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ABSTRACT
Intraductal papillary mucinous neoplasms (IPMNs) are pancreatic cancer 

precursors incidentally discovered by cross-sectional imaging. Consensus guidelines 
for IPMN management rely on standard radiologic features to predict pathology, 
but they lack accuracy. Using a retrospective cohort of 38 surgically-resected, 
pathologically-confirmed IPMNs (20 benign; 18 malignant) with preoperative 
computed tomography (CT) images and matched plasma-based ‘miRNA genomic 
classifier (MGC)’ data, we determined whether quantitative ‘radiomic’ CT features 
(+/- the MGC) can more accurately predict IPMN pathology than standard radiologic 
features ‘high-risk’ or ‘worrisome’ for malignancy. Logistic regression, principal 
component analyses, and cross-validation were used to examine associations. 
Sensitivity, specificity, positive and negative predictive value (PPV, NPV) were 
estimated. The MGC, ‘high-risk,’ and ‘worrisome’ radiologic features had area under 
the receiver operating characteristic curve (AUC) values of 0.83, 0.84, and 0.54, 
respectively. Fourteen radiomic features differentiated malignant from benign IPMNs 
(p<0.05) and collectively had an AUC=0.77. Combining radiomic features with the 
MGC revealed an AUC=0.92 and superior sensitivity (83%), specificity (89%), PPV 
(88%), and NPV (85%) than other models. Evaluation of uncertainty by 10-fold 
cross-validation retained an AUC>0.80 (0.87 (95% CI:0.84-0.89)). This proof-of-
concept study suggests a noninvasive radiogenomic approach may more accurately 
predict IPMN pathology than ‘worrisome’ radiologic features considered in consensus 
guidelines.
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INTRODUCTION

To revolutionize the early detection of cancer, there 
is a need to replace invasive and risky tissue biopsies not 
representative of the entire tumor with noninvasive tests 
reflecting the tumor and its environment. Such a discovery 
is sorely needed for pancreatic ductal adenocarcinoma 
(PC), the deadliest of the leading causes of cancer death 
in the United States, with a five-year survival rate of only 
8% [1, 2]. PC is currently the third leading cause of cancer 
death, and is projected to become the second leading cause 
around 2020. Most cases (85%) present with metastases 
because of the lack of accurate methods to detect disease 
at an early, operable stage [1]. The detection and treatment 
of precursor lesions offers great promise for reducing 
morbidity and mortality. 

Intraductal papillary mucinous neoplasms 
(IPMNs) are PC precursors accounting for nearly half 
of the ~150,000 asymptomatic pancreatic cysts detected 
incidentally in up to 2.6% of computed tomography 
(CT) scans and 19.9% of magnetic resonance imaging 
(MRI) studies each year [3]. IPMNs are challenging to 
manage due to the inability to predict which lesions can 
be safely monitored, which may progress to invasion, and 
which have associated invasion [3]. The only way to treat 
IPMNs and examine severity (which ranges from low- 
and moderate-grade dysplasia to high-grade dysplasia 
and invasive carcinoma) is through surgical resection and 
pathological evaluation. However, pancreatic resection 
is associated with an operative mortality of 2-4% and 
morbidity of 40-50% [4]. One clue regarding histologic 
severity can be obtained radiologically by investigating 
whether the IPMN(s) present within the main pancreatic 
duct (MD-IPMN), side branch ducts (BD-IPMN), or both 
(mixed-IPMN); surgical series confirm that IPMNs with 
MD involvement harbor a higher risk of malignancy 
(~60%, range: 11-81%) and more rapid growth compared 
to BD-IPMNs (26%, range: 6-47%) [5]. Consensus 
guidelines for IPMN management known as ‘Sendai 
guidelines’ exist [5] and rely on standard radiographic and 
clinical features. These guidelines [5] suggest that patients 
with ‘high risk stigmata’ (MD involvement/ dilatation 
> 10 mm, obstructive jaundice with a cystic lesion in 
the pancreatic head, or an enhanced solid component/
nodule within the cyst) undergo resection, as most 
harbor high-grade or invasive disease [5]. On the other 
hand, it is recommended that presumed BD-IPMNs with 
‘worrisome features’ (MD dilation 5-9 mm, cyst size > 3 
cm, thickened enhanced cyst walls, non-enhanced mural 
nodules, or acute pancreatitis) undergo surveillance with 
an invasive endoscopic ultrasound-guided fine needle 
aspirate (EUS-FNA) procedure despite poor sensitivity 
and technical complications [3, 6]. Although the consensus 
guidelines provide a valuable framework for management, 
the agreement between the preoperative diagnosis and 

pathologic examination is inaccurate in a substantial 
proportion (30-70%) of cases [5, 7-11]. Thus, novel 
markers of malignant pathology are needed, especially for 
cases that do not appear to present with high-risk stigmata. 

miRNAs are excellent candidate biomarkers of 
pancreatic tumorigenesis because of their tissue-specific 
expression, stability in biofluids, and their ability to 
regulate hundreds of genes and biological pathways [12]. 
We recently conducted genome-wide miRNA analysis 
using tissue [13] and blood plasma [14] from a cohort 
of 42 patients with surgically-resected, pathologically-
confirmed IPMNs. Our unbiased analysis of 800 miRNAs 
from archived plasma using Nanostring’s nCounter 
digital technology™ [14] revealed a 5-miRNA genomic 
classifier (MGC) that included miR-200a-3p, miR-
1185-5p, miR-33a-5p, miR-574-4p, and miR-664b and 
discriminated between 21 malignant (classified as high-
grade or invasive) and 21 benign IPMNs (classified 
as low- or moderate-grade) (p = 0.005, area under the 
receiver operating characteristic curve (AUC) = 0.73 
(95% CI:0.58-0.89). These miRNAs had 2-3 fold lower 
expression in malignant compared to benign cases, 
supporting a tumor suppressor role. Recent studies of 
other cancers [15, 16] suggest the ability to predict lesion 
severity may improve further by combining genomic data 
with quantitative radiologic features. 

Radiomics refers to the high-throughput extraction 
and analysis of quantitative features from standard-
of-care medical images with the intent of generating 
mineable databases that can be used to build predictive 
models relating imaging features (or ‘radiophenotypes’) 
to clinical outcomes [17]. Categories of radiomic features 
such as tumor signal intensity, shape characterization, 
and texture have the following advantages over and/or 
provide enhancements to standard radiologic features [18-
24]: they i.) represent quantitative, objective measures, 
ii.) reflect tumor heterogeneity and sub-regional habitats, 
iii.) can be more strongly linked to clinical outcomes, 
iv.) can be more reproducible and stable, and v.) can 
improve diagnostic accuracy when combined with 
standard radiologic features. We hypothesized that 
adopting a radiomic approach could enhance preoperative 
prediction of IPMN malignancy (either alone or in 
combination with the MGC) by uncovering diagnostic 
and biologic information ‘hidden’ in routinely acquired 
images. CTs are the most widely used imaging modality 
in oncology and have emerged as a preferred modality 
for the detection and characterization of pancreatic cysts 
because of its widespread availability, high spatial and 
temporal resolution, short scanning duration, high-quality 
multiplanar image display [25], and similar accuracy as 
MRIs for characterizing pancreatic cysts as benign or 
malignant [26]. Radiomics evaluations of pre-treatment 
CT scans have been conducted by our team [19, 21, 
22, 24, 27] and others [18, 28-32], with associations 
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reported between radiophenotypes and clinical outcomes. 
Moreover, ‘radiogenomics’ approaches have been used to 
link imaging features to underlying genomic information 
[15, 33-39]. The goal of this study was to determine 
whether radiomic features extracted from preoperative 
CT scans, either alone or with miRNA data, may improve 
prediction of IPMN pathology beyond that provided by 
standard radiologic or clinical features encompassed by 
current consensus guidelines [5]. 

RESULTS

Study population characteristics

Selected clinical, epidemiologic, and imaging 
characteristics of the 38 cases (20 benign; 18 malignant) 
having matched pre-operative CT and MGC data are in 
Table 1. Seventy-two percent with malignant pathology 
had MD involvement on CT vs. 20% with benign 
pathology (p = 0.003). Mean cyst size was lower in the 
benign compared to the malignant group (2.8 vs. 3.9 
cm), p = 0.018. Consistent with published data (8, 9, 48), 

Data represent counts (percentages) unless otherwise indicated.  Counts may not add up to the total due to missing values, and 
percentages may not equal 100 due to rounding.
1 Benign IPMNs are represented by 4 low-grade and 16 moderate-grade IPMNs.
2 Malignant IPMNs are represented by 11 high-grade and 7 invasive IPMNs.

Table 1: Characteristics of IPMN patients with pre-operative CTs and miRNA data (N=38)
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most cases (83%) with malignant pathology had ≥1 “high 
risk stigmata” (MD involvement/ dilatation > 10 mm, 
obstructive jaundice with a cystic lesion in the pancreatic 
head, or an enhanced solid component within the cyst), vs. 
15% of those with benign pathology (p < 0.001). Having 
one or more “worrisome” features (ie. MD dilation 5-9 
mm, cyst size > 3 cm, thickened enhanced cyst walls, 
non-enhanced mural nodules, or acute pancreatitis) was 
not associated with malignancy (p = 0.73), suggesting 
surgery may not have been indicated. PC1 of the MGC 
was significantly lower in the malignant group compared 
to the benign group (p < 0.001). 

Analysis of standard radiologic and clinical 
characteristics and miRNA data

Using variables from Table 1, multiple logistic 
regression analyses revealed that only high risk stigmata 
and the MGC retained significance (OR (95% CI): 43.0 
(4.64-398), p = 0.001 and OR (95% CI): 0.30 (0.10-0.86), 

p = 0.026, respectively). The AUC value was 0.95 for the 
model with both variables, compared to 0.84 and 0.83 for 
high risk stigmata (p = 0.063) and the MGC (p = 0.038) 
individually (Figure 1). 

Since medical management is less clear for the 
estimated 60% of presumed BD-IPMN cases who have 
worrisome features (and do not present with high risk 
stigmata) (5), it was most important that we assess the 
added value of the MGC in that subset of patients. While 
worrisome features alone could not predict malignant 
pathology much better than chance (AUC = 0.54), the 
AUC increased to 0.83 when incorporating the MGC, 
primarily due to increased specificity. For example, when 
restricting to the 20 patients who did not present with high-
risk stigmata, the specificity of the MGC and worrisome 
features were 70.6% and 35.3%, respectively. Finally, a 
model that solely considered demographic and clinical 
predictors of IPMN pathology highlighted previously (49-
53) (age at diagnosis, gender, presence of symptoms) had 
an AUC (95%CI) = 0.73 (0.56-0.89).

Table 2: Pre-operative radiomic CT features associated with IPMN pathology

Radiomic Feature Category Odds
Ratio

Lower 
95% CI

Upper 
95% CI

AUC
(95% CI) P-value

Fourier Descriptor Layer 1 Texture 0.42 0.18 0.97 0.69
(0.51-0.87) 0.043

Histogram Energy Layer 1 Texture:
Histogram 0.18 0.05 0.73 0.79

(0.64-0.94) 0.017

Histogram Entropy Layer 
1

Texture:
Histogram 3.77 1.34 10.6 0.77

(0.62-0.93) 0.012

Co-occurrence matrix 
features OF1 G1 
CONTRAST  Layer 1

Texture:
Co-occurrence/
Run-length

8.08 1.40 46.7 0.79
(0.64-0.94) 0.020

Run-length features  G1 
D0 HGRE Layer 1

Texture:
Co-occurrence/
Run-length

4.30 1.37 13.5 0.79
(0.63-0.95) 0.013

Run-length features  G1 
D0 LGRE Layer 1

Texture:
Co-occurrence/
Run-length

0.11 0.01 0.88 0.79
(0.64-0.94) 0.038

Laws features  E5 E5 
Energy Layer 1

Texture:
Laws 0.06 0.01 0.65 0.74

(0.58-0.91) 0.020

Laws features  L5 S5 
Energy Layer 1

Texture:
Laws 0.21 0.05 0.91 0.73

(0.56-0.89) 0.037

Laws features  R5 E5 
Energy Layer 1

Texture:
Laws 0.20 0.05 0.91 0.71

(0.53-0.89) 0.038

Wavelet  decomposition.  
P1 L3 C1 Layer 1 Texture:

Wavelet
2.80 1.07 7.34 0.74

(0.57-0.91) 0.036

Wavelet decomposition.  
P1 L3 C2 Layer 1 Texture:

Wavelet
2.69 1.02 7.12 0.75

(0.59-0.92) 0.046

Border length (Pxl) Non-texture:
Size & Shape 2.61 1.08 6.31 0.74

(0.57-0.92) 0.033

Width (Pxl) Non-texture:
Size & Shape 2.76 1.20 6.32 0.77

(0.61-0.93) 0.017

Radius of largest enclosed 
ellipse

Non-texture:
Size & Shape 0.44 0.19 0.99 0.78

(0.61-0.94) 0.048



Oncotarget85789www.impactjournals.com/oncotarget

Figure 1: A model that combines the 5 miRNA genomic classifier signature (MGC) with high risk stigmata is more 
accurate in predicting IPMN malignancy than either variable alone.

Figure 2: Semi-automated segmentation of two IPMN patient CT scans at the selected central slice. a. Axial venous 
phase images through the abdomen demonstrate a cystic mass in the pancreatic head/neck measuring up to 3.5 cm. This lesion contains a 
non-enhancing soft tissue mural nodule (arrow). b. Axial venous phase images through the abdomen demonstrate an ovoid, homogeneous 
appearing cystic mass measuring up to 4.8 cm in greatest dimension. No internal enhancing soft tissue nodules were seen within the lesion.
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Analysis of radiomic data

Radiomic features were successfully extracted 
for 37 of the 38 cases; features could not be extracted 
for one benign case from an outside hospital because 
only digitized film was available and there were no 
coronal views. Univariate analysis of the 112 radiomic 
CT features revealed 14 features (11 textural, including 
histogram, wavelet, laws, and co-occurrence/run-length, 
and 3 non-textural, all size &shape) that differentiated 
malignant from benign IPMNs (p < 0.05) (Table 2). The 
most statistically significant features were textural and 
included histogram entropy layer 1 (OR (95% CI): 3.77 
(1.34-10.63), p = 0.012) and run-length features G1 D0 
LGRE Layer 1 (OR (95% CI): 4.30 (1.37-13.49), p = 
0.013). Statistically significant non-textural features that 
were associated with an increased likelihood of malignant 
pathology included border length and width, whereas 
radius of the largest enclosed ellipse was associated with 
a decreased likelihood of malignant pathology (Table 2). 
Collectively, the 14 radiomic features (defined as ‘Features 
PC1’) had a diagnostic accuracy higher than worrisome 
features (AUC = 0.77 versus 0.54). ‘Features PC1’ 
explained 61% of the variability in the data, suggesting it 
represents the 14 most promising radiomic features well. 
Of clinical importance, there were three cases for whom 

the final pathology was benign that had worrisome features 
on preoperative imaging yet were correctly classified as 
true negatives (benign) via radiomics using the Features 
PC1 score; thus radiomic features may have helped to 
avoid overtreatment with surgery. An image from one of 
these cases is displayed in Figure 2a. On the other hand, 
there was one case for whom the final lesion pathology 
was malignant but there were no high risk stigmata on 
preoperative imaging (only one worrisome feature of cyst 
size > 3 cm) and radiomics classified the case as a true 
positive (malignant); thus radiomics may have aided in 
directing management towards a necessary surgery to 
remove what turned out to be a high-grade lesion (Figure 
2b). 

Integration of radiomic data with other data types 

A model that combined radiomic features and the 
MGC had an AUC = 0.92 and estimates of sensitivity 
(83%), specificity (89%), PPV (88%), and NPV (85%) 
that were superior to models not based on these data 
types that relied on demographic or standard imaging 
features alone, particularly worrisome features (Table 3). 
When integrating standard worrisome radiologic features 
with radiomic features and the MGC, the diagnostic 
performance of the model increased further (AUC = 0.93 

Table 3: Diagnostic performance of preliminary models to predict malignant IPMN pathology in the study cohort

Modela Variables included AUC
(95% CI) Sensitivity Specificity

Positive 
predictive 
value

Negative
predictive 
value

Demographic and clinical data Age at diagnosis, 
gender, presence of 
symptoms 

0.73
(0.56-0.89) 0.83 0.55 0.63 0.79

Standard imaging data High risk stigmata 0.84
(0.72-0.96) 0.83 0.85 0.83 0.85

Genomic data 5-miRNA genomic 
classifier  (MGC)

0.83
(0.69-0.97) 0.78 0.80 0.78 0.80

Standard imaging + genomic 
data High risk stigmata, 

MGC 
0.95
(0.88-1.00) 0.94 0.90 0.89 0.95

Standard imaging data Worrisome features 0.54
(0.38-0.69) 0.72 0.35 0.50 0.58

Standard imaging + genomic 
data Worrisome features, 

MGC
0.83
(0.69-0.97) 0.83 0.80 0.79 0.84

Radiomic data Radiomic PC1 
classifier

0.77
(0.61-0.93) 0.83 0.74 0.75 0.82

Radiomic + genomic data
Radiomic PC1 
classifier + 
 MGC

0.92
(0.83-1.00) 0.83 0.89 0.88 0.85

Standard imaging+ radiomic+ 
genomic data

Worrisome features, 
Radiomic PC1 
classifier + 
MGC

0.93 
(0.85-1.00) 0.89 0.89 0.89 0.89

a Full models include 20 benign and 18 malignant IPMNs.
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(95% CI: 0.85-1.00) (Figure 3) than the models based on 
worrisome features alone (p < 0.001) and radiomic PC1 
alone (p = 0.037), with enhanced estimates of sensitivity, 
PPV, and NPV, each at 89% (Table 4). As expected, 
models that considered presence of high-risk stigmata in 
conjunction with radiomic data performed well.

Cross-validation and correlative analysis

Evaluation of uncertainty by 10-fold cross-validation 
showed robust estimates of diagnostic performance with 
AUC above 0.75 for most models (Supplementary Table 
2). Specifically, a model that combined radiomic features 
with the MGC had an AUC = 0.87 (95% CI: 0.84-0.89) 
and was more accurate than demographic characteristics 
and worrisome features at predicting malignant pathology. 
Finally, preliminary analyses revealed that the radiomic 
‘features PC1’ was associated with high risk stigmata (p = 
0.0009) and worrisome features (p = 0.0006), but not with 

the MGC (p > 0.05). 

DISCUSSION

Due to their malignant potential, the identification 
of an IPMN generates anxiety, the need for subsequent 
imaging, possible invasive testing or surgery, and huge 
economic costs (54). Thus, the value of developing 
a noninvasive, cost-effective approach to accurately 
distinguish malignant from benign IPMNs cannot be 
overstated because it would enable individuals with 
malignant lesions to undergo lifesaving surgery while 
sparing those with benign lesions the inconvenience, 
morbidity, and cost of major surgery. Here we conducted 
the first proof-of-concept radiogenomic study to 
noninvasively evaluate the clinical utility of radiomic 
features as predictors of malignant IPMNs alone and 
in combination with a blood-based miRNA genomic 
classifier discovered by our team [14]. Consistent with 

Figure 3: An integrative model combining radiomic features (PC1) with the 5-miRNA genomic classifier (MGC) is 
more accurate at predicting malignant IPMN pathology than either variable alone and is substantially more accurate 
for prediction than worrisome radiologic features. A final model combining worrisome features, radiomic features, and the MGC 
has potential to have high accuracy, with an AUC value approximating 0.93.
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data from other cancers which suggest that complementary 
biomarkers will increase specificity of standard-of-
care images [40, 41], our preliminary data infer that 
incorporating radiomic and miRNA expression data from 
images and blood obtained through standard of care 
has potential to accelerate discovery of a noninvasive 
multimodal approach to rapidly provide clinically-
actionable information to improve pre-operative prediction 
of IPMN malignancy, especially for patients who do not 
present with high-risk stigmata. Such an approach would 
also minimize the potential for sampling bias and risks 
associated with tissue biopsy-dependent approaches that 
do not capture tumor heterogeneity. 

Radiomics provides a noninvasive, fast, low 
cost, and repeatable way of investigating quantitative 
radiophenotypes that may potentially personalize care for 
patients with pancreatic cancer precursors. After applying 
a semiautomatic segmentation process that minimizes 
operator interaction and has been shown to provide 
accurate and reproducible boundaries [19, 21, 42], we 
successfully extracted 112 preoperative CT radiomic 
features, and revealed 14 features that differentiated 
malignant from benign IPMNs (p < 0.05). Of the 14 
features, 11 were textural (histogram, wavelets, laws, or 
run-length/co-occurrence) and 3 were non-textural and 
from the size and shape category. Texture of CT scans 
to a clinical radiologist is usually attributed to gray-level 
changes seen by the expert whereas texture in traditional 
image processing refers to the spatial arrangement of color 
or intensity in a localized region or whole scene. It is of 
interest that in this and other radiomic investigations [43], 
the most important characteristics to separate the two 
clinical outcomes were textural based on run length and 
co-occurrence (with few others). Interestingly, Hanania 
et al (submitted, Oncotarget) recently conducted a study 
in which they describe the use of quantitative radiomic 
features for risk stratification of IPMNs. Hanania et al also 
identified fourteen top-performing radiomic features (all 
textural within the gray-level co-occurrence matrix) as 
differentiating between benign and malignant pathology. 
Using a cross-validated design, the top-performing logistic 
regression model yielded an AUC = 0.96, with a sensitivity 
and specificity of 97% and 88%, respectively. Because 
the study by Hanania et al does not have matched plasma 
miRNA data and our groups used different methodology 
for acquisition, segmentation, feature extraction, and 
analysis, the opportunity for meaningful independent 
validation of each other’s findings is not possible at this 
point in time. However, our teams plan to work together 
to prospectively evaluate this topic area and develop 
standard operating procedures though mechanisms such 
as the Molecular and Cellular Characterization of Screen-
Detected Lesions (MCL) U01 consortium, supported by 
NCI’s Divisions of Cancer Prevention and Cancer Biology. 

In the current study, when the 14 textural and non-

textural features were combined via PCA to generate a 
feature PC1 score that explained 61% of the variability in 
the data, the radiomic features had a diagnostic accuracy 
for predicting malignant pathology that was higher than 
standard worrisome radiologic features or demographic 
and clinical data elements, especially when combined 
with the blood-based MGC (Table 3). Indeed, blood-based 
biomarkers have potential to reduce the false positive and 
overdiagnosis rates of CT scans [44]. To date, no blood-
based biomarker has proven useful in clinical practice for 
the early detection of PC [45]. miRNAs represent ideal 
candidates for overcoming limitations of single blood-
based biomarkers because they can reflect physiological 
and pathological conditions and act as extracellular 
messengers of biological signals derived from the cross 
talk between the tumor and its microenvironment [46]. 
Although study limitations include potential model 
overfitting due to the small sample size and the need for 
further multivariable modeling, we did perform cross-
validation analyses which indicated robustness of the 
model using the combination of a MGC with radiomic 
features from preoperative CT scans. The results suggest 
these data types may significantly improve the ability 
to noninvasively risk stratify IPMNs for resection or 
surveillance. Additionally, external validation in an 
independent data set is warranted; plans are underway to 
do this as part of a multi-center prospective study since 
MGC data is not available for additional retrospective 
cohort participants.

We recognize that the retrospective design of 
the current investigation is vulnerable to selection bias 
since the main inclusion criteria was having a pathologic 
diagnosis obtained through surgical resection. However, 
a key advantage of this retrospective series is the ability 
to integrate several important data types in a relatively 
large sample size compared to other recent radiomic 
studies. Another challenge is that CT imaging protocols 
and scanners, acquisition procedures, slice selection and 
thickness, and reconstruction parameters may change 
over time and be coupled with confounding factors 
stemming from imaging variability and heterogeneity 
within and between patient cohorts. We acknowledge 
that inconsistencies and heterogeneity in scans derived 
from standard diagnostic procedures may play a role in 
the derived inference and that improvements in diagnostic 
performance attributed to radiomic features may be 
minimal in this small dataset. Furthermore, specific to 
IPMNs, it may be necessary to separate segmentation of 
nodular and cystic components in future investigations. 
In our experience, only a subset of IPMN cases had a 
separate soft tissue component that could be clearly 
delineated from cystic components; this is an area we plan 
to evaluate further in the future. Nevertheless, we expect 
the contribution of radiomic features in the prediction 
models will be greater once CT acquisition procedures 
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are harmonized. In previous analyses of lung lesions and 
other cancers [21, 27], we evaluated reproducibility of 
CT-based image features subjected to typical patient level 
variability; known stable features were used to show the 
translational potential for multi-institutional application 
of radiomics [27]. To ensure robust decision support for 
patients with IPMNs, a radiomics-based classifier will 
require inclusion of informative, non-redundant features 
that have high reducibility and stability and are scanner 
independent. Moreover, engineers and domain expertise 
are needed to validate models across platforms, potentially 
using deep learning approaches such as neural net pathway 
analyses. Furthermore, as part of the National Cancer 
Institute (NCI) Quantitative Imaging Network (QIN) 
(http://imaging.cancer.gov/informatics/qin), we plan to 
work with other leaders in the field to assess variability 
of radiomic metrics across institutions due to system and 
reader inputs (segmentation, seeding, etc.). 

In summary, this proof of concept study represents 
the first we are aware of to integrate clinical factors, 
radiomic features, and blood-based miRNA expression 
data [14] into a statistical model that could potentially 
provide a robust and noninvasive predictor of malignant 
IPMN pathology. Our preliminary data and that of Hanania 
et al (submitted, Oncotarget) suggest a radiomic CT 
approach could have a previously unappreciated impact, 
value, and practicality in capturing readily available 
information not currently analyzed in CT imaging studies 
to aid in managing pancreatic cysts, a goal in line with 
QIN initiatives. Larger studies are needed to prospectively 
explore the diagnostic performance of textural and non-
textural radiomic CT features (and possibly features 
extracted from other modalities such as MRIs or PET/
CTs) and the blood-based miRNA classifier as noninvasive 
predictors of malignant IPMN pathology. If proven useful, 
such a multimodal approach may lead to a reduction in 
pancreatic resections and missed opportunities for cures.

MATERIALS AND METHODS

Study population and data

A prospectively maintained clinical database was 
retrospectively reviewed to identify individuals who 
underwent a pancreatic resection for an IPMN between 
2006 and 2011 at Moffitt Cancer Center and Research 
Institute (Moffitt) and had provided written consent 
for blood, imaging, and clinical data to be donated pre-
operatively for research through protocols approved by 
the Institutional Review Board (IRB) of the University 
of South Florida, including Total Cancer Care [47]. IRB 
approval was granted for the research described herein 
(IRB#Pro4971). For all cases, demographic and clinical 
data (presenting systems, age at diagnosis, past medical 

and surgical history, current and past medication use, and 
information on a uniform set of known and suspected 
cancer risk factors such as smoking and alcohol history, 
family history, and body mass index) was obtained from 
the electronic medical record and patient questionnaire. 
Detailed imaging studies, surgical details, pathology 
results, lab values (serum CA-19-9, bilirubin, albumin), 
and treatment information was collected from the medical 
record and Moffitt’s Cancer Registry. 

Histopathologic analysis

Pathologists with expertise in PDAC and IPMN 
pathology (KJ, DC, BAC) used hematoxylin and eosin 
(H&E) stained slides from selected blocks to histologically 
confirm the diagnosis and degree of dysplasia using World 
Health Organization guidelines [48]. The final diagnosis 
represented the most severe grade of dysplasia observed 
in the neoplastic epithelium. None of the cases received 
pre-operative chemotherapy or radiation. ‘Malignant’ 
cases were defined by high-grade dysplasia or invasive 
carcinoma and ‘benign’ cases were defined by low- or 
moderate-grade dysplasia. 

miRNA expression data

Preoperative plasma miRNA expression data was 
previously generated [14] for 42 surgically-resected, 
pathologically-confirmed IPMN cases (21 malignant 
and 21 benign). Briefly, one 0.5-mL cryovial of plasma 
was retrieved and thawed for each identified case. To 
control for variance in starting material and efficiency 
of RNA extraction, RNA spike-in miRNAs (synthetic 
control templates) were used. Total RNA isolation was 
performed on 500 uL of plasma using the Plasma/Serum 
Circulating and Exosomal RNA Purification Mini Kit 
(Slurry Format) from Norgen Biotek (Ontario, Canada), 
and total RNA concentration and integrity was assessed 
using the NanoDrop spectrophotometer (NanoDrop 
Technologies, Waltham, MA) and an Agilent Bioanalyzer 
(Agilent, Santa Clara, CA). Since hemolysis can confound 
studies of plasma miRNAs, the possibility of hemolysis 
was assessed. 

The nCounter™ Human v2 miRNA Expression 
Assay Codeset (Nanostring Technologies, Seattle, WA, 
USA) was used to quantify the abundance of a pre-
defined panel of 800 human miRNAs and built-in controls. 
Raw miRNA counts underwent technical and biological 
normalization and log2-transformation. The most 
deregulated miRNAs that differed between the benign and 
malignant groups were identified using the linear models 
for microarray data (LIMMA) method and a principal 
component analysis (PCA) approach (14). Since miRNAs 
can be over- or under-expressed, we used PCA to combine 
the most deregulated miRNAs and generate an overall 
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‘IPMN-risk score’ based on the first principal component 
(PC1). A focused analysis of the 42 IPMN cases showed 
that five miRNAs (miR-200a-3p, miR-1185-5p, miR-
33a-5p, miR-574-3p, and miR-663b), a miRNA genomic 
classifier (‘MGC’), discriminated between malignant and 
benign IPMNs (p < 0.05). The overall expression of PC1 
was lower in malignant compared to benign IPMNs (p = 
0.005), was significantly associated with malignant status 
(OR (95% CI): 0.36 (0.16, 0.83), p = 0.017), and had an 
AUC value of 0.73 (95% CI: 0.58-0.89) in discriminating 
between groups. 

CT imaging

The majority of CT scans from this series of 
patients were obtained on the Siemens Sensation (16, 
40, or 64) using a CT angio (CTA) pancreas protocol 
(Supplementary Table 1). Our standard operating 
procedure includes obtaining 3 mm axial CT slice images 
of the abdomen from the superior liver capsule to the 
iliac crests without contrast. Optiray-370 contrast is then 
injected intravenously at a rate of 3.5 ml/sec. The volume 
of Optiray-370 contrast injected follows a weight-based 
scale. Arterial phase imaging is triggered by contrast 
bolus tracking of the abdominal aorta at a Hounsfield Unit 
of 100-120. Arterial phase images of the abdomen are 
obtained ~20 seconds after contrast injection, and venous 
phase images of the abdomen are obtained ~60 seconds 
after injection. 3 mm coronal reconstruction images (B30/
B31f) of the abdomen are also performed for each phase 
(noncontrast, arterial phase, venous phase). 

CT acquisition and feature selection and 
extraction

Preoperative CT images were available for 38 of 
the 42 surgically-resected, pathologically-confirmed 
IPMN cases with available matched preoperative miRNA 
expression data generated in our previous publication 
[14]. Thus, overlap exists for 38 of the study participants 
in the current report and our previous publication [14]; the 
prior article [14] dealt with the development of a miRNA 
classifier whereas in this manuscript we emphasize 
standard radiologic features and radiomic features as 
predictors of IPMN pathology with and without the 
miRNA classifier. CT images were obtained from Moffitt’s 
GE Centricity Picture Archiving and Communication 
System (PACS). Most cases underwent contrast-enhanced 
CTs within 3 months prior to surgery. Our lead radiologist 
who has over 5 years of experience reviewing IPMN 
cases (J.C.) and the entire analytic team were blinded 
to the pathological diagnosis. CT images were reviewed 
for standard radiologic features encompassing ‘high-
risk stigmata’ and ‘worrisome features’ represented in 
consensus guidelines [5]. The scan reconstruction and 

central slice was selected by J.C. Axial venous phase 
images (3 mm) were used for most patients because of 
the tumor/background contrast. Arterial phase or coronal 
images were used as needed. In the event multifocal 
disease was present, we characterized the most concerning 
cyst that corresponded to one that was ultimately resected. 
J.C. identified the region of interest (ROI) by helping to 
outline the peripheral margin of tumors in their entirety, 
capturing both solid (nodular) and cystic components. 
The radiomics team then marked the ROI using Definiens 
/GE AWS Advanced Visualization software. Based on 
previous successes [19, 21], the entire tumors were 
identified (solid and cystic components) using a semi-
manual version of a single click semi-automated ensemble 
segmentation algorithm within the Definiens Developer 
XD (Munich, Germany) software platform. Target lesions 
were segmented, with a second radiologist (Q.L, Resident 
Radiologist with over 2 years of experience) finalizing the 
segmentation boundaries on the CT slices. This approach 
eliminates the need for a manually drawn boundary while 
providing robust, reproducible, and consistent delineation 
of the tumor region across CT slices [19, 21]. The 
segmentation algorithm has also been shown to reduce 
inter-observer variability while capturing intricacies of the 
tumor boundary [42].

We then extracted categories of non-texture and 
texture features. Non-texture features measure tumor size 
(volume, diameter, border length), shape (compactness, 
asymmetry), and location, whereas texture features 
measure properties such as smoothness, coarseness, and 
regularity. We focused on evaluating two-dimensional 
(2D) quantitative features in the middle CT slice. To 
minimize analysis problems inherent with testing 
hundreds of features in a limited sample size, we reduced 
dimensionality by limiting the number of imaging features 
to 112. Of the 112 features, 18 were non-textural and 94 
were textural (10 histogram in hounsfield units, 27 co-
occurrence/run-length, and 57 laws and wavelets). In 
house algorithms for feature extraction and quantification 
of segmented regions were implemented by custom 
routines in the Definiens Platform. 

Statistical analyses

For a selected set of variables, descriptive statistics 
were calculated using frequencies and percents for 
categorical variables and means and standard deviations 
(SD) for continuous variables. 

After feature extraction, the Pearson correlation 
coefficient was used to identify and filter out 55 highly 
correlated (or redundant) radiomic features, leaving 57 
features for analysis. Simple logistic regression models 
were used to explore associations with IPMN pathology. 
Principal component analysis (PCA) was also performed 
to reduce radiomic feature data dimensionality and to 
generate an index score defined by the first principal 
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component (PC1); PC1 was evaluated for its association 
with malignant status using logistic regression. The 
sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV), and accuracy of the 
new radiomic features were calculated by estimating 
the optimal cutpoint using Youden’s index [49], with 
pathological diagnosis as the gold standard. Estimates of 
diagnostic performance generated from radiomic models 
were generated with and without the MGC data and were 
compared to those obtained when evaluating standard 
radiologic and clinical features [5]. DeLong’s test was used 
to compare the area under correlated ROC curves [50]. To 
evaluate model performance, repeated (10,000 times) 10-
fold cross validation was performed. The average and 95% 
confidence intervals of accuracy, sensitivity, specificity, 
PPV and NPV were estimated. In each 10-fold cross-
validation, data were split into 10 subsets. By holding one 
subset of data (test set), the remaining 9 subsets were used 
as a training set to build a model for prediction evaluation 
in the test set. The process continued until each subset was 
used as the test set. By testing the model on a test set (not 
used in estimation), the cross-validation approach aimed 
to reduce over-fitting. Although prediction on the test set 
(treated as new data) would likely increase uncertainty and 
therefore reduce performance, it provides a great tool to 
evaluate robustness of the model. Finally, we evaluated 
if the most statistically significant imaging features were 
correlated with one another or the MGC using two-sample 
t-tests or Wilcoxon rank sum tests. 
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