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The muscle synergy hypothesis is an archetype of the notion of Dimensionality Reduction
(DR) occurring in the central nervous system due to modular organization. Toward
validating this hypothesis, it is important to understand if muscle synergies can reduce
the state-space dimensionality while maintaining task control. In this paper we present a
scheme for investigating this reduction utilizing the temporal muscle synergy formulation.
Our approach is based on the observation that constraining the control input to a weighted
combination of temporal muscle synergies also constrains the dynamic behavior of a
system in a trajectory-specific manner. We compute this constrained reformulation of
system dynamics and then use the method of system balancing for quantifying the DR;
we term this approach as Trajectory Specific Dimensionality Analysis (TSDA). We then
investigate the consequence of minimization of the dimensionality for a given task. These
methods are tested in simulations on a linear (tethered mass) and a non-linear (compliant
kinematic chain) system. Dimensionality of various reaching trajectories is compared
when using idealized temporal synergies. We show that as a consequence of this
Minimum Dimensional Control (MDC) model, smooth straight-line Cartesian trajectories
with bell-shaped velocity profiles emerged as the optima for the reaching task. We also
investigated the effect on dimensionality due to adding via-points to a trajectory. The
results indicate that a trajectory and synergy basis specific DR of behavior results from
muscle synergy control. The implications of these results for the synergy hypothesis,
optimal motor control, motor development, and robotics are discussed.

Keywords: modular motor control, muscle synergies, dimensionality reduction, system balancing, Hankel singular

values, optimal motor control

1. INTRODUCTION
There is increasingly a consensus that the solution to the Degree
of Freedom (DoF) Problem of Bernstein (1967) involves some
form of Dimensionality Reduction (DR) resulting from mod-
ularization, although it is unclear how exactly this occurs. Of
the many kinds of modules that have been proposed (Flash and
Hochner, 2005), the muscle synergy hypothesis, typified by coor-
dinated activation of groups of muscles, has in recent times
emerged as one of the front runners (Alessandro et al., 2013).
Spatio-temporal regularities in activation patterns across many
muscles that seemingly are task and subject independent is usu-
ally cited as evidence for DR in the muscle synergy hypothesis
(d’Avella et al., 2003; Hart and Giszter, 2004; Ivanenko et al., 2004;
Ting and Macpherson, 2005; Tresch et al., 2006). Nevertheless,
a recurring criticism of the hypothesis is its phenomenological
nature and difficulty of falsification (Tresch and Jarc, 2009; Kutch
and Valero-Cuevas, 2012). One approach toward validating the
hypothesis, is to develop a well grounded theoretical understand-
ing of the functionality offered by muscle synergies for neural
control.

Although various formulations have been proposed for mus-
cle synergies in literature (Chiovetto et al., 2013), there are

some common characteristics to the various models: (1) there
is a task-specific recruitment of task-independent modules; (2)
the synergies themselves are considered as input-space genera-
tors (d’Avella et al., 2003); (3) suggested in some formulations
that the number of modules available for recruitment repre-
sents a DR of the control input (Ting, 2007; Chiovetto et al.,
2013); (4) there is a linearization of the highly non-linear con-
trol problem (Alessandro et al., 2012). From a computational
viewpoint, each of these features facilitate real-time control and
speed up motor learning. However, from a control perspective,
modularization could also potentially constrict the functionality
of the system. Consequently, investigators have begin to exam-
ine the theoretical basis (Berniker et al., 2009; Alessandro et al.,
2012) and the feasibility of experimentally extracted synergies
for task control (Ting and Macpherson, 2005; Neptune et al.,
2009; McKay and Ting, 2012; de Rugy et al., 2013). We pro-
pose that this task-space perspective (Alessandro et al., 2013)
must be extended to also incorporate the ability of a given set
of muscle synergies to reduce behavior dimensionality. Muscle
synergies must be evaluated both for task performance and effec-
tiveness as a reduced dimensional controller. In the context of
this paper, we denote behavior dimensionality as simply the
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(apparent) state-space dimensionality of the dynamics of the
motor behavior.

The necessity for reducing behavior dimensionality is best
seen from the viewpoint of optimal control theory. Observations
of a number of regularities in biological movements that are
seemingly task-independent have lead to the claim of optimal-
ity principles underlying motor control. One the one hand,
several investigators have attempted to uncover empirical rules
governing motor behaviors such as the Fitt’s law, 2/3rd power
law (Viviani and Flash, 1995), or the bell-shaped velocity pro-
files of reaching behaviors (Morasso, 1981). Alternately, the so-
called complete models (Todorov and Jordan, 1998) have instead
suggested that these features are a consequence of minimizing
some performance index; several such candidate indices have
been proposed, such as energy, force, accuracy, time, peak accel-
eration, torque changes etc. (Flash and Hogan, 1985; Harris,
1998b; Todorov, 2004). Nevertheless, it is unclear how organ-
isms might autonomously acquire the optimal behavior; i.e.,
how the neural instantiation of optimality occurs. Developmental
motor hypotheses instead suggest that this optimal control is
acquired through an ontogenetic learning strategy (Vereijken
et al., 1992; Sporns and Edelman, 1993; Ivanchenko and Jacobs,
2003); typically involving some form of progressive exploration
of state-space by an organism. There is also evidence for some
form of adaptive optimization mechanism underlying motor con-
trol learning (Izawa et al., 2008; Wolpert et al., 2011). However,
regardless of the actual mechanism underlying motor learn-
ing, large state-space dimensionality has a critical impact on
the tractability of iteratively acquired optimal behavior, i.e., the
learnability of the control (Kuppuswamy and Harris, 2013). DR
in this case might have a vital role to play in guaranteeing a
tractable developmental acquisition of control. We contend that
a control strategy composed of synergies, in addition to input
dimensionality reduction, must also facilitate a reduction in the
dimensionality of the state-space relevant to the optimal motor
control problem. This entails an analysis of the DR resulting from
the constraints placed on the dynamics due to muscle synergy
control.

The reduced dimensional control perspective on muscle syn-
ergies was investigated by Berniker et al. (2009), who proposed
a time-invariant synergy synthesis technique that utilized the
method of system balancing (Lall and Marsden, 2002) for DR
of the dynamics. A task variable relevant reduced dimensional
dynamic model was generated from an accurate musculo-skeletal
model of a frog’s leg. This reduced dimensional model was used
for synergy synthesis and control planning. Although the method
yields synergies that closely correspond with those extracted
experimentally, it must be noted that the time-invariant syn-
ergy formulation does not conveniently encode the temporal
complexity of natural behaviors. For instance, in the analysis of
locomotor movements it has been shown that temporal synergies
(Ivanenko et al., 2003, 2004, 2005) are more effective in capturing
the temporal aspects of the muscle activation patterns at various
instances within a gait cycle. Temporal synergies are characterized
by a dominant timing sequence that are seemingly independent
of sensory feedback (Ivanenko et al., 2005). The synergies can
then be interpreted as a pool of task-independent fixed temporal

patterns that are selectively recruited in a task-dependent man-
ner for generating the necessary muscle activation (Chiovetto
et al., 2013). This formulation has also been used to model
motor skill development; an increasing pool of synergies is seem-
ingly employed by adults when compared with infants (Dominici
et al., 2011), or in allowing increased behavioral complexity
(Ivanenko et al., 2005). Therefore, we use the temporal syn-
ergy formulation for exploring the DR in motor behaviors of
a system. The control input is composed of a weighted com-
bination of task-independent orthonormal basis patterns as
synergies—the weight matrix uniquely specifies the behavior
(trajectory) of the system. This enables us to extend the proce-
dure of Berniker et al. (2009) to generate both a task variable,
as well as synergy basis relevant analysis of the DR of motor
behavior.

In this paper, we first develop a method for the analysis of
the constraints placed on the dynamics due to temporal mus-
cle synergy control. For a given dynamical system, where the set
of synergies, and the weight matrix corresponding to a given
trajectory are pre-specified, a “constrained reformulation” of the
dynamics is computed. This is a trajectory, and synergy basis
specific constrained reformulation of the dynamics where the
temporal synergies are treated as control inputs triggered for
the duration of the movement. We then quantify the DR by
using the approach of system balancing (Moore, 1981; Hahn and
Edgar, 2002; Lall and Marsden, 2002). This approach preserves
the features of the dynamics that are most relevant to control; the
subspace of the state that is most affected by the input (control
variables) and in turn has the greatest effect on the output (task
variables) is identified.

Our proposed Trajectory Specific Dimensionality Analysis
(TSDA) obtains both the dimensionality of this subspace and the
corresponding reduced-dimensional dynamics of the system fol-
lowing a given trajectory. We then demonstrate that synergies can
contribute to a DR in behaviors, however, the resulting reduc-
tion is specific to the synergy basis utilized and the trajectory that
is followed in order to realize the task. We test our methods in
simulations on two kinds of systems: (1) a linear system com-
posed of a tethered mass, and (2) a non-linear compliant kine-
matic chain, and contrast the DR in performing reaching tasks
in various trajectories. Idealized temporal synergies composed
of Legendre polynomial and the Fourier bases are used for the
experiments.

We then examine the consequences of reducing the dimen-
sionality of a given task to the greatest extent possible. A
cost function for quantifying the dimensionality is developed
using the system balancing measure of Hankel Singular Values
(HSV). Numerical minimization of this cost function obtains
the weight matrix, and the corresponding trajectory, that best
minimizes the dimensionality while satisfying the task con-
straints. This control model of Minimum Dimensional Control
(MDC) is tested in the simulated linear and non-linear sys-
tems for two kinds of tasks: (1) reaching tasks, (2) via-point
tasks. From the results it can be seen that smooth trajecto-
ries with bell-shaped velocity profiles emerges as the optima.
Furthermore, we show that the velocity profiles of the tra-
jectories are dependent on the temporal synergy basis that
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is employed. The similarity of the resulting trajectories to
experimentally observed human behaviors lead us to hypothesize
that a dimensionality reduction principle might underlie motor
control.

We introduce our approaches in the following way: In section 2
we first outline the temporal synergy control problem and review
dimensionality reduction and system balancing. Subsequently we
derive the TSDA and our proposed minimization model of MDC.
This is followed by a description of the simulation setup and
experiments in section 2.5 and the results in section 3. We then
discuss the implications in section 4.

2. MATERIALS AND METHODS
We first introduce some basic formalism to the optimal control
problem. Consider the following representation of the neuro-
mechanical dynamics,

y(t) = h(x, t), ẋ = f (x, t) + g(x,u, t), (1)

where the variables x(t) denotes the state, u(t) the input, and
y(t) the output. For this system the state-space dimensional-
ity can be described by x(t) ∈ R

N , the input by u(t) ∈ R
Ni ,

the output by y(t) ∈ R
No and Ni and No need not be equal to

N. We utilize a continuous-time deterministic control system
description, so u can be considered to lie in the infinite dimen-
sional space of continuous functions. Let us define this system
by F(f ( · ), g( · ), h( · )), where, F ∈ �, a space of sufficiently
regular (continuously differentiable) functions.

Although in this paper, we consider u(t) to be input joint
torques or actuator forces, the approach is unaffected if muscle
activation dynamics are instead incorporated. The aim of con-
trol in the system F is to influence the behavior in order to
satisfy task requirements. For the scope of this paper, we sim-
ply define behavior as the trajectory followed by the system in
accomplishing a task. A task T is then denoted by a set of
Cartesian constraints that must be obeyed, i.e., by the tuple CT =
{yT (td) = yT td , ẋT (td) = ẋT td }. The constraints are specified by
a set of boundary conditions on the behavior such as zero end-
point velocity for reaching, or as a discrete set of via-points to be
followed.

A trajectory is then denoted by T, one of the many possible
unique paths in the task space satisfying all of the task constraints
CT . For this system, from an engineering perspective, the feed-
forward control problem is to compute the function (or policy)
u(t) = ff (, x(t0)). Let us denote then u(t) ∈ U as the set of admis-
sible control inputs that satisfy the desired objectives CT . There
may exist multiple solutions for the task, i.e., multiple trajecto-
ries, and therefore the cardinality of U could be considered to be
greater than 1. This relation is the well-known redundancy prob-
lem of motor control, i.e., there is a non-univocal relationship
between observed movements and input actuation (Bernstein,
1967).

Many investigators have suggested that the solution to the
redundancy problem arises from minimizing some form of cost
function J(x(t),u(t), t)—i.e., an underlying optimization prin-
ciple to motor control. Typically such cost functions have been
justified by citing various biologically relevant factors that impact

survival such as energy requirements, accuracy, stability of con-
trol etc. (Hogan, 1984; Harris and Wolpert, 1998; Todorov and
Jordan, 2002).

The optimal control approach to solve this problem typically is
based on methods such as solutions to Hamilton-Jacobi-Bellman
(HJB) equation or the Pontryagin Minimum Principle (PMP)
(Bertsekas, 1995). However, it may not always be possible to
obtain analytical solutions to problems—complexity of plant
dynamics and the requirement for accurate dynamic models have
been major issues. Also, proponents of optimality in biologi-
cal motor control do not really address how an organism might
autonomously acquire optimal solutions. It is instead implied that
some form of motor learning or adaptation at different time scales
allows the acquisition of optimal behavior (Wolpert et al., 2011).
Several developmental theories, such as the Bernstein’s three-
stage learning model (Bernstein, 1967) have been put forward to
how this might be autonomously acquired through a process of
state-space exploration. In this context, state-of-art methods in
artificial systems such as iterative optimal control and the algo-
rithms of reinforcement learning (Sutton and Barto, 1998) have
proved to be a popular alternative to analytical optimal control
techniques and have found many applications in areas such as
robotics (Kober et al., 2013).

Regardless of the actual mechanism of neural learning, for the
system in Equation (1), the complexity of control learning is dic-
tated by a number factors such as the dimensionality of the input
Ni, the dimensionality of the goal No, the temporal complexity
of the goal trajectory yT (td), the complexity of the cost function
J(x(t),u(t), t) and finally the dimensionality of the state, N. For
even moderate dimensional systems, this represents a serious lim-
itation on the tractability of computing an appropriate control
policy. Also non-linearities in the functions f ( · ), g( · ), and h( · )
can further complicate the problem.

Even from a neuroscientific perspective, most investigations
in optimal motor control have focussed on relatively simpler
models approximating real musculo-skeletal structures (Harris,
1998b). However, optimal control models such as the minimum
energy, minimum torque change, minimum jerk, and the mini-
mum variance may instead be intractable for an organism when
confronted with anything more than a moderate number of
dimensions. Clearly the redundancy and dimensionality problem
is not just a motor neuroscience question but represents a con-
straint on learning for an organism (Kuppuswamy and Harris,
2013). The famous phrase “curse of dimensionality” coined by
Bellman (1961) to describe the exponential increase in search
space of discrete optimization problems due to dimensionality
increase seems appropriate in describing this predicament. DR in
this case offers an obvious coping strategy wherein the tractability
of control learning can be ensured. It has therefore been sug-
gested that neural architectures must intrinsically incorporate
some form of DR such as the muscle synergies. The tempo-
ral muscle synergy formulation is introduced next within this
framework.

2.1. TEMPORAL MUSCLE SYNERGY FORMULATION
Most models of the muscle synergy hypothesis tackle the
DoF problem by constraining the space of control inputs into

Frontiers in Computational Neuroscience www.frontiersin.org June 2014 | Volume 8 | Article 63 | 3

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Kuppuswamy and Harris Do muscle synergies reduce the dimensionality of behavior?

combinations of predefined primitives. The temporal synergy
formulation has the advantage of conveniently delineating the
spatial task-dependent and temporal task-independent compo-
nents of a synergistic control (Alessandro et al., 2013). Temporal
synergies are primarily relevant to locomotor tasks and are a
direct example of dimensionality reduction in the control input
(Ivanenko et al., 2003, 2004, 2006; Cappellini et al., 2006) with
relevance to development and evolutionary theories (Ivanenko
et al., 2005; Dominici et al., 2011). Chiovetto et al. (2013) tested
the equivalence of temporal muscle synergies with the other main
formulations of time-invariant and time-varying synergies on
reaching task. The temporal synergy model also has the added
advantage of allowing interpretation of the temporal components
of the muscle activation occurring at different segments of the
movement.

In this formulation, the input u(t) is constrained in the form of
a weighted linear combination of S synergiesψi(t) represented by,

u(t) =
S∑

i = 1

wiψi(t), (2)

which can be rewritten in matrix notation by Ŵ�(t) such that
�(t) = [ψ1(t) . . . ψS(t)]T defines the temporal synergies and the
weight matrix Ŵ = [w1 . . .wS] contains the linear combinators
approximating a particular input signal u(t). In the reported
models, arbitrary phase shifts are also included in the synergies,
however, we do not incorporate them into the analysis presented
in this paper.

There is a unique Ŵ for a given u(t) if the functions
ψ1(t), . . . ψs(t) are linearly independent and Ŵ ∈ R

I×S, i.e., the
synergies are an orthonormal basis set of the space of inputs.
The synergies are specified as a task-independent basis spanning
the space of inputs, while the appropriate weight matrix is then
computed in a task-dependent manner.

The control learning problem is to obtain the appropriate
weight matrix Ŵd corresponding to a desired task yd(t). Due to
the reduction in dimensionality, the desired solution is within a
space of size Ni × S. This is a linear space of inputs and there-
fore learning can be accomplished by a number of tools and
superposition can be utilized to generalize to novel problems.
The direct approach for trajectory learning in temporal synergies
using an inverse dynamic model can be seen in the top part of the
schematic in Figure 1.

Despite the reduction in dimensionality of inputs, we con-
tend that the complexity of the optimal motor control problem
may not necessarily be reduced simply through reduction of input
space dimensionality. For instance, if the desired cost function is
a function of the state x, the state dimensionality is a bottleneck
affecting learnability. Also, the specification of the task might have
an important role to play in existing methods of quantifying the
dimensionality of synergies (de Rugy et al., 2013); i.e., the num-
ber of synergies may be insufficient to ensure optimal control or
learning convergence.

In the case of synthetic systems, parameterized control poli-
cies in this form (sometimes also called as motor primitives
Ijspeert et al., 2013) have been successfully applied in planning

and control for robotics. Reinforcement learning approaches such
as policy gradients (Peters and Schaal, 2008) offer several meth-
ods for iteratively updating policy parameters depending on some
predefined behavior objective. However, in the synthetic context,
several a priori design choices must be carefully made in order to
ensure convergence of the learning within reasonable time-scales
in high-dimensional control problems (Kober et al., 2013); DR
is one such approach toward rendering optimal control learning
tractable. Clearly, if the policy design itself could facilitate DR of
a system for a given task, the learning would in turn be naturally
facilitated.

The primary question investigated in this paper is therefore: do
temporal muscle synergies reduce the state-space dimensionality
of the system in performing motor behaviors? Next, dimension-
ality reduction and system balancing are briefly introduced.

2.2. DIMENSIONALITY REDUCTION AND HANKEL SINGULAR VALUES
From the control engineering viewpoint, the aim of dimensional-
ity reduction is to simplify the input–output dynamics of a system
in order to reduce the complexity of simulation and control
optimization. Many algorithms have been proposed for model
and controller order reduction (Antoulas et al., 2001) including
both analytic and computational methods. Consider the state-
space model of a system in Equation (1). The DR problem is the
synthesis of an equivalent system given by,

ỹ(t) = h′(z, t), ż = f ′(z, t) + g′(z,u, t), (3)

where z(t) ∈ R
K, and typically the dimensionality of the new

state variable K < N. Note that when driven by input signals
u(t) the output of the reduced system is ỹ(t) is close to y(t) for
some measure of similarity. The dimensionality of the inputs and
outputs remain unaffected by the reduction.

We seek a quantification of DR in a system instead of simply
reducing it to the form of Equation (3). Therefore, we define the
reduced dimensionality of a system by the operator D,

D(F) = D, (4)

where D ∈ Z
+, the space of positive integers. For the system

defined in Equation (1), 1 ≤ D ≤ N for any given measure of
dimensionality, or reduction algorithm. Obviously, D = K for the
reduction leading to the system in Equation (3).

In order to achieve this kind of a reduction, the commonly
used approach is to compute a projection of the full dimen-
sional state into a lower dimensional subspace. This is defined
as a mapping W , such that, z = Wx. Various methods exist for
computation of an appropriate W , such that certain conditions
are met in the input, state and output relationship. We utilize the
well known method of system balancing (Moore, 1981) due to its
relevance for control and stable numerical properties. System bal-
ancing also offers bounds on the approximation errors (Gugercin
and Antoulas, 2004) which is crucial for robust controller
design.

Through system balancing, we seek to rotate the system coor-
dinates (i.e., the state-space) in order to balance the controllability
(difficulty of reaching a state) and observability (difficulty of
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FIGURE 1 | Conceptual schematic of the proposed methods and

control model. First a simple feedforward control and learning scheme
using temporal muscle synergies �(t) and full-dimensional system
dynamics is used to convert Cartesian task requirements CT obtained
from behavior goals into the necessary synergy weight matrix Ŵ . A
trajectory (and synergy basis) specific constrained reformulation is then
obtained and the procedure of system balancing is used to reduce the

dimensionality: the proposed Trajectory Specific Dimensionality Analysis
(TSDA). The Hankel Singular Value measure computed through system
balancing is developed into a performance index for minimization in the
Minimum Dimensional Control (MDC) model. The resulting reduced
dimensional model can instead be used within the synergy control learning
in the control and learning scheme (on top) to speed up learning and
adaptation in a task-specific manner.

observing a state) of the system (Skogestad and Postlethwaite,
1996). This process reorganizes the system by ranking the
importance of each of the state variables using a Hankel Singular
Value (HSV) measure. They are defined as the square root of
the eigenvalues of the product of the controllability (P) and
observability Gramians (Q); measures computed on the dynam-
ics of the system. For a Linear Time Invariant (LTI) system in the
form of Equation (1), defined by the matrices in f (x, t) = Ax(t),
g(x,u, t) = Bu(t), and h(x, t) = Cx(t), analytical formulations
exist for the Gramians defined by,

P =
∞∫

0

e AtBBTeAT tdt, Q =
∞∫

0

e AT tCTCe Atdt, (5)

For non-linear systems, there is no analytical solution but instead
Empirical Gramians may be computed using datasets of system
behavior (Lall and Marsden, 2002).

First the system is perturbed in r different (input) direc-
tions (defined by the set Tni = {T1, . . . ,Tr}, where Ti

TTi = I,
Ti ∈ Rni×ni , i = 1 . . . r) at s different sizes of perturbations in
each direction (defined by the set M = {c1, . . . , cs} where ci ∈ R,
ci > 0, i = 1 . . . s) across all the ni inputs and across all n states
(defined by the set of unit vectors En = {ei, . . . , en}) of the sys-
tem. Then the empirical Gramians are obtained from the resulting
state trajectories as,

P̂ =
r∑

l = 1

s∑
m = 1

p∑
i = 1

1

rsc2
m

∞∫
0

�ilm(t)dt,

Q̂ =
r∑

l = 1

s∑
m = 1

1

rsc2
m

∞∫
0

Tlϒ
lm(t)Tl

Tdt, (6)

where for the controllability Gramian P̂ ,�ilm(t) ∈ Rn×n is given
by �ilm(t) = (xilm(t) − x0

ilm)T , for xilm(t) being the state of the
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non-linear system corresponding to the impulse input u(t) =
cmTleiδ(t) and for the observability Gramian Q̂, ϒ ilm

ij(t) ∈
Rn×n is given by ϒ ilm

ij(t) = (yilm(t) − yilm
0)T(yilm(t) − yilm

0),

and yilm(t) is the output of the system for the initial condition
x(0) = cmTlei + x0, and yilm

0 is the steady state output. A detailed
description of the non-linear balancing model reduction utilizing
the empirical Gramian method can be found in Hahn and Edgar
(2002).

These Gramians allow quantification of how controllable and
how observable the state variables are; taken together they mea-
sure the “importance” of individual state variables and can thus
be used for a dimensionality reduction algorithm. For both linear
and non-linear systems, the Hankel Singular Values (HSV) of a
system σHSV are then obtained as,

σHSV =
√
λ(PQ), (7)

where the λ operator yields the eigenvalues of the product matrix,
and the resulting set σHSV = [σ1 . . . σN ] are the HSVs corre-
sponding to each state variable.

The HSVs can be viewed as a score of the control ‘energy’
of the state variables. Thus to reduce dimensionality it is suf-
ficient to eliminate the states with a low HSV magnitude. This
process can be automated by first obtaining a rotation on the
system T of the form x̂ = Tx which reorders the states in decreas-
ing magnitude of HSV—i.e., system balancing. This results in a
transformation of the system to a basis where the transformed
states that are easiest to reach (control) are simultaneously easiest
to measure (observe). Computational efficient methods exist for
linear systems for computing the balancing transform T (Laub
et al., 1987). Then its possible to truncate the resulting system
to the first K states—hence the method is called balancing trun-
cation (Moore, 1981). The choice of K is typically dependent
on the requirements of the controller design and is usually fixed
after examination of the HSV magnitudes (Hahn and Edgar,
2002).

If the HSVs are normalized by using the sum, the DR is directly
given by,

DHSV (F) =
{
K if there exists σK ≤ tr,

1 otherwise
(8)

where the threshold tr ∈ R
+, tr ≤ 1, and the resulting K ∈ Z

+,
with 1 < K ≤ N. Clearly, this form of DR is dependent on the
choice of threshold. In the case of control engineering applica-
tions, the threshold is chosen on the basis of careful observation
of the system (Antoulas et al., 2001). In our approach, pre-
sented next, we present a method to simplify choice of this
threshold.

2.3. TRAJECTORY SPECIFIC DIMENSIONALITY ANALYSIS (TSDA)
Through system balancing we can quantify the DR of a sys-
tem. This is a task-independent quantification and depends
on the system properties, for e.g., the passive mechanical
properties. However, if DR is to be utilized in order to
facilitate learning and real-time control of various tasks, the

task-dependent reduction of the state-space must instead be
considered.

Figure 1 depicts the stages of TSDA computation. The first step
is to evaluate the constraints on the system dynamics resulting
from the constraints placed on the input due to usage of tem-
poral muscle synergies. The system in Equation (1) can now be
represented by,

y(t) = h(x, t), ẋ = f (x, t) + ĝ(x, �, t), (9)

We term this as a constrained reformulation of the system dynam-
ics where the inputs are the temporal synergies �(t), and can
be viewed as signals which control the onset and termination of
the movements for a task. For the duration of the behavior, the
dynamics is described by Equation (9) due to the constrained
input function ĝ( · ) where,

ĝ(x, �, t) = g(x, Ŵ�, t). (10)

It must be emphasized that the constrained reformulation only
describes a virtual system dynamics for the duration of the
movement when actuated by the synergistic input �(t). The
state-space, however, has not changed; i.e., the state variable x
for constrained-reformulated system is the same as the original

system. Let us denote the system of Equation (9) by F̂(f ( · ),
ĝ( · ), h( · )).

Clearly, F̂ is unique to a given trajectory and given synergy
basis set, since it incorporates the weight matrix Ŵ corresponding
to a trajectory T and uses input signals in the form of tempo-

ral synergies. Therefore F̂ can be considered to be a trajectory
specific constrained reformulation of the dynamics. Then the
trajectory specific dimensionality is given by,

D(F̂) = DT, (11)

If Ŵ is computed to solve a given task T uniquely, Equation
(11) gives the DR of the equivalent trajectory that satisfies the
task requirements. The TSDA measure can be contrasted against
the intrinsic DR of the system of Equation (4), which is task
independent.

In this formulation, although any kind of DR algorithm can
be utilized for computing DT , we use the system balancing and
HSV based approach due to its relevance for the control problem.
HSVs measure the importance of each of the state variables of

the system F̂ for both the outputs (the task) and the inputs (syn-
ergy patterns). Thus they quantify the DR of the behaviors that is
dependent on the kind of synergy used and the kind of task that
is being performed.

In order to compute the DR, it is desirable that the importance
of the careful choice of the threshold HSV measure of Equation
(8) is reduced. Depending on the structure of the constrained-
reformulated system, it can be expected that HSVs computed
for different trajectories may be of completely different orders of
magnitudes. Even if normalization using the sum of the HSVs is
employed, this may complicate the choice of threshold to com-
pare trajectories. Furthermore this could limit the applicability of
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the method in comparing different kinds of temporal synergies in
reducing the dimensionality.

In order to address this issue in our approach, we simply
normalize the HSVs after utilizing a cumulative sum. First the
individual HSVs are redefined by,

σ̃i =
i∑

j = 1

σj/

N∑
l = 1

σl, (12)

therefore, the vector σ̃HSV is the normalized cumulative sum of
σHSV . This process renders the relationship σ̃HSVN = 1. Thus,
independent of basis or the weight matrix magnitude, the thresh-
old can be chosen to lie in the interval 0 < tr < 1. We later discuss
the implications of the choice of threshold magnitude on motor
skill development.

Using the threshold normalized HSVs, the trajectory specific
dimensionality is therefore given by,

DT(F̂) =
{
K if there exists σ̃K ≤ tr,

1 otherwise
(13)

The TSDA can therefore be computed for both linear and non-
linear systems. It must also be noted that through computation
of the TSDA, an equivalent trajectory-specific reduced dimen-
sional model of the behavior is also computed as described in
Figure 1. We now extend these methods in order to examine the
implications of dimensionality minimization, as described next.

2.4. MINIMUM DIMENSIONAL CONTROL (MDC)
The objective of this paper is to test the supposition that temporal
muscle synergies lead to a DR of the state-space dimensionality.
Through the method presented developed in the previous section,
we can compare various trajectories that satisfy task requirements
in terms of the reduction in dimensionality. Now we examine
the consequence of minimization of this DR for a given task and
a given synergy basis. We define the minimization problem as
follows.

As described earlier, for an orthonormal basis set of temporal
synergies �(t) each weight matrix Ŵ corresponds to a unique
trajectory in state-space (for the same initial conditions of the
dynamical system). Therefore the problem is posed as a con-
strained minimization for identifying the optimal weight matrix
Ŵ∗

T that minimizes a dimensionality performance index J(DT)
while satisfying task constraints CT as,

Ŵ∗
T = argmin

ŴT

J(DT),

subject to ẋ = f (x, t) + g(x,u, t),

yT (td) = yT td , ẋT (td) = ẋT td , (14)

where the task is specified by a set of task-space and state-space
constraints. We term the solution to this minimization problem as
Minimum Dimensional Control (MDC) as depicted in Figure 1.
The key to this approach is the specification of an appropriate
performance index.

In order to generalize our approach to different kinds of
physical systems, a computational (numerical) solution is ide-
ally sought. Therefore, the desired properties of this performance
index J(DT) are that it needs to be continuous, and computation-

ally simple for any kind of physical system F̂ .
From the definition of the normalized HSVs in Equation (12),

it can be seen that σ̃ is a positive, real, bounded, and ordered
vector of magnitudes. Also, by definition, the difference between
adjacent HSVs, given by δ = σ̃i + 1 − σ̃i, always monotonically
decreases toward 0. This implies that the crucial determining fac-
tor for minimum reduced dimensionality K is the magnitude of
the second cumulative HSV σ̃2. This is because the magnitude of
subsequent HSVs will be greater, and the first HSV magnitude σ̃1

is irrelevant for the reduction since DT ≥ 1.
For any convenient choice of threshold tr , a large magnitude of

σ̃2 ensures that K is minimized since all subsequent HSV values
(σ̃2, . . . σ̃N ) are in the interval [σ̃2, 1]. Effectively, increasing σ̃2 is
equivalent to increasing the range of values of tr that result in a
reduction to a system of subspace dimensionality 1. Clearly, σ̃2 is
the critical magnitude determining reduction in dimensionality.

Based on this rationale the performance index we propose for
the MDC is,

J(DT) = SF(1 − σ̃2), (15)

where SF is a positive rational scale factor. Computationally,
the minimization can be carried out using any convenient
numerical optimization algorithm. Since the obtained weight
matrix Ŵ∗

T is specific to a given task, a given synergy basis
set and a given dynamical system, the obtained optimal trajec-
tories are similarly system, task and synergy specific. Despite
these conditions, as seen later in the results, invariant charac-
teristics similar to human movements emerge as the optima
on the tested linear and non-linear systems. An important
consequence of deriving the MDC using the system bal-
ancing method is that the approach automatically yields a
reduced dimensional dynamic model corresponding to the min-
imum dimensional trajectory. This is therefore a task-specific
reduced dimensional model as depicted in the lower portion of
Figure 1.

We hypothesize that the MDC trajectories will lower the dif-
ficulty of task learning and optimization. This is particularly
relevant for the case of adaptive control, when the dynamics of
the system changes with time and optimizing schemes need to
keep track of changes, i.e., necessitating a cost on the number of
dimensions. The MDC essentially allows task-specific adaptation
which can gradually change in a manner mirroring development
(Berthier et al., 1999).

It must be noted that MDC itself might be susceptible to
the curse of dimensionality and is not meant to explain the
neural instantiation of control signals for real-time task plan-
ning and control. Instead we propose that it is a model for
an optimal mechanism underlying trajectory planning in order
to overcome the limitations imposed on the learnability. MDC
thus represents a bridge between the muscle synergy hypoth-
esis and the optimal motor control models of redundancy
resolution.
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2.5. SIMULATION SETUP
The experiments were performed on two kinds of simulated sys-
tems, (1) the linear tethered mass, and (2) a non-linear compliant
kinematic chain.

2.5.1. Tethered mass system
This system consists of a point mass constrained to move in a 2D
plane as seen in Figure 2A. It is “tethered” to an origin by weak
passive forces using linear springs and is subject to visco-elastic
damping. The system can be actuated by independent forces in
two orthogonal directions, and the output describes the position
in the 2D space relative to the origin. The dynamics of this system
are described by,

φ̈ = −Kφ − Cφ̇ + Fu, (16)

where φ(t) = [φx(t), φy(t)]T is the position of the mass in space,
K is a stiffness matrix, C is a damping matrix and Fu(t) =
[Fux , Fuy ]T are orthogonal input forces actuating the system. The
simulation parameters were chosen as C = 2I N/m/s and K =
6I N/m.

The system can be considered to be a simplified analog of the
oculomotor system. It describes the eye orb dynamics without
taking torsional forces into consideration and approximates the
passive effects of the orbital tissue. The output can be considered
as the displacement angles in horizontal and vertical directions
(in radians) since linear approximation of orb movements have
been shown to be valid in the range of ±π/6 radians (Bahill et al.,
1980).

2.5.2. Compliant kinematic chain
This system is a two-link planar kinematic chain with passive joint
compliance as seen in Figure 2B. Actuation is applied through
the joint torques. The dynamics are described by Spong and
Vidyasagar (2008),

FIGURE 2 | Physical systems employed for demonstrating the TSDA.

(A) Tethered mass (linear): motion of the mass is constrained to a 2D plane.
The mass is anchored to the origin by weak passive forces and actuator
forces are applied in two orthogonal directions. (B) Two-link planar
compliant kinematic chain (non-linear): end-point motion is constrained to a
2D surface. Passive joint stiffness and damping effects are present and
joint torques are used to actuate the system. The state-space descriptions
of these systems have identical input (2), state (4), and output (2)
dimensionality.

θ̈ = M(θ)−1[N(θ, θ̇)θ̇ + K(θ − θ0) + τ ], (17)

where the state is described by θ(t) = [θ1(t), θ2(t)]T , M(θ) is
denoted the mass-inertia matrix of the system, N(θ, θ̇) is the
Coriolis matrix and K is the joint stiffness matrix and the joint
rest positions are given by θ0. The system is actuated by the
torques τ (t) = [τ1(t), τ2(t)]T at the two joints. The parameters
of the simulation are chosen as, m1 = 0.75 kg, m2 = 0.5 kg, l1 =
0.4 m, l2 = 0.4 m. The applied torques are scaled by a factor of
1.88 at joint 1 and 0.45 at joint 2. A joint stiffness of 0.6 Nm/rad
and viscous joint friction of 0.15 Nm/rad is used at both the joints
with rest angles fixed at θ(t0) = [−π/16, π/8]T . The output of
the system is the position P = [Px(t), Py(t)]T in the 2D Cartesian
space which are related to the joint angles through the forward
kinematics.

This system describes the behavior of vertebrate limbs. The
passive joint compliance not only adds to the biological realism,
but also renders the system stable—this is a necessary condition
for empirical balancing.

2.5.3. Synergy bases
Two kinds of idealized temporal synergies composed of orthonor-
mal basis functions are tested: (a) Legendre polynomial basis
(�l(t)), and (b) Fourier basis (�f (t)) in order to simplify the
weight learning for the analysis; they are well known approxima-
tors used for curve fitting. They are represented by,

�l(t) =
n∑

i = 0

aiPi((2t − td)/td),

�f (t) = a0 +
n∑

i = 1

ai sin (iωt) + bi cos (iωt), (18)

respectively, where td is the duration of the movement
and the weights are given by Ŵl = [a0, . . . an], and Ŵf =
[a0, a1, . . . an, b1, . . . bn]. The Legendre polynomials were com-
puted using the standard Rodriguez formula. Since the polynomi-
als are defined in [−1,+1], they are time-scaled to accommodate
the entire duration of the intended movement.

These synergies have another convenient property that their
magnitudes are bounded, i.e., abs(�(t)) ≤ 1. This property is
essential for non-linear TSDA using empirical balancing since the
method involves perturbing the inputs using unit impulse signals
(Lall and Marsden, 2002). Since the TSDA treats the synergies as
input signals, this insures that a unity input perturbation can be
applied.

2.5.4. Simulation framework
The simulation was performed on MATLAB (2012). The equa-
tions were integrated using the ode15s solver in the ODE pack-
age with the settings of absolute tolerance = 5e−2 and relative
tolerance 1e−3. Model reduction routines developed in Hahn
and Edgar (2002), and Sun and Hahn (2005) were used for
the non-linear system balancing. The weights Ŵ for the TSDA
benchmark tasks and the MDC initialization were acquired
by using a least-squares method. The numerical optimization
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of MDC was carried out using the fmincon routine, with
the interior point algorithm (Waltz et al., 2006) for the lin-
ear MDC and active set (Gill et al., 1981) for the non-linear
MDC.

3. RESULTS
The results of the experiments on the test systems using TSDA
and MDC are presented in this section.

3.1. TSDA ON THE TETHERED MASS
A set of four benchmark trajectories, denoted by Ti = φi(t), were
compared using TSDA for the tethered mass system. Each tra-
jectory described a motion from the origin to a target output
position of [0.5, 0.5], each thus representing a solution to the
reaching task. The trajectories, seen in Figure 3A, were specified
by via-points in Cartesian space and cubic-spline fit was com-
puted with smoothness conditions enforced at the boundaries
(2nd order boundary conditions set to 0). The weight matrix
Ŵi for the control of each of the trajectories were computed
using a least-squares fit of the corresponding inverse dynamic
control signals udi (t). Two kinds of synergies were compared:
Fourier and Legendre polynomial bases of order 4 each as seen
in Figures 3B,C. In the case of the Fourier basis temporal synergy
9 components are necessary corresponding to the sinusoidal and
co-sinusoidal parts of the Fourier basis as seen in Figure 3B.

The result of the weight training can be seen in the Hinton
diagrams of the weight matrices in Figures 4A,B. The weights,

represented by the size of the shaded ellipses, clearly capture the
temporal components of each of the trajectories. However, some
trajectories are easier to interpret and understand for one kind of
synergy alone. For instance, while the weights corresponding to
trajectory T1 are identical in both rows, in the case of T3, mirror-
ing of weights across the inputs is seen only for the Fourier basis
synergy.

For each trajectory, the constrained-reformulated system was
constructed and the corresponding reduction, denoted by the
vector KT , was computed using the linear system balancing
procedure. The cumulative normalized HSVs of the constrained-
reformulated system can be seen in Figures 4C,D. As noted
earlier, the final HSV (σ̃4 = 1) for all trajectories, i.e., the last bar
in each plot is always unity in magnitude. The magnitude of the
other HSVs reflect the task, trajectory and the synergy choice.

For this experiment, a threshold value of tr = 0.975 was uti-
lized to compute the DR (black solid lines in Figures 4C,D). It can
be seen that the straight line Cartesian trajectory seemingly has
the minimum dimensionality of K = 1 independent of the choice
of threshold magnitude. For the chosen threshold, the DR for
each of the trajectories was then obtained as Kfourier = [1, 3, 2, 3],
and Klegendre = [1, 3, 3, 3]. In the case of TSDA on the Legendre
polynomial basis, it can be seen that tasks T2,T3, and T4 are
nearly identical in the HSV magnitudes barring minor differences
in the 3rd HSV.

The obtained dimensionality on the straight line trajectories
imply that it could be a possible candidate for the minimum

FIGURE 3 | Trajectory Specific Dimensionality Analysis (TSDA) used

to compare four benchmark trajectories. (A) The task is to reach
position (0.5,0.5) in 3 s tracing each of the four trajectories [T1, . . .T4].

Two kinds of temporal synergies are tested: (B) Fourier basis (order 4),
and (C) Legendre polynomial basis (order 4) actuating the tethered
mass system.
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FIGURE 4 | Trajectory Specific Dimensionality Analysis (TSDA) for

comparing the Fourier and Legendre polynomial basis temporal

synergies actuating the tethered mass system, tracing the benchmark

trajectories [T1, . . . T4]. The synergy training is carried out using
least-squares and full-dimensional inverse dynamics—The obtained weight
matrices for the four trajectories are represented as Hinton diagrams (ellipse
size is the magnitude, a dark region denotes positive weight and white region

denotes a negative weight) for the (A) Fourier basis of size 2 × 9, and (B)

Legendre polynomials of size 2 × 5. The corresponding cumulative
normalized HSV magnitudes for (C) Fourier, and (D) Legendre polynomial
basis synergies with the threshold tr = 0.975 represented in both cases by
the solid black line. The DR was computed as Kfourier = [1,3,2,3], and
Klegendre = [1,3,3,3]. The straight line trajectory has the minimum
dimensionality for both of these synergy bases.

dimensional solution to the reaching tasks. This is investigated
using the MDC framework as described next.

3.2. MDC ON THE TETHERED MASS
In this experiment, the MDC was synthesized for the teth-
ered mass system for a point-to-point reaching task, i.e., with
zero velocity at the boundaries. The constrained numerical opti-
mization computed the weight matrix for the synergies which
minimize the cost in Equation (15).

For the optimization the initial weights were set using a cubic-
spline interpolate of a trajectory fitting the boundary constraints
(φ(td) = [0.5, 0.5]T , φ̇(td) = [0, 0]T). A constraint tolerance of
ε = 10−2 was used as a terminal criterion for the minimization.

In each of the cases, a local minimum was achieved when using
the interior-point algorithm for minimization.

The trajectories resulting from MDC can be seen in Figure 5
for the Legendre, and Fourier basis synergies. Smooth sigmoidal
trajectories were obtained as the optimal reaching solution in
both cases for multiple movement durations. The terminal cost
of optimization was obtained as 2nd HSV σ̃2 ≈ 0 for all cases.
The time normalized velocity profiles, as seen in Figure 5B, are
bell-shaped.

Interestingly, from the peak velocities in Figure 5B, it can
be seen that while the Legendre polynomial synergies corre-
spond closely to the minimum jerk criterion (Hogan, 1984),
the Fourier basis synergy result was a close match with the
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FIGURE 5 | Minimum dimensional control computed on the tethered

mass for reaching position (0.5, 0.5) from the origin—two kinds of

synergies (Legendre basis of order 6 and Fourier basis of order 4) and

three desired time spans (td = [0.8, 1.0, 1.2]) analyzed. Trajectory of mass
traces a sigmoid for all time spans and for both kinds of synergies. Trajectories

(A) are similar to the minimum jerk (MJ) criterion for the Legendre polynomial
basis and minimum acceleration (MA) for the Fourier basis case; (B) The
corresponding bell-shaped velocity profiles. Weights corresponding to
minimum dimension (C) for both Legendre polynomial and Fourier basis
synergies linearly increase with movement duration across both inputs.

minimum acceleration criterion (Ben-Itzhak and Karniel, 2008)
(represented by the dashed black lines in both cases). There were
other minor differences between the trajectories for each kind of
synergy. Nevertheless, in both cases the peak velocity of the tra-
jectory scales linearly with the movement duration. The results
show that the MDC model computes a synergy specific mini-
mum dimensional trajectory for a given task. It must, however,
be noted that MDC does not guarantee symmetric bell-shaped
velocity profiles, this is a consequence of the boundary conditions
specified and the initialization of the weights for the constrained
minimization. Nevertheless, it can be seen that the minimum
dimensional solution for the reaching task corresponds to a
reduction to a 1 dimensional system independent of the synergy
basis chosen.

Due to the linearity of the system, the weight matrix computed
by MDC linearly scales with the movement duration as seen in
Figure 5C (represented only for one of the inputs). The magni-
tude of the changes are synergy dependent. This implies that for
linear systems the peak velocity and movement duration are a lin-
ear function of the synergy weights; the relationship depending
on the synergy type.

The tethered mass system can be seen as an analog of the
human eye mechanism. The passive forces acting on the mass
are similar to the weak passive forces due to the orbital tissue.
Although the notion of synergies does not seem to extend to
the oculomotor system, the Fourier basis synergy can be viewed
as a useful modeling tool for analysis of the frequency response
characteristics (Harris, 1998a).
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We then used the MDC framework to analyze the reduction
in dimensionality in via-point tasks. Via-points were chosen to
lie on a circle about the target position (as seen in Figure 6).
The via-points were specified to be reached at exactly half the
movement duration. In each case, the appropriate synergy weight
matrix was computed for both the tested synergy types using an
inverse dynamic model and the linear least-squares procedure.
In this experiment, instead of just minimizing the performance
index, the variation with via-point orientation was obtained, as
seen in the polar plot in Figure 6B.

As expected from the earlier reaching experiments, the min-
imum dimensional via-point is seen to lie exactly along the
diagonal, i.e., along the straight line connecting the origin to
the target of the movement. Interestingly, for the linear system
a minimum dimensional solution was also obtained for the via-
points corresponding to the reversal task, i.e., the via-points that
lie beyond the target position but along the same line connect-
ing origin and target. Reversal tasks and straight-line reaching are
therefore seemingly identical in dimensionality for the linear sys-
tem. This result also implies that the symmetry of velocity profiles
is not guaranteed through MDC, rather it is a consequence of the
boundary conditions utilized.

In general, however, the results indicate that for the tested
linear system, the choice of via-point can strongly impact the
dimensionality of the dynamics. Furthermore the synergy basis
specific nature of the dimensionality in following via-points can
be seen in the difference between the blue (Legendre polynomials)
and red (Fourier basis) lines in Figure 6B. Clearly, the differences
in performance index with orientation between the two synergies
indicate that certain via-points are ‘easier’ to reach with one kind
of synergy basis. This observation is an ideal test-scenario for
experimental investigation with subjects and could potentially be
used to identify the most appropriate experimentally extracted
synergy basis.

The generalization of the MDC is demonstrated in Figure 7.
The numerical optimization was initialized with a trajectory
passing through a via-point located at (0.4, 0.3). The MDC opti-
mization converged toward the straight line trajectory with a
bell-shaped velocity profile as seen in Figure 7B. The change in
cost with each iteration of optimization shows that the algo-
rithm rapidly converges towards the optimal solution of cost
J(DT). The synergy weight matrix in the optimal case consists
of identical values in each row indicating that the MDC solu-
tion yields identical force inputs to the system for the reaching
task.

3.3. TSDA ON THE KINEMATIC CHAIN
In case of the non-linear compliant kinematic chain system,
the empirical balancing procedure was used to compute TSDA.
Again a set of four benchmark trajectories T1...4 were utilized.
In each case, the arm was initialized with the angles θ(t0) =
[−π/16, π/8]T , i.e., the rest position. Similar to the linear sys-
tem experiments, each trajectory described a motion from the
initial position to an end position [0.5, 0.2] in the Cartesian
space. Again, the trajectories were obtained by fitting cubic splines
to Cartesian via-points with smoothness conditions enforced at
the boundaries (2nd order boundary conditions set to 0), each
representing a variation on the reaching task. Inverse kinemat-
ics was then used to compute the joint angle trajectories for
each trajectory; the “down” configuration was utilized mimicking
the reaching behaviors in humans. The required torque τi(t) =
[τi1 (t), τi1 (t)]T corresponding to each task Ti was then computed
by using the inverse dynamics of the system. The weight matrix
was then computed for each trajectory using a least-squares pro-
cedure. For the experiments carried out, analysis was restricted to
the Legendre polynomial synergies since it offered a better fit of
the desired torques with a relatively low order in comparison with
the Fourier basis synergies.

FIGURE 6 | Dimensionality analysis of via-point tasks. (A) A set of
via-points were specified on a circle of radius 0.353 m centered on the target
(0.5,0.5) for a reaching movement from the initial position (origin); (B) Polar
plot of the variation in the dimensionality performance index against

orientation of via-point with respect to origin for the two kinds of tested
synergies composed of Legendre polynomial (blue) and Fourier bases (red).
The minimum value of 0 is located exactly along the straight line linking origin
and target for both kinds of synergies.
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FIGURE 7 | Generalization of the minimum dimensional control for

reaching tasks in the tethered mass system. Optimization was initialized
with a trajectory passing through a via-point offset by 0.075 m from the
straight line connecting origin and target φd = (0.4,0.4); Gradual convergence
to Cartesian straight-lines with bell-shaped time-normalized velocity profiles

seen during intermediate stages of the optimization (shades of gray) in the,
(A) Cartesian endpoint trajectories, and (B) position and velocity traces of
endpoints. (C) Change in J(DT ) cost with each iteration of optimization, and
(D) Hinton diagram of the initial and optimal weights and the corresponding
normalized Hankel singular values.

The endpoint trajectories for the four cases using Legendre
basis synergy control is seen in Figure 8A. The weight matrix is
represented by the Hinton diagram in Figure 8B. From the size of
the shaded ellipse, it can be seen that in all four cases, the contri-
bution of the proximal joint inputs is much higher. The temporal
aspects of the trajectories can been seen in the relative contribu-
tions of the negative weights (ellipses with white shading). Again,
the corresponding constrained reformulation was obtained and
the empirical balancing procedure was utilized to compute the
approximate HSVs. Since the Legendre polynomial synergy mag-
nitudes are bounded, the empirical Gramians were computed
from the state trajectories resulting from applying unit impulses
across the inputs of the constrained reformulated system.

The application of empirical balancing in this framework
is equivalent to activating combinations of the synergies with
bounded impulses; the magnitudes were chosen from a uniform

distribution about an input ball of same dimension as the number
of synergies, i.e., of dimension S. The HSVs corresponding to each
task Ti computed by this method can be seen in Figure 8C. The
DR using a threshold choice of tr = 0.935 was obtained as K =
[1, 2, 2, 2]. Similar to the earlier linear example, it can be observed
that the straight line trajectory with a sigmoidal profile seem-
ingly has the minimum dimensionality of 1. This observation was
examined in detail in the MDC experiments, presented next.

3.4. MINIMUM DIMENSIONAL CONTROL IN KINEMATIC CHAIN
The MDC experiment was repeated on the kinematic chain sys-
tem for a set of reaching targets within the workspace of the arm.
Similar to the linear case, the minimization process was initiated
with the constraints of zero velocity enforced at the boundaries. A
constraint tolerance of ε = 10−2 was used as a terminal criterion
for the minimization.
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FIGURE 8 | Trajectory Specific Dimensionality Analysis (TSDA)

computed on Legendre basis synergies (order 7) actuating the

compliant kinematic chain system, the task was to reach position

Pd = (0.5, 0.2) in a time span of 2.5 s, the initial condition was a

nearly fully extended kinematic chain. (A) Four benchmark trajectories
[T1, . . .T4] traced by the mass under synergy control—synergy weights
were computed from via-points using a least-squares approach; (B) Hinton

diagram of the weight matrix (ellipse size is the magnitude, a dark region
denotes positive weight and white region denotes a negative weight).
(C) The normalized empirical HSV magnitudes for the non-linear
reformulated composite systems for each trajectory. For a threshold
magnitude choice of tr = 0.935, represented by the solid black line, the
DR was computed as K = [1,2,2,2]. The straight line trajectory T1 has
minimum dimensionality as measured by the HSV magnitudes.

The (locally) optimal trajectories resulting from MDC can be
seen in Figure 9 for the Legendre basis synergies. Smooth sig-
moidal near-straight line trajectories emerge for some movement
durations; the results were obtained for different movement dura-
tions of td = 2.5, 3.5, and 4 s. In contrast with the linear MDC
case minor skewing effects can be seen in the velocity profiles.
These effects are a consequence of the approximate fitting offered
by a fixed set of synergies in order to meet the terminal boundary
conditions.

Similar to the linear system experiments, the peak veloc-
ity obtained for the reaching movements is dependent on the
movement amplitude. It can also be seen in this case that the

correspondence of the obtained trajectories to the Minimum
Acceleration (MA) model (Ben-Itzhak and Karniel, 2008) is
greater (black dashed lines in Figures 9A,B).

Clearly, a close correspondence is seen between the obtained
reaching trajectories and human reaching behavior as reported
by Morasso (1981) and by several others.

As in the earlier linear system experiments, we use the MDC
framework to analyze the reduction in dimensionality in via-
point tasks. Via-points are chosen to lie on a circle about the
target position (as seen in Figure 10). Again, the via-points are
specified to be reached at exactly at half of the movement dura-
tion. For each trajectory, the appropriate synergy weight matrix
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FIGURE 9 | Minimum dimensional control on the kinematic chain for

reaching various positions using Legendre basis synergy (order 7).

Minimumdimensional trajectorieswereobtained for targets (0.7,0.2), (0.6,0.4),
(0.6,0.2), and (0.5,0.1) in a duration of 2.5, (0.6,0.0) in 3.5 s and (0.4,0.2) in 4 s,

respectively. (A) Near straight lines seen in the Cartesian endpoint trajectories.
(B) Trajectory of endpoint is sigmoidal, and (C) time-normalized velocity profiles
show slightly skewed bell shapes. The peaks of the velocity profiles, however,
are close match to the minimum acceleration (MA) criterion result.

was computed. The variation of the dimensionality performance
index with respect to via-point orientation is obtained, as seen in
the polar plot in Figure 10B.

In contrast with the linear example, it can be seen that there
exists a non-zero minimum value of the performance index. The
reaching target of (0.4, 0.2) was chosen from the set of points
investigated in the earlier MDC reaching experiments. For this
target position, it can be seen that the via-point resulting in the
best DR lies on the straight line connecting origin and the tar-
get position. However, reversal tasks are greater in dimensionality
implying that they are more complex to achieve in the kinematic
chain system.

The generalization of the MDC in the non-linear case can be
seen in Figure 11. The numerical optimization is initialized with
a trajectory passing through a via-point located at (0.6, 0.1). The
MDC converges toward a trajectory close to the straight line with
bell-shaped velocity profile as seen in Figure 11B. The change in

cost with each iteration of optimization shows that the algorithm
rapidly converges towards the optimal solution of cost J(DT).
In contrast with the linear result earlier, at some stages of the
optimization, the intermediate cost is below the terminal cost as
seen in Figure 11C. This is a consequence of the active-set algo-
rithm which results intermediate solutions which do not obey the
constraints. The convergent (locally) optimal solution obeys the
terminal position and velocity constraints as seen in Figure 11B.

4. DISCUSSION
In this paper, we develop a quantification for the reduction in
the behavioral dimensionality in a system due to control in the
form of muscle synergies. When using the temporal synergy for-
mulation, the behavior dynamics are dependent on the synergy
basis and the weight matrix. We model this as a trajectory-specific
constrained reformulation of the dynamics of the system. Using
the approach of system balancing, we quantified the reduction
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FIGURE 10 | Dimensionality analysis for via-point tasks. (A) A set of
cartesian via-points were specified on a circle of radius 0.216 m centered
on the target (0.4,0.2) for a reaching movement from the initial position;
(B) Polar plot of the variation in the dimensionality performance index

against orientation of via-point with respect to origin. The minimum index
of 11.21 is located at the orientation of 286.15◦ corresponding to the
via-point at (0.61,0.14) which is very close to the straight line linking
origin and target.

in dimensionality using a threshold-normalized Hankel Singular
Value (HSV) measure this process computes the dimensionality of
the subspace of the dynamics of the balanced system. Using our
method of Trajectory Specific Dimensionality Analysis (TSDA)
we show that various trajectories that satisfy task constraints can
be compared in terms of reduction in dimensionality in a system
and synergy basis specific manner. We then develop a method for
minimization of this dimensionality in our model of Minimum
Dimensional Control (MDC). The method yields the weight
matrix corresponding to the minimum dimensional trajectory
that satisfies task constraints using a constrained minimization
of the HSV measure. The proposed methods were simulated
on biologically-relevant linear (tethered mass) and non-linear
(compliant kinematic chain) systems. Using idealized temporal
synergies, a task, synergy, and system specific reduction of dimen-
sionality of behavior due to control using muscle synergies was
demonstrated. The trajectories obtained as a consequence of this
minimization, closely correspond with observations of some of
the kinematically invariant features in human movements. We
therefore propose that a dimensionality reduction principle might
underlie motor control as a direct consequence of developmental
necessities.

Bernstein’s “degrees of freedom problem” remains a seminal
observation of natural motor coordination, and continues to
challenge our biological understanding as well presenting a fun-
damental obstacle to biomimetic engineering. Some kind of
DR surely occurs, but whether it is an implicit/ emergent phe-
nomenon (e.g., Lagrangian optimization), or an explicit ‘sim-
plifying’ evolutionary and/or developmental strategy remains a
conundrum. The muscle synergy hypothesis suggests that the DR
is a fundamental advantage resulting from the partitioning of the
space of inputs (Alessandro et al., 2013). However, it has faced
criticism. Although statistical regularities seem to be present in
the measurements of EMG, and kinematic data from subjects
performing behavioral tasks, the extracted synergies are strongly
dependent on the nature of observations that can be made (Steele

et al., 2013). Despite recent approaches for careful experiment
design have aimed at addressing this criticism, the perception
that this hypothesis represents only a phenomenological view of
motor control seems hard to shake off (Tresch and Jarc, 2009).
Falsification of this theory requires careful identification of the
actual functionality offered by muscle synergies toward learning
and control of optimal motor behavior.

Our view is that for DR to exist in biological organisms, it
would need to impact on the organism’s behavior, as this is a
major determinant of fitness. Muscle synergies would probably
only evolve if they had a positive influence on an organisms abil-
ity to solve tasks, learn motor skills, and adapt to changes. To this
end, TSDA quantifies the DR in dynamic behavior. The dimen-
sionality of behavior is taken to denote the dimensionality of the
state-space of the system under synergy control. It is specific to
a task and to a defined set of synergies. The dynamic models
obtained through the task-specific reduction of this state-space
are reminiscent of the internal model hypothesis (Wolpert et al.,
1998; Kawato, 1999). Although we do not investigate this rela-
tionship further in this work, the task-specific reduced internal
representations associated with our MDC trajectories could be
very relevant for motor planning for tasks (Braun et al., 2009).
Through following these minimum dimensional trajectories, an
organism could minimize the neural complexity required for
learning internal models.

Attempts have been made to fit synergy data extracted from
behavior onto musculoskeletal models (Neptune et al., 2009;
McKay and Ting, 2012; Steele et al., 2013). Our approach could
potentially complement this analysis and allow the quantification
of the differences between synergies extracted by various methods
on a given dataset. This would then be a synthetic approach for
testing the validity of any set of synergies toward simplifying
the control and learning problem. Although we only employed
fictitious synergies composed of idealized bases of Legendre
and Fourier components, our methods can be applied to any
synergy set specified by a time series. TSDA can also potentially

Frontiers in Computational Neuroscience www.frontiersin.org June 2014 | Volume 8 | Article 63 | 16

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Kuppuswamy and Harris Do muscle synergies reduce the dimensionality of behavior?

FIGURE 11 | Generalization of the minimum dimensional control in

reaching in the compliant kinematic chain system. Optimization was
initialized with a trajectory passing through a via-point offset by 0.04 m from
the straight line connecting origin and target (0.4,0.4); Gradual convergence
to Cartesian straight-lines with bell-shaped time-normalized velocity profiles

seen during intermediate stages of the optimization (shades of gray) in the,
(A) cartesian endpoint trajectories, and (B) position and velocity traces of
endpoints. (C) Change in J(DT ) cost with each iteration of optimization, and
(D) Hinton diagram of the initial and optimal weights and the corresponding
normalized Hankel singular values.

be used to test the validity of a task definition, in terms of
constraints presented to subjects, as well as the nature and quality
of the number of EMG measurements that are employed for
synergy extraction. Although our demonstration focussed on
the temporal synergy model, in principle the methods can be
used for quantification of other models of synergies such as the
time-varying synergies (d’Avella and Bizzi, 2005).

The methods we developed in this paper represent a control-
theoretic perspective on the muscle synergy hypothesis. This
entails a synthetic examination of the role of muscle syner-
gies in acting as facilitators of optimization through control
dimensionality reduction. In this view, it is not only important
to extract spatio-temporal regularities from biological behavior
datasets, but also to carefully examine if task control and learn-
ing is indeed facilitated (Alessandro et al., 2013; de Rugy et al.,

2013). In particular, Berniker et al. (2009) suggested that syn-
ergies represent a task-variable specific reduction in controller
dimensionality. We essentially extend this view by quantifying
a task-variable and synergy basis specific reduction—thereby
allowing us to understand the temporal aspects of motor behav-
iors. Our approach is also closely related to a recent analysis of
the synergy hypothesis from an intermittent hierarchical control
perspective (Karniel, 2013). In principle, the notion of minimal
intermittancy and our concept of minimum dimensionality both
have an underlying objective of minimizing control effort, and
further investigation of this relationship is definitely warranted.

The methods presented in this paper also have potential
applications in the control of artificial systems such as robots.
Current state-of-art methods such as policy gradients (Peters
and Schaal, 2008), and the PI2 algorithm (Policy Improvement
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through Path Integrals) (Theodorou et al., 2010) have been used
for demonstrations of reinforcement learning being applied to
high-dimensional robot systems. In comparison with model-
free reinforcement learning, model-based methods offer several
advantages such as the ability to update policies offline and then
performing sporadic updates from real-world data. Also model-
based methods allow safe exploration without risking damage of
robots. Our approach naturally facilitates tractable model based
learning and could serve as a planning tool acting in concur-
rence with existing reinforcement algorithms in order to speed-up
learning.

In several reinforcement learning proposals, the trade-off
between exploration and exploitation is often discussed. It is
important to note that a method based on reduced dimensional
internal models, although offering potential speed-up of learn-
ing, could also limit the scope of the obtained solutions—i.e., the
learning could converge to suboptimal behavior. Within the con-
text of our framework, we believe that this problem could instead
be tackled by a developmental scheme of progressively increas-
ing internal model dimensionality along with the acquisition of
control of newer skills. This notion is similar to the develop-
mental hypothesis of degree-of-freedom freeing and unfreezing
(Bernstein, 1967). Consequently, the developmental increase in
the number of synergies to cope with increased task require-
ments (Dominici et al., 2011) would than be equally supple-
mented by a progressive increase in internal model dimension-
ality. Thus task-specific models of internal models of increasing
complexity would progressively be evaluated as the organism
matures.

Although the scope of this paper was limited to the analy-
sis of deterministic continuous-time systems, the methods can
in principle be adapted to deal with stochastic effects and dis-
cretization. The resulting approach could then be used to sup-
plement existing state-of-art methods in iterative stochastic opti-
mal control (Theodorou et al., 2010). Furthermore, although
the investigations focussed on a feedforward control scenario,
the methods can easily incorporate a feedback control formula-
tion of plant dynamics; the models we tested already include a
weak mechanical feedback in the form of passive joint compli-
ance. Nevertheless, it must be noted that several existing models
in the synergy hypothesis suggest that muscle synergies are a
high-level feedforward control scheme that incorporates low-level
feedback (d’Avella et al., 2003; Hart and Giszter, 2004; Ivanenko
et al., 2004; Ting and Macpherson, 2005; Tresch et al., 2006). In
an artificial context, this notion has also been explored in the
design of dynamical movement primitives (Ijspeert et al., 2013)
wherein the policies encode trajectory features while the primi-
tives themselves can then be modified online in a smooth man-
ner taking into account disturbances etc. due to their dynamic
nature.

The Optimal Control Theory (OCT) models of human motor
behavior originate from a evolutionary perspective; there is a
fitness-driven necessity for behaviors to be optimal. Various
Lagrangians have been proposed to quantify task optimality
depending on the different perspectives of the system such as
the output (kinematic) (Flash and Hogan, 1985), control input
(minimum variance Harris and Wolpert, 1998, minimum norm

Dean et al., 1999), or intermediate variables (minimum torque
Nakano et al., 1999). However, it must be noted that OCT
hypotheses employ relatively complex mathematical techniques;
current theoretical limitations mean that OCT methods can only
be applied analytically on relatively simpler models such as lin-
earized models of the oculomotor system or limb movements
(Harris and Wolpert, 1998). Also, there is no testable suggestion
so far as to how and where the optimization might actually be
happening in terms of actual neural mechanisms. The method
proposed in this paper is possibly a step toward this goal, since
we relate optimization to the actual recruitment of synergies to
accomplish tasks.

From a developmental perspective, the process of acquisition
of motor coordination is gradual and seemingly composed of
intermediate stages of learning (Sporns and Edelman, 1993). If we
consider that optimal solutions exist in a high dimensional space
(system dynamics, neural control input) unique to an individual
organism, then fitness must also depend on the ability to find
good solutions in the developmental time frame (Harris, 2011).
Searching for an optimal trajectory has a little value if it takes
a long time to find. We propose that the time taken to learn an
optimal control, which we call “learnability” is itself an impor-
tant parameter in a self-organizing system (Kuppuswamy et al.,
2012). DR is one possibility which may speed up learning, but
there might be a trade-off with precision and learning rate to
the extent that non-redundant degrees of freedom are eliminated.
Our approach provides a mechanism to examine this hypothesis
through the measurement of dimensionality of empirically mea-
sured trajectories relative to some assumed or computed basis set
of synergies.

The most interesting results obtained through our methods
are the smooth straight-line sigmoidal trajectories with bell-
shaped velocity profiles as the minimum dimensional solution
to reaching tasks. The similarity at the output for two basis sets
(Legendre and Fourier) and for both linear and non-linear sys-
tems suggests the possibility of some kind of invariance at the
output task variable level. We also observed that the symmetry
of the velocity profiles is strongly affected by the specification
of boundary conditions on the behaviors. Smoothness implies
a potential relationship between DR and bandwidth reduction.
Clearly, task demands place constraints on possible trajecto-
ries, and hence on their spectral content. In point-to-point
reaching trajectories with zero velocity boundary conditions, the
temporal truncation forces a strictly infinite bandwidth, with
rapidly decaying spectral energy limiting envelope (Harris, 2004).
The fastest movement that can be achieved without exceeding
this spectral limit are the family of minimum square deriva-
tive functions, such as minimum acceleration for 2nd order
systems, or minimum jerk for 3rd order systems. The DR trajec-
tories had lower peak velocities than expected from the minim
jerk profile, but were similar to minimum acceleration (dot-
ted lines in Figures 5, 9). The relationship between DR and
low bandwidth is unclear at present, but has two important
implications.

If this invariance is upheld, it implies that the choice of basis
set is not critical (presumably provided the output trajectory can
be spanned by the input basis set). Indeed, it may reflect the
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possibility that DR occurs at the output directly. In our work we
only examine the state-space dimensionality and the computa-
tion of minimum dimensional weight matrix. In principle, this
approach may also be used for investigating the optimal tem-
poral characteristics of the basis set themselves. For example,
using the Legendre polynomial basis, we observe a reduction in
dimensionality across tasks, both in the input as well as in the
output. In this respect, it is interesting that low bandwidth signals
also have low Shannon numbers (although the Shannon num-
ber is an imprecise measure of signal dimension when duration is
finite).

Second, there is a coincidence between low dimensionality
and optimal control. That is, if low dimensionality is main-
tained, optimal or near-optimal trajectories are automatically
generated for a given set of boundary conditions, and the curse of
dimensionality is largely circumvented. An alternative is that the
optimality approach itself is a misconstrued attempt to explain
low dimensionality via a Lagrangian. However, for the minimum
variance model, it would be difficult to explain the known pres-
ence of signal-dependent noise unless the noise is somehow a
product/compensation for DR.

This last point is also relevant to synthetic (robotic) systems.
Minimization of biologically relevant Lagrangians in synthetic
systems does not necessarily lead to biologically realistic behavior,
but depends on the synthetic architecture. For example, mini-
mizing reaching time in a natural system appears to be achieved
by the smooth bell-shape velocity profiles, but in a linear robot
the same Lagrangian (functional mimicry) would be optimized
by bang-bang control leading to skewed velocity profiles. In any
case, finding such solutions in real-time is non-trivial, and often
natural behavior must be programmed explicitly into the arti-
ficial system (esthetic mimicry) (Harris, 2009). However, when
we consider DR as the underlying principle for generating nat-
ural behavior, we envision that functional mimicry in a robot
would produce similar or the same natural behavior. It is not
entirely clear at present, how precisely the mimicry would need
to be. It is plausible that only crude approximations are needed.
Furthermore, although we investigated two relatively simple sys-
tems performing reaching and via-point type tasks, the methods
are computationally applicable to any control-affine systems.
Thus in principle, these methods could be used to compute “nat-
ural” behaviors in robots of a variety of morphologies. A related
application would be to optimize behavior in artificial systems
that are driven by pattern based mechanisms such as Central
Pattern Generators (CPG) (Ijspeert, 2008). Our approach is thus a
potential path toward robots with neurally inspired motor control
of reduced complexity.
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