, fronto-parietal control network; SMN, somato-motor
network; FC, functional connectivity; VMHC, voxel-mirrored homotopic connectivity.

please refer to Long et al., 2020). Results showed signif-
icantly increased temporal variability (F = 10.218, P =
0.000216, FDR corrected), decreased temporal correlation
coefficient ( F = 15.071, P = 0.0000333, FDR corrected), and
shorter characteristic temporal path length ( F = 8.768,
P = 0.000314, FDR corrected) in MDD patients (Fig.
1C). These effects were significant in both first-episode
drug naı̈ve (FEDN) and non-FEDN patients. In addition,
temporal variability (ρ = 0.111, P = 0.045) and temporal
efficiency (ρ = −0.101, P = 0.045) were correlated with
Hamilton depression rating scale (HAMD) scores after
adjusting for age, sex, and site effects in patients with
MDD. These results indicate that MDD patients fail to
maintain relatively stable brain networks over periods of
time and some aberrant connections may interfere with
normal interactions among brain regions (Sun et al., 2019;
Zalesky et al., 2014).

Altered functional lateralization features in MDD

Brain asymmetry has been proposed to be a critical
feature of the human brain in both structure and

function (Toga & Thompson, 2003). Functional lat-
eralization was characterized with a novel metric,
the parameter of asymmetry (PAS) (Ding et al., 2021).
The PAS was defined as the difference between the
mean inter-hemisphere FC and intra-hemisphere FC
for a given voxel. We found significantly increased
PAS scores in patients with MDD compared with
HCs, indicating decreased hemispheric lateraliza-
tion (Fig. 1D). On the other hand, interhemispheric
functional integration is also an important aspect
of the brain’s functional architecture that can be
examined by a voxel-wise measurement called
voxel-mirrored homotopic connectivity (VMHC) (Stark
et al., 2008; Zuo et al., 2010). VMHC was compared
between 1004 patients with MDD and 898 HCs from the
REST-meta-MDD project (Deng et al., 2021). Decreased
VMHC in MDD was revealed in a wide range of brain
regions, including posterior cingulate cortex (PCC),
medial prefrontal cortex (MPFC), pre-/post-central gyrus,
and inferior frontal and occipital gyrus (Fig. 1E). Such
reduced homotopic resting-state FCs may be caused
by disrupted structural connectivity such as reduced



38 Chen et al.

fractional anisotropy in the corpus callosum (van Velzen
et al., 2019).

MDD subgroups

MDD is a highly heterogeneous disorder, probably
containing subgroups that correspond to different
pathologies and treatments (Drysdale et al., 2016). Lever-
aging the REST-meta-MDD sample, MDD patients were
categorized into subgroups according to their resting
state FC patterns using a data-driven approach (Liang
et al., 2020). K-means clustering divided MDD patients
into two groups depending on their within-DMN FC
pattern. One group was characterized by enhanced
FCs within the DMN, especially FC between MPFC
and PCC, while the other group featured decreased
FCs within the DMN (Fig. 1F). These results illus-
trate a complex pattern of abnormalities in DMN
FC, which would be difficult to observe in traditional
case-control analyses. Finally, although the REST-meta-
MDD project primarily focused on the functional
neuropathology associated with MDD, structural
alterations in MDD were examined by analyzing the
T1-weighted anatomical images collected along with
R-fMRI data (Liu et al., 2021). Specifically, MDD patients
were divided into patients with gastrointestinal symp-
toms (GI group) and those without GI symptoms (non-GI
group). GI symptoms are common in MDD and associ-
ated with poorer prognosis (Kop, 2012). Results showed
significantly different grey matter volume (GMV) in
temporal and occipital regions, thalamus, prefrontal,
and postfrontal gyrus among GI, non-GI MDD patients,
and HCs (Fig. 1G). The GI group had increased grey
matter density in bilateral thalamus compared with the
non-GI group. Larger grey matter density in the GI group
was also found in right temporal gyrus, fusiform, and
lingual gyrus compared with HCs. These results demon-
strated that Chinese patients with MDD who experi-
ence GI symptoms have abnormalities in grey matter
structures.

Once the REST-meta-MDD project entered the unre-
stricted sharing phase, researchers from outside DIRECT
began to conduct additional exploratory analyses. For
example, Tozzi and colleagues (2021) re-analyzed within-
DMN FCs in terms of the three DMN subsystems
(Andrews-Hanna, 2012; Andrews-Hanna et al., 2010).
Recent empirical evidence showed that the DMN can be
fractionated into three subsystems: a core subsystem
that corresponds to self-referential thinking (the core
subsystem); a subsystem that is anchored in the dorsal
PFC and corresponds to cognition related processes; and
a subsystem that is anchored in the medial temporal lobe
(the MTL subsystem) and corresponds to autobiograph-
ical memory (Andrews-Hanna, 2012; Andrews-Hanna et
al., 2010). They found that only FC within the core subsys-
tem was significantly reduced in MDD compared to NCs.
These results have expanded the research scope of REST-
meta-MDD and show the potential of this rich repository
of clinical data.

Box 1. Directions for future DIRECT research

(1) What are the differences regarding MDD abnor-
malities in different ethnic groups (e.g. Chinese
vs. Caucasian)? What factors contribute such dif-
ferences (e.g. response styles, thinking styles or
genetic factors?)

(2) To what extent can it help improve the repro-
ducibility of results to transfer preprocessing
pipelines from volume-based approaches [i.e.
DPSRSF (Yan & Zang, 2010) and SPM (Ash-
burner, 2012)] to surface-based approaches [e.g.
DPABISurf (Yan et al., 2021) and fMRIPrep (Este-
ban et al., 2019)]?

(3) What are the differences and similarities among
the neuroimaging alterations across different
mental disorders?

(4) What are the longitudinal effects of antidepres-
sant medications on the brain?

(5) What are the white matter alterations in MDD?
(6) Can we guide neuromodulation techniques (e.g.

TMS) through brain network mechanisms we
identified with fMRI?

Future Directions for the DIRECT
Consortium

In this review, we have briefly described the motiva-
tion and evolution of the DIRECT consortium and the
main published findings based on its first project, REST-
meta-MDD. Through this endeavour, we demonstrated
that pooling R-fMRI data across multiple sites with stan-
dardized processing protocols can substantially boost
statistical power and detect subtle but reliable MDD-
related abnormalities in brain. Furthermore, we estab-
lished an open-access data repository to make all shared
functional data available to the broad scientific commu-
nity. We hope this will advance discovery-based analy-
ses seeking neuroimaging biomarkers, a deeper under-
standing of MDD’s neuropathology, and development of
novel treatments for MDD. Despite the inspiring and
unique findings emerging from the present research
based on REST-meta-MDD and DIRECT, further ques-
tions can be raised. An important limitation is the exclu-
sively Chinese sample. Thus, one critical next step of
the DIRECT consortium is to extend the Chinese sam-
ple to other ethnic groups such as Caucasians through
international collaborations. Other directions include:
(i) improving reproducibility and sensitivity by using a
surface-based, state-of-the-art pipeline (DPABISurf) (Yan
et al., 2021); (ii) accumulating functional neuroimaging
data from other psychiatric disorders such as bipolar dis-
order and schizophrenia; (iii) longitudinal research tar-
geting the effects of antidepressant medications on brain
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networks in MDD; (iv) quantifying alterations in struc-
tural connections in MDD with diffusion tensor imag-
ing (DTI); and (v) novel individualized neuromodulation
approaches (e.g. transcranial magnetic stimulation, TMS)
with fMRI-based anatomic targeting.

Identifying effects of different cultural groups

MDD in different ethnic groups has been reported to have
different prevalence rates, heterogeneous subtypes, and
varied treatment outcomes (Budhwani et al., 2015; Lee
et al., 2014; Lesser et al., 2007). As this planet’s largest
ethnic group, the Chinese have been reported to exhibit
lower rates of depression (Huang et al., 2019; Parker et
al., 2007; Parker et al., 2001). The reasons for this are the
focus of continuing debate. Some claim that the Chinese
tend to express depression somatically and deny feelings
of distress (Qiu et al., 2018). From the cultural viewpoint,
some argue that Chinese beliefs and ways of responding
to emotions (i.e. holistic thinking styles) make Chinese
people less vulnerable to the negative affects of distress
(De Vaus et al., 2018). Genetic factors may also contribute.
The s/s allele of serotonin transporter is more preva-
lent in East Asians (45–74%) compared to Caucasians (12–
24%) (Goldman et al., 2010). Furthermore, the s/s geno-
type is associated with a higher risk of MDD in Cau-
casians but not in Asians (Kiyohara & Yoshimasu, 2010).
Thus, results from an exclusive Chinese sample may not
generalize to other ethnic groups. In 2012, the interna-
tional Enhancing NeuroImaging Genetics through Meta-
Analysis (ENIGMA) initiative launched its MDD consor-
tium, to identify neuroimaging alterations associated
with MDD and their modulators (Schmaal et al., 2020).
So far, neuroimaging data from more than 9000 HCs and
4000 MDDs have been accumulated by ENIGMA MDD
consortium. Initial attempts have been made to pool data
from DIRECT and ENIGMA MDD to identify the potential
ethnic and cultural factors (e.g. directly compare the dif-
ferences regarding whole-brain FC maps between Cau-
casian and Chinese MDD patients) in the neuropathol-
ogy of MDD. We believe direct comparison across a large
cross-cultural sample can provide unprecedentedly pow-
ered evidence for the contribution of ethnic factors to
the structural and functional alterations associated with
MDD.

Towards surface-based analyses

Obtaining more reliable and reproducible findings from
functional neuroimaging data has become a major chal-
lenge for the field (Botvinik-Nezer et al., 2020; Chen et
al., 2018). Preprocessing of R-fMRI data is complex and
contains numerous steps to yield clean data for further
statistical analyses. Outdated and flexible ad hoc prepro-
cessing pipelines have been shown to decrease the qual-
ity and consistency of results (Esteban et al., 2019). In
the REST-meta-MDD project, this issue was addressed

by conducting a standardized, volume-based preprocess-
ing pipeline based on DPARSF. However, recent method-
ological benchmarks have highlighted the drawbacks of
volume-based preprocessing approaches, calling for a
transformation to surface-based approaches (Coalson et
al., 2018; Zuo et al., 2013). One obstacle in applicating
state-of-the-art surface-based approaches in a multi-site
consortium like DIRECT is the lack of a ’turn-key’ toolbox.
Accordingly, the DPABISurf pipeline was developed with
a user-friendly graphical user interface that requires no
scripting skills from users (Yan et al., 2021). DPABISurf
is the latest upgrade of the widely used preprocessing
pipeline DPARSF/DPABI (Yan et al., 2016; Yan & Zang,
2010) and follows the same designing concept. On the
basis of this pipeline, future pooling of preprocessed time
series in DIRECT will be produced with a surface-based
approach, which should enhance the reliability and sen-
sitivity of future DIRECT studies.

Transdiagnostic investigation

Evidence from ENIGMA has implicated a shared struc-
tural abnormality pattern among MDD, bipolar disorder,
and schizophrenia (Schmaal et al., 2020). Genomewide
association studies have also suggested that implicated
genes may have pleiotropic effects across disorders
(Huang et al., 2010). Furthermore, the differential diagno-
sis of bipolar disorder and MDD has long been a challenge
for clinicians, indicating an overlap of clinical presen-
tation between these disorders (Hirschfeld, 2014). Thus,
investigating and characterizing shared and unique
functional/structural brain alterations across these dis-
orders may be particularly important and can help
develop image-based diagnostic biomarkers to assist dif-
ferential diagnosis. DIRECT is building a transdiagnostic
dataset together with new participating research groups.
Preliminary analyses to explore similarities as well as dif-
ferences among these disorders regarding brain function
and structure are anticipated.

Identifying longitudinal effects of antidepressant
medications

One contribution of a pooled large-scale R-fMRI data
repository is to generate hypothesis for future longitudi-
nal studies. Effect sizes of studies using a within-subject
design are larger than those using a cross-sectional
between-subject design (Chen et al., 2018). However, lon-
gitudinal studies require more resources and a targeted
design, so a sufficient prior knowledge base is needed to
narrow the exploration scope. The present DIRECT stud-
ies have highlighted the effects of antidepressant med-
ications on MDD patients’ functional brain networks,
especially the DMN. To test this, the effects of antide-
pressant treatment were studied in a group of 41 first-
episode drug-naı̈ve patients with MDD who were admin-
istrated escitalopram or duloxetine for 8 weeks (Li et
al., 2021). FCs within and among brain networks were
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generally decreased after antidepressant treatment, con-
firming the findings from the original DIRECT studies.
The longitudinal effects of antidepressant medications
on large-scale brain networks will be the focus of a future
study that is being planned.

Exploring white matter alterations in MDD

DTI is an effective in vivo technique to investigate white
matter microstructural properties of psychiatric patients
(Rae et al., 2012). Multi-site studies have been conducted
to characterize MDD patients’ white matter abnormali-
ties both cross-sectionally (van Velzen et al., 2019) and
longitudinally (Davis et al., 2019). It can be challeng-
ing to apply sophisticated and standardized workflows
across many sites, so existing large-scaled multi-site
studies tend to concentrate on more straightforward
metrics such as fractional anisotropy. Recent advances
in building an integrative software platform for DTI
preprocessing (e.g. QSIPrep: Cieslak et al., 2021) have
made it possible to pool prepossessed DTI images and
conduct more advanced analyses such as tractography
and mapping the structural connectome. Building a DTI
repository under the framework of DIRECT to determine
abnormalities regarding structural connection properties
in MDD is under discussion.

Developing network-targeted neuromodulation
therapy

Neuromodulation techniques, especially TMS, have the
potential to treat MDD (Lefaucheur et al., 2020). Initial
findings from DIRECT highlight the critical role the DMN
plays in the neurophysiology of MDD. DMN abnormal-
ities in MDD have long been associated with rumina-
tion, a passive and repetitive thinking style that is com-
mon in MDD patients (Hamilton et al., 2015; Kaiser et al.,
2015). A recent hypothesis-driven study found that FCs
between the core and MTL subsystems were enhanced
during rumination, while FCs between core and DMPFC
subsystems were reduced (Chen et al., 2020). Further
analyses showed that the dynamic stability of the DMN
was also decreased during rumination (Chen & Yan,
2021). These findings indicate that it might be possi-
ble to inhibit rumination by directly modulating DMN
FC patterns through novel neuromodulation approaches
such as TMS. Current TMS approaches show promis-
ing antidepressant effects, but effect sizes are modest
and treatment duration is long (Lefaucheur et al., 2020).
Transforming present scalp-based targeting to individu-
alized fMRI guided targeting may improve the efficiency
of TMS (Cash et al., 2020). Indeed, one recent double-
blinded randomized controlled trial (Cole et al., 2021)
found that targeting an individualized left dorsal lat-
eral prefrontal cortex (DLPFC) region that is anticorre-
lated to subgenual anterior cingulate cortex was highly
effective (remission rate 79%), indicating the feasibility
of generating individualized targets for TMS in relation to
specific brain networks. Future DIRECT research intends

to develop target searching algorithms according to the
subsystem mechanisms underlying rumination and set
up a clinical trial to test the antidepressant effects of
such neuromodulation therapy.

Conclusion

In sum, the DIRECT consortium has accumulated an
unprecedently large functional neuroimaging reposi-
tory by initiating the REST-meta-MDD project. Studies
based on this dataset have provided highly powered evi-
dence for the field of neuropathology of MDD that has
been beset by contradictory results. Furthermore, some
intriguing insights have emerged from initial analyses.
The second stage of data sharing under the framework
of DIRECT is underway and several longitudinal studies
based on hypotheses from REST-meta-MDD have been
launched. We hope these endeavours will advance the
translation of neuroimaging studies to clinical practice.
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