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Abstract: Non-negative matrix factorization (NMF) is a relatively new approach to analyze gene expression data that 
models data by additive combinations of non-negative basis vectors (metagenes). The non-negativity constraint makes sense 
biologically as genes may either be expressed or not, but never show negative expression. We applied NMF to fi ve different 
microarray data sets. We estimated the appropriate number metagens by comparing the residual error of NMF reconstruction 
of data to that of NMF reconstruction of permutated data, thus fi nding when a given solution contained more information 
than noise. This analysis also revealed that NMF could not factorize one of the data sets in a meaningful way. We used GO 
categories and pre defi ned gene sets to evaluate the biological signifi cance of the obtained metagenes. By analyses of meta-
genes specifi c for the same GO-categories we could show that individual metagenes activated different aspects of the same 
biological processes. Several of the obtained metagenes correlated with tumor subtypes and tumors with characteristic 
chromosomal translocations, indicating that metagenes may correspond to specifi c disease entities. Hence, NMF extracts 
biological relevant structures of microarray expression data and may thus contribute to a deeper understanding of tumor 
behavior.
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Introduction
Several powerful tools for the analysis of gene expression data have been developed. Typically, methods 
such as hierarchical cluster analysis and principal component analysis focus on the dominating structures 
in the data and fail to depict alternative features and local behavior. In addition standard clustering 
techniques based on correlated behavior group genes into non-overlapping clusters, less optimal from 
a biological point of view as individual genes may take part in different cellular responses. To explore 
alternative methods to interpret complex gene expression data we recently applied independent 
component analysis (ICA) (Frigyesi et al. 2006). Even though this method could identify additional 
substructures in the data compared to standard gene clustering methods, ICA, as well as PCA basis 
vectors have both positive and negative coeffi cients. Thus modeling of the original data may involve 
complex cancellations between positive and negative values. In a gene expression situation negative 
values contradict physical realities as a gene with a negative expression cannot be readily interpreted; 
in a biological setting a gene is either present with a variable intensity or it is absent. It therefore makes 
sense to constrain both the factors and their coeffi cients to a non-negative setting. One such alternative 
approach is non-negative matrix factorization (Lee and Seung, 1999) in which data is modeled as the 
product of two non-negative matrices. Thus NMF reproduces data by only additive combinations of 
non-negative vectors. Lee and Seung (1999) showed that the basis vectors obtained by NMF when 
applied to facial images were “non-global” and composed of “natural” parts of the facial images. The 
non-negativity requirement restricts the basis vectors to be composed of co-activated pixels from the 
same part of the face. This is attractive from a microarray analysis perspective as such co-activation 
may be equivalent to expression modules or metagenes. Furthermore, as NMF detects local behavior 
of variables (genes) this method may detect gene sets that show correlated expression in subsets of 
tumors but not in others, patterns that would be undetected by approaches based on global gene behavior. 
Kim and Tidor (2003) applied NMF to 300 yeast whole genome expression analyses and could show 
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that the obtained basis vectors were stable and that 
vectors could be annotated by MIPS functional 
categories. Several modifi cations of the original 
NMF algorithm have been presented (Brunet et 
al. 2004; Gao and Church, 2005; Carmona-Saez 
et al. 2006; Wang et al. 2006; Fogel et al. 2007, 
Kim and Park, 2007). In the present investigation 
we evaluate NMF as a tool to retrieve signifi cant 
biological information from complex microarray 
data and focus on the biological interpretation of 
the metagenes thus obtained. We show that several 
obtained metagenes correlates with tumor subtypes 
and tumors with characteristic chromosomal 
translocations, indicating that metagenes may 
correspond to specifi c disease entities. Hence, 
NMF extracts biological relevant structures of 
microarray expression data and may thus contribute 
to a deeper understanding of tumor behavior.

Materials and Methods

Data sets
The CNS data (Pomeroy et al. 2002) was down-
loaded from supporting information to Pomeroy 
et al. (2002) to contain 34 cases; 4 normal cerebella 
(Ncer), 10 medulloblastoma (MD), 10 malignant 
glioma (Mglio), 10 Rhabdoid tumor (Rhab), and 
6759 genes/reporters. The data was normalized 
using the fi rst sample as a reference, i.e. dividing 
all samples with this reference sample, and the 
obtained quotients log-transformed. The AML 
dataset described by Bullinger et al. (2004) was 
downloaded from the Gene Expression Omnibus 
(www.ncbi.nlm.nih.gov/geo/, accession number 
GSE425) to contain 6283 genes/reporters. Pretreat-
ment and fi ltering of the data were as in (Frigyesi 
et al. 2006). The fi nal data set included 4651 genes 
and 108 cases. The head and neck squamous cell 
carcinoma data set described by Chung et al. (2004) 
was downloaded from the Gene Expression Omni-
bus (www.ncbi.nlm.nih.gov/geo/, accession num-
ber GSE686). Pretreatment and fi ltering of the data 
were as in (Frigyesi et al. 2006). The resulting data 
comprised 8620 genes and 53 cases. The time 
series data described by Chang et al. (2004) and 
the lung cancer data set described by Garber et al. 
(2001) were downloaded from the Stanford Micro-
array Database (http://smd.stanford.edu/index.
shtml). Reporters for identical genes were merged 
and genes with at least 80% values were selected 
and corrected for missing values by KNN imputa-

tion using K=12 (in the case of lung cancer data) 
resulting in a dataset of 568 genes and 16 time 
points for the time series data and 5135 genes and 
53 cases for the lung cancer data.

Non-negative matrix 
factorization (NMF)
We assume that our gene expression (microarray) 
data is in the form of a matrix A with n rows cor-
responding to genes and m columns corresponding 
to samples and that it is the product of two non-
negative matrices W and H. The k columns of W 
are called basis vectors. Given a matrix A and a 
desired number of basis vectors k, also named rank, 
the different NMF algorithms iteratively computes 
W and H. We have chosen to use the algorithm of 
Lee and Seung (1999) which minimizes a diver-
gence functional related to the Poisson likelihood 
of generating A from W and H. The selection of 
k is a question of dimensionality reduction. Thus 
the rank must be small enough to reduce noise but 
large enough to retain necessary information. The 
method of Kim and Tidor (2003) was slightly 
modified, such that the residual error of A, 
RE = |A-WH | is computed for different choices of 
rank and compared to the residual error of Aperm, 
RE = |Aperm-W(Aperm)H(Aperm)|, where Aperm 
denotes the expression matrix A with the rows 
(genes) permuted for every column (sample). The 
slope in a plot of the residual error versus rank k is 
a measure of how much information is lost as the 
rank decreases. If the slope of the residual error of 
A is larger than that of Aperm this indicates informa-
tion present in the original data set. We thus identi-
fi ed the smallest rank value which still preserves 
additional information compared to Aperm.

As the NMF fi nds different solutions for different 
initial conditions, the factorizations were repeated 
100 times using the previously determined rank and 
evaluated according to their RE. The W/H-pair with 
the smallest RE was selected for further analysis. It 
was found from the distributions of these RE that 
100 iterations were more than suffi cient to fi nd a 
good solution (Supplementary Fig. 1).

Association of metagenes 
with tumor subtypes
We used Kruskal-Wallis’ test (a non-parametric 
analogue to ANOVA and an extension of the 
Mann-Whitney test to more than two groups) to 
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test for difference of medians for different tumour 
subtypes of the metagenes. Multiple testing was 
corrected for by using the Holm-Bonferroni 
method. The results are presented as box-plots 
with notches that display the variability of the 
median between tumor subtypes. The width of a 
notch is computed so that box plots width notches 
that do not overlap have different medians at the 
5% signifi cance level.

Consensus reordering matrices
In Brunet et al. (2004) it is assumed that factoring 
with rank k produces k more or less disjoint classes 
of samples. The choice of k is assessed using con-
nectivity matrices and the cophenetic correlation 
coeffi cient. Samples are assigned to one of k classes 
according to the greatest loading of matrix H. Our 
main objection to this method of model selection 
is that factoring with rank k might produce other 
than k classes of the samples, e.g. rank 2 may pro-
duce 4 classes if the basis-vectors are not disjoint. 
Thus it is not the rank that is evaluated in this way 
but the ability of each value of the rank to classify 
the samples into the same number of classes. 

In addition, the assignment to classes also assumes 
disjointness as it is only done according to the 
greatest loading. In keeping with Brunet et al. (4) 
we have chosen the cophenetic correlation of the 
consensus matrix for the choice of number of clus-
ters but this method is in fact not entirely correct 
as the cophenetic correlation varies with the num-
ber of clusters for random data as well. For each 
run, a connectivity matrix C is defi ned with entries 
cij = 1 if samples i and j belong to the same cluster 
and cij = 0 if they belong to different clusters. The 
average of these connectivity matrices, the 
consensus matrix is calculated and visualized as a 
tool to assess the stability of the clustering. The 
cophenetic correlation coefficient ρcc of the 
consensus matrix is calculated. We chose to modify 
this method by weighting the connectivity matrix 
of each run according to the residual error REt of 
that run ((max(RE)-REt)/(max(RE)-min(RE))).

Biological interpretations 
of metagenes
To assign genes to metagenes the weights on the 
W matrices were ranked and a weight threshold 

Figure 1. Rank estimates. a) The time series data, b) log transformed CNS data, c) log transformed leukemia data, d) raw ratio leukemia 
data, e) log transformed lung cancer data, f) raw ratio lung cancer data, g) log transformed HNSCC data, h) raw ratio HNSCC data. The 
blue line is the residual error (RE) for data whilst the red line is the residual error for the same data with the genes permuted (different 
permutations for each sample).
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selected to produce on average 100 genes per 
metagene. This approach identifies genes that 
contribute the most to the original features of the 
data and ensures that the selected genes have a 
strong infl uence on the respective metagenes. We 
used two methods for biological interpretations, 
GO term analysis using the EASE software 
(Douglas et al. 2003) and gene set enrichment 
analysis using the GSEA software (Subramanian 
et al. 2005). EASE identifi es signifi cant enrichment 
of specifi c gene ontology (GO) categories in a 
given list of genes compared to the total list of 
genes. Gene symbols were used in the analyses 
and the top ranking genes in the respective 
metagens were compared with total content of 
genes with names remaining after the initial 
fi ltering. Multiple testing was corrected for by 
using the step-down Bonferroni multiplicity 
function supplied by the EASE software. The step-
down Bonferroni correction ranks the results by 
the statistic in ascending order. Each value is ten 
multiplied by (n-rank) where n is the number of 
results. Corrected p-values �0.05 calculated using 
EASE statistics were considered signifi cant. GSEA 
uses a ranked gene list as an input and calculates 
an enrichment score to determine to what extent a 
predefined gene-set is overrepresented at the 
extremes of the entire list. Genes were ranked 
according to the weights in the respective basis 
vectors and used as an input to a gene set enrichment 
analysis. We used the gene sets made available 
within the GSEA software. The signifi cance of the 
obtained enrichments scores is estimated by a 
permutation test and adjusted for multiple testing. 
We used 1000 permutations to estimate p-values 
and false discovery rates. The GSEA approach is 
independent of any arbitrarily selected threshold 
to assign genes to metagenes.

Results
We estimated the rank (k) for each data set i.e. the 
number of appropriate metagenes to reconstruct 
the data, by evaluation of the residual error after 
reconstitution of the data with a given number of 
metagenes (Materials and Methods). To obtain 
non-negative matrices we used raw-ratios and log 
transformed ratios to which the absolute value of 
the lowest log value has been added. Ranks of 
5–6 were found for the time series data using both 
log transformed (Fig. 1b) and raw ratio data (data 
not shown). The quality of the results for the more 

complex CNS, leukemia, lung, and head and neck 
cancer (HNSCC) data differed between the log and 
non-transformed data (Fig. 1c-h). Whereas the log 
transformed data produced smooth residual error 
graphs (RE = |data-WH| as a function of k) the 
raw ratio data showed no obvious rank. Further-
more, in contrast to the other data sets the residual 
error graphs for the HNSCC data was almost the 
same as for the randomized data indicating that 
NMF could not extract any informative metagenes 
in this data set (Fig. 1g). One possible explanation 
for this result could be that the HNSCC data con-
tains more noise than the other data sets. To 
eliminate non-varying genes the top 20% genes 
with respect to variance were selected and the 
analysis repeated. This did however not improve 
the results and HNSCC was excluded from further 
analyses. From the residual error graphs ranks were 
estimated to 5, 8, 30 and 13 for the time series, 
CNS, leukemia, and lung cancer data, respectively, 
using log transformed data. The subsequent analy-
ses were performed on log transformed data 
only.

Time series data
We calculated the H and W matrices using 100 
randomized initial conditions and rank 5 and esti-
mated the residual error for each run. The H/W-pair 
that resulted in the smallest RE was selected for the 
subsequent analyses. The basis vectors were orga-
nized with respect to the order by which they are 
expressed during serum induction, as determined 
by the H weight profi les (Fig. 2). A clear temporal 
order of vector expression was seen. To compare 
the obtained results with results based global cor-
relation K-means clustering using a predefi ned 
number of fi ve clusters was performed. The K-
means cluster expression profi les were very similar 
to the H weight profi les (Fig. 2) showing pair wise 
correlations of 0.81, 0.96, 0.67, 0.80 and 0.94 
respectively. A subsequent GO analysis revealed 
that metagene 5 showed signifi cant enrichment 
(p � 7 × 10−9) for GO categories related to mitotic 
cell cycle. The biological coherence of the K-means 
clusters were analyzed in a similar way and K-
means cluster 1 (KMC1) was found signifi cant 
(p � 0.01) for lipid biosynthesis and KMC5 for GO 
categories related to cell cycle and mitosis 
(p � 10−9). Taken together, the metagenes obtained 
by NMF showed an overall similarity to gene clus-
ters obtained through K-means clustering.

Cancer Informatics 2008:6 



279

Non-negative marix factorization of gene expression data

CNS tumors
We calculated the H and W matrices using rank 
8 and selected the H/W-pair that resulted in the 
smallest residual error. The obtained metagenes 
were then subjected to GO analysis as outlined 
in Materials and Methods. No metagenes showed 
signifi cant enrichment for GO categories when 
correcting for multiple testing. However, a sub-
sequent gene set enrichment analysis (GSEA) 
identified significant enrichment (nominal p 
value �0.005 FDR � 0.1) for genes associated 
with favorable response to treatment (POME-
ROY_MD_TREATMENT_GOOD_VS_POOR_
UP) in metagene (MG) 1 and for E2A regulated 
genes in MG7 (GREENBAUM_E2A_UP). 
Metagenes 2, 4, 6 and 7 showed strong associa-
tion (p � 0.05, Holm-Bonferroni corrected) with 
tumor subtypes or the normal samples. Post hoc 
analyses revealed that MG2 showed signifi cantly 
(p � 0.05 using the Mann-Whitney test) higher 
weights in MD, MG4 in Rhab, MG6 in Ncer, and 
MG7 in MGlio (Supplementary Fig. 2). Hence, 
metagenes may show tumor subtype specifi city. 
We then estimated the optimal number of clusters 
in the data i.e. molecular subtypes, using the 
cophenetic correlation coeffi cient (ρcc) of the 
consensus matrix. This analysis indicated 4–7 as 
an optimal number using average linkage and 

1-correlation as distance (Fig. 3a). In Figure 4 a 
four-cluster solution is evaluated by constructing 
a reordered consensus matrix. The four types of 
samples Ncer, MD, MGlio, and Rhab are clearly 
separated and only two cases, MD12 and MGlio 
8, are misclassifi ed.

Leukemia data
We calculated the H and W matrices using rank 30 
(Fig. 1c) and selected the H/W-pair that resulted 
in the smallest residual error for the subsequent 
analyses. Of the 30 extracted metagenes 12 showed 
signifi cant enrichment for specifi c GO term catego-
ries (Table 1). Notably, some GO categories were 
enriched in more than one metagene e.g. defense 
response, immune response and antigen process-
ing/presentation. We then investigated to what 
extent genes attached with the same GO categories 
was shared by different metagenes. Four metagenes 
showed signifi cant enrichment of the category 
defense response (Table 1). Three genes were pres-
ent in all four, four were present in three, 22 in two, 
and the majority, 74 genes (72%), was specifi c for 
individual metagenes. Three metagenes showed 
signifi cant enrichment for the category immune 
response of which 80% of the genes were specifi c 
for individual metagenes. Hence, these metagenes 

Figure 2. Temporal profi les for the 5 metagenes obtained from the time series data compared with temporal profi les for gene clusters obtained 
by a K-means 5 cluster solution. Metagenes (MG) and K-means clusters (KMC) arranged and named according to their temporal expression. 
To be able to compare the K-means cluster and H matrix profi les their respective values normalized across the time points and expressed 
in standard deviations (SD).
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represent different aspects of the same biological 
processes. To explore the differences in the 
defense/immune response profi les further all genes 
corresponding to these GO categories from all 
metagenes were used to construct a protein interac-
tion map using the HiMAP software (http://www.
himap.org/index.jsp). For exploratory reasons 
predicted links were used and the lowest level of 
signifi cance. This produced a putative interaction 
network of 55 genes (Supplementary Fig. 3). When 
genes present in MG1 and MG4, the metagenes 
with the largest number of genes in the respective 
GO categories, were indicated in the graph it 
became evident that they, apart from activating 
overlapping regions of the network, activated genes 
in a sub-network specifi c manner.

Using Kruskal-Wallis’ test and the Holm-
Bonferroni method for correction of multiple tests 
we found that metagenes 4, 7, 9, 11, 12, 14, 15, 25 
and 28 differed (p � 0.05) in their expression 
levels for t(15; 17), t(8; 21), del(7q)/−7, t(9; 11) 
and inv(16) tumors. Post hoc analyses using Mann-
Whitney’s test revealed that MG7 showed signifi -
cantly (p � 0.05) higher weights in inv(16) tumors, 
MG11 in t(8; 21), MG14 in t(15; 17), and MG25 
in t(9; 11) tumors (Supplementary Fig. 4). In 
addition, del(7q)/−7 tumors showed signifi cantly 
(p � 0.05) lower weights for MG12. To further 
evaluate the MG7, 14, 11 and 25 metagenes, the 
genes were ranked according to W matrix weights 
in the respective basis vectors and used as an input 
to a gene set enrichment analysis. MG7 showed 

significant enrichment (FDR � 0.001) for the 
ROSS_CBF_MYH gene set that distinguish the 
AML inv(16) subtype, MG11 signifi cant enrich-
ment for the ROSS_AML1_ETO gene set (FDR = 
0.018) that distinguish the t(8; 21) subtype, MG14 
enrichment for ROSS_PML_RAR gene set 
(FDR � 0.000) specifi c for the t(15; 17) subtype, 
and MG25 for the ROSS_MLL_FUSION gene set 
(FDR � 0.000) specifi c for subtypes with MLL 
(11q23) rearrangement. This is consistent with the 
fact that inv(16) leukemias contain CBF/MHY, 
t(8; 21) AML1/ETO, t(15; 17) PML/RARA, and that 
t(9; 11) leukemias contain MLL fusion genes. As 
for the CNS data, we estimated the most stable 
number of molecular subtypes by calculating the 
cophenetic correlation of the consensus matrix 
using increasing number of clusters (Fig. 2b). This 
analysis indicated 5 as an optimal number using 
average linkage and 1-correlation as distance. From 
the reordered consensus matrix shown in Figure 5 
it may be seen that fi ve fairly homogeneous clusters 
were formed specific for leukemias with the 
chromosomal aberrations inv(16), t(8; 21), 
t(15; 17), del(7q)/−7, and t(9; 11), respectively, in 
addition to two larger and more heterogeneous and 
unstable tumor clusters.

Lung cancer data
The H and W matrices producing the smallest 
residual error using a rank of 13 was selected for 
analyses of the lung cancer data. Five of the 

Figure 3. Cophenetic correlation coeffi cients for hierarchically clustered a) CNS, b) leukemia, and c) lung cancer samples. The samples 
were clustered using average linkage and 1-correlation as distance.
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metagenes showed signifi cant enrichment for GO 
categories (Table 2). Metagenes 2 and 11 over-
lapped with respect to the defense response and 
wound healing categories and MG7 and MG13 
with respect to the extracellular and extracellular 

matrix categories. MG2 showed 30 and MG11 50 
defense response related genes with overall top 
ranking weights of which 20 were common to 
both. MG7 and MG13 shared 9 ECM related genes 
and contained 10 unique genes each and differed 
particularly with respect to collagen genes; MG7 
showed top weights for the collagens 18A1, 3A1, 
6A3 and MG13 for 12A1, 4A1, 5A2, and 7A1 
whereas 1A2 was shared by both. These fi ndings 
underscores that metagenes may infl uence differ-
ent aspects of the same cellular processes/compo-
nents. A subsequent GSEA analysis reveled that 
MG2 showed signifi cant enrichment for gene sets 
related to cell cycle activity and bad prognosis 
(Table 2), MG6 showed enrichment for gene sets 
related to hypoxia and VEGF induced expression, 
and MG11 to gene sets related to epithelial-
mesenchymal transition (EMT). Metagenes 2, 7, 
9, 11, and 13 differed signifi cantly (p � 0.05) in 
their expression levels of the four groups AD, 
SCC, LCLC and SCLC. Post hoc analyses using 
Mann-Whitney’s test revealed that MG 2 showed 
signifi cantly (p � 0.05) higher weights in SCLC, 
MG11 in LCLC, and MG13 in SCC tumors 
(Supplementary Fig. 5). Hence, metagenes 
correspond to distinct biological processes and are 
associated with histological subtypes. A cophenetic 
correlation analysis of the consensus matrices was 
performed to identify stable molecular subtypes. 
This analysis showed best solutions for 4–7 
tumor clusters (Fig. 3c). In Figure 6 a reordered 
consensus matrix for a four-cluster solution is 
presented. This analysis identified two AD 
subtypes, a stable cluster of SCC, and two less 
stable clusters composed mainly of SCLC and 
LCLC, respectively. The two AD subgroups dif-
fered in that MG1, MG8, and MG13 showed 
signifi cantly (p � 0.05) higher weights in AD1 
cases whereas MG10 and MG12 showed higher 
weights in AD2 cases (Supplementary Fig. 6).

Discussion
We have evaluated the NMF algorithm as a tool to 
reveal biologically relevant features in complex 
gene expression data. NMF is a relatively new 
approach for gene expression analysis and no 
consensus procedure has as yet emerged. One issue 
is the use of a sparseness function as a part of the 
updating rules in the NMF algorithm. In essence, 
sparseness reduces the number of units that effec-
tively are used to represent the data vectors and 

Table 1. GO category analysis of leukemia metagenes.
Meta 
gene1

Go terms2 EASE-score3

1 Defense response
Response to biotic stimulus
Immune response

2.0 × 10−12

5.5 × 10−12

6.0 × 10−12

3 Defense response
Response to external stimuli
Response to biotic stimulus

7.7 × 10−4

2.1 × 10−3

2.3 × 10−3

4 Immune response
Defense response
Response to biotic stimulus

2.3 × 10−7

5.3 × 10−7

6.4 × 10−7

7 Infl ammatory response
Innate immune response
Response to wounding

5.7 × 10−4

6.8 × 10−4

1.8 × 10−3

9 Antigen processing/exog-
enous antigen via MHC class II
Antigen presentation/exog-
enous antigen
Antigen processing

1.6 × 10−6

1.6 × 10−6

7.3 × 10−5

11 Defense response
Response to biotic stimulus
Infl ammatory response

3.7 × 10−5

1.3 × 10−4

1.7 × 10−3

14 Copper ion homeostasis
Heavy metal sensitivity/
resistance
Transition metal ion homeo-
stasis

6.6 × 10−7

1.0 × 10−5

1.5 × 10−5

16 Hemoglobin complex 1.2 × 10−2

22 Nucleosome assembly
Nucleosome
Chromatin assembly/disas-
sembly

5.0 × 10−8

1.2 × 10−6

1.6 × 10−5

24 Antigen processing /exog-
enous antigen via MHC class II
Antigen presentation/exog-
enous antigen
Antigen presentation

4.4 × 10−3

4.4 × 10−3

4.6 × 10−2

27 Antigen presentation/exog-
enous antigen
Antigen processing/exog-
enous antigen via MHC class II
Antigen processing

8.2 × 10−12

8.2 × 10−12

1.1 × 10−9

29 Mitotic cell cycle
Nuclear division
M phase

2.1 × 10−4

5.2 × 10−4

7.0 × 10−4

1Only metagenes with signifi cant enrichment of GO categories 
listed.
2Only the top three GO categories are listed.
3Step-down Bonferroni corrected EASE scores.

Cancer Informatics 2008:6 



282

Frigyesi and Hoglund

hence the number genes assigned to each meta-
gene. Motivations for introducing sparseness as a 
part of the updating rules includes that all genes 
analyzed within in an experiment are unlikely to 
contribute to a specifi c process (Fogel et al. 2007), 
and that NMF without sparseness may not always 
yield parts based representations (Hoyer, 2004). 
Even if sparseness may be motivated in some 
situations (Gao and Curch, 2005) a side effect is 
that biological data of potential importance may 
be lost in the process. Hence, including a sparseness 
function in the updating rules may force the results 
into a biologically over-simplifi ed model. In the 
present investigation we chose not to include 
sparseness in the updating rules and to assign genes 
to metagenes by an a posteriori selection procedure, 
accomplished by selecting genes with loadings 
above a given threshold across the whole W matrix. 
This approach identifi es genes that contribute the 

most to the original features of the data and ensures 
that the selected genes have a strong infl uence on 
the respective metagenes.

A feature of the NMF algorithm is that only 
positive values are allowed in the input matrix and 
hence one approach would be to use raw ratios. 
The use of log transformation is however moti-
vated as the relative gene expression changes, 
expressed as fold changes, are more likely to be 
of biological signifi cance than absolute changes. 
In addition, raw ratios emphasize changes in the 
expression of high-ratio genes at the expense of 
changes in low-ratio genes, with a skewed infl u-
ence of the factorization process as a consequence. 
To avoid this effect, and to equalize the scale with 
respect to fold changes, we transformed the log 
values in the input matrix to positive values by 
adding the absolute value of the lowest log ratio 
to all ratios. A possible indication that this type of 

Figure 4. A reordered consensus matrix from a four-cluster solution of the CNS cases. The samples were clustered using average linkage 
and 1-correlation as distances. Deep-red color indicates perfect agreement of the solutions, whilst blue color indicates no agreement.
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data transformation may be advantageous was 
seen in the estimations of rank. Here we applied 
a modifi ed version if the approach suggested by 
Kim and Tidor (2003) in which factorization solu-
tions with increasing ranks are compared with 
factorizations of the equivalent randomized data. 
In our hands the results obtained with log trans-
formed data were more readily interpreted than 
the non-transformed data.

In addition to estimate the appropriate number 
of dimensions, the rank estimation plots may be 
used to evaluate to what extent NMF captures 
signifi cant structure in the data. This is an important 
issue as most algorithms will produce results with 
randomized data. The residual error graphs showed 
a sharp decrease in error when analyzing the original 

CNS, time series, leukemia, and lung cancer data 
compared with the slopes of the randomized data. 
This was in contrast to the similar slopes of the 
HNSCC data and the randomized HNSCC data. 
This is in line with the fact that CNS, leukemia, and 
lung cancers are defi ned by distinct histological 
subtypes whereas the HNSCC data represent a group 
of more homogeneous and also highly advanced 
tumors. However, and irrespective of the cause, the 
rank estimation plot for HNSCC clearly shows that 
NMF is not applicable to this dataset.

In Brunet et al. (2004) it is assumed that 
factoring with k metagenes produces k classes of 
samples. Our main objection to this method is that 
factoring with a given rank might produce more 
classes of samples than the number of metagenes 

Figure 5. Reordered consensus matrix for a fi ve-cluster-solutions of the leukemia data. The samples were clustered using average linkage 
and 1-correlation as distance. Deep-red color indicates perfect agreement of the solutions, whilst blue color indicates no agreement.
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e.g. rank 2 may produce 4 classes if the metagenes 
are not disjoint. In contrast to Brunet et al. (2004) 
we chose to perform the analysis in a two step 
manner by fi rst determining the rank of the data 
then the optimal number of classes by cophenetic 
correlation of the consensus matrix. We arrived at 
an optimal number of 4–7 classes and 8 metagenes 
for the Pomeroy data. Our 4-class solution misclas-
sifi ed only two samples which is similar to the 
results obtained by Brunet et al. (2004). Analysis 
of the metagenes revealed that MG1 showed sig-
nificant enrichment for genes associated with 
treatment outcome and MG7 with genes associated 
with the activity of the E2A transcription factor. 
Even though the treatment-outcome gene-set is not 
independent from the preset analysis, being defi ned 
by the same set of tumors, NMF extracted this gene 
set in an unsupervised fashion.

The analysis of the time series data gave at hand 
that the metagenes behaved similarly across the 
time points as gene clusters defi ned by global cor-

relation. In this comparison we applied K-means 
clustering as the numbers of clusters may be 
pre-defi ned used in this algorithm, and hence a 
NMF solution with rank fi ve could be directly 
compared with a fi ve cluster K-means model. Both 
approaches assigned genes with strong enrichment 
for the GO category cell cycle to the last cluster/
metagene. Hence, in the relatively short time series 
experiment analyzed, the NMF algorithm extracts 
essentially the same information as methods based 
on global correlations.

The GO analysis of the leukemia metagenes iden-
tifi ed 12 out of 30 with signifi cant enrichment for GO 
categories. Several metagenes were signifi cant for 
the same GO categories indicating that metagenes 
may represent different aspects of the same cellular 
processes or components. Indeed, the tentative 
analysis of two of the four leukemia metagenes sig-
nifi cant for defense/immune response showed that 
they represented different parts of the defense/
immune response system. The analysis of the same 

Table 2. GO category analysis of lung cancer metagenes.

Meta gene1 Go terms1 EASE-score2 Gene sets3 FDR4

2 Defense response
Response to 
wounding

2.2 × 10−9

1.3 × 10−3
CANCER_UNDIFFERENTIATED_META_UP
SERUM_FIBROBLAST_CELLCYCLE
GOLDRATH_CELLCYCLE
CELL_CYCLE_KEGG
BRENTANI_CELL_CYCLE
CELL_CYCLE
BRCA_PROGNOSIS_NEG
VANTVEER_BREAST_OUTCOME_GOOD_
VS_POOR_DN

0.000
0.000
0.000
0.000
0.000
0.001
0.000
0.003

4 Nucleus 1.3 × 10−2 –
6 – – HIF1_TARGETS

HYPOXIA_REG_UP
HYPOXIA_FIBRO_UP
HYPOXIA_REVIEW
HYPOXIA_NORMAL_UP
VEGF_MMMEC_ALL_UP
VEGF_MMMEC_6HRS_UP

0.001
0.002
0.004
0.021
0.029
0.001
0.002

7 Extracellular
Extracellular matrix

5.0 × 10−12

8.4 × 10−5
–

11 Defense response
Response to 
wounding
Cell communication

2.2 × 10−13

1.9 × 10−3

3.5 × 10−3

TGFBETA_EARLY_UP
TGFBETA_ALL_UP
EMT_UP
CELL_MOTILITY
JECHLINGER_EMT_UP

0.000
0.000
0.010
0.031
0.048

13 Extracellular
Extracellular matrix

3.2 × 10−10

3.6 × 10−6
–

1Only the top three GO categories are listed.
2Step down Bonferroni corrected EASE scores.
3Only related gene sets are listed.
4FDR estimated using permutation tests included in the GSEA software.
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data using global correlation detects one single cluster 
related to defense/immune response GO categories 
(Frigyesi et al. 2006). Similarly, the metagenes asso-
ciated with lung cancer, MG7 and MG13, both 
affected the extra cellular compartment whereas MG7 
infl uenced cell-cell contact and M13 infl uenced cell-
cell signaling. This shows that NMF reveals bio-
logically signifi cant structures at a higher resolution 
than standard algorithms. More importantly, specifi c 
metagenes could be assigned to clinically relevant 
tumors subtypes. In the CNS data the four classes of 
samples, MD, MGlio, Rhab, and Ncer showed strong 
correlation with individual metagenes. In the leukemia 
dataset metagenes were found specifi c for the inv(16), 
t(8; 21), t(15; 17), and the t(9; 11) subtypes. This 
association was further validated by the GSEA 

analysis that showed enrichment for independent 
gene sets associated with CBF/MHY, AML1/ETO, 
PML/RARA, and MLL fusion genes in metagenes 
specifi c for leukemias with inv(16), t(8; 21), t(15; 17) 
and t(9; 11), respectively. Similar results were 
obtained for the lung cancer data in which at least 
three metagens could be associated with gene signa-
tures of considerable importance for tumor behavior 
such as cell cycle/bad prognosis, vascularization, and 
epithleial-mesenchymal transition. Furthermore, 
SCLC, LCLC, and SCC tumors subtypes were asso-
ciated with specifi c metagenes and the two molecular 
subtypes of AD could be distinguished associated 
with different sets of metagenes. Previously, NMF 
has been used to defi ne two molecular sub-classes of 
SCC (Inamura et al. 2005).

Figure 6. Reordered consensus matrix for a four-cluster-solutions of the lung cancer data. The samples were clustered using average link-
age and 1-correlation as distances. Deep-red color indicates perfect agreement of the solutions, whilst blue color indicates no agreement.
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Even though the NMF algorithm has been shown 
to perform excellently and shown to identify bio-
logically meaningful structures at high resolution, 
the biological correlate of the obtained metagenes 
may be uncertain. It would be tempting to interpret 
metagenes as stable expression modules regulated 
by some common factors. However, as NMF pro-
duces the best solution for a given rank the com-
position of the basis vectors varies with rank. This 
is in contrast to PCA and ICA were the nature of 
the factors is independent of the number of dimen-
sions (rank) chosen. However, this effect will most 
likely only be a challenge when working with a low 
number of dimensions as a change in rank will have 
a proportionally larger impact in these situations.

We have shown that NMF extracts biological 
relevant structures at high resolution in expression 
microarray data. Particularly, metagenes enriched 
for the same GO categories were shown to affect 
different aspects of the same biological processes. 
Hence, the use of NMF may contribute to a deeper 
understanding of tumorigenesis and tumor behav-
ior. Several of the obtained metagenes were asso-
ciated with specifi c tumor subtypes indicating that 
metagenes may constitute disease specifi c entities 
and thus that NMF may be an attractive tool for 
disease classifi cation. Indeed, in a recent publica-
tion (Tamayo et al. 2007) NMF was used to extract 
platform independent metagens that was shown to 
outperform standard algorithms for classifi cation 
of leukemia subtypes. Taken together NMF may 
be a useful approach both for interpretation of 
biological data and for disease classifi cation.
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Additional Files

Supplementary Figure 1. Estimation of the number of iterations needed to reach a good NMF solution. For each dataset the NMF algorithm 
was repeated 100 times the RE recorded and then rank ordered.
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Supplementary Figure 2. Association of metagenes with CNS subtypes. The p-values refer to Kruskal-Wallis’ test for difference of medians 
(not corrected for multiple testing). The box-plots have notches to indicate the variability of the median. Notches that do not overlap have 
different medians at the 5% signifi cance level. y-axis; average H matrix loading.
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Supplementary Figure 3. The protein interaction network obtained by HiMAP software (20) based on genes included in leukemia metagenes 
signifi cant for the GO category immune response. Green lines indicate genes present in MG1 and blue lines indicate genes present in MG4. 
Insert, a sub-network common to both metagenes.
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Supplementary Figure 4. Association of metagenes with leukemia subtypes. The p-values refer to Kruskal-Wallis’ test for difference of 
medians (not corrected for multiple testing). Only metagenes with p-values �0.01 are shown. The box-plots have notches to indicate the 
variability of the median. Notches that do not overlap have different medians at the 5% signifi cance level. y-axis; average H matrix loading.
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Supplementary Figure 5. Association of metagenes with lung cancer subtypes. The p-values refer to Kruskal-Wallis’ test for difference of 
medians (not corrected for multiple testing). The box-plots have notches to indicate the variability of the median. Notches that do not overlap 
have different medians at the 5% signifi cance level. y-axis; average H matrix loading.
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Supplementary Figure 6. Association of metagenes with the AD1 and AD2 molecular subtypes. The p-values refer to Kruskal-Wallis’ test 
for difference of medians (not corrected for multiple testing). The box-plots have notches to indicate the variability of the median. Notches 
that do not overlap have different medians at the 5% signifi cance level. y-axis; average H matrix loading.

Cancer Informatics 2008:6 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


