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Abstract

Motivation: Increasing evidence suggests that post-transcriptional ribonucleic acid (RNA) modifications regulate es-
sential biomolecular functions and are related to the pathogenesis of various diseases. Precise identification of RNA
modification sites is essential for understanding the regulatory mechanisms of RNAs. To date, many computational
approaches for predicting RNA modifications have been developed, most of which were based on strong supervi-
sion enabled by base-resolution epitranscriptome data. However, high-resolution data may not be available.

Results: We propose WeakRM, the first weakly supervised learning framework for predicting RNA modifications
from low-resolution epitranscriptome datasets, such as those generated from acRIP-seq and hMeRIP-seq.
Evaluations on three independent datasets (corresponding to three different RNA modification types and their re-
spective sequencing technologies) demonstrated the effectiveness of our approach in predicting RNA modifications
from low-resolution data. WeakRM outperformed state-of-the-art multi-instance learning methods for genomic
sequences, such as WSCNN, which was originally designed for transcription factor binding site prediction.
Additionally, our approach captured motifs that are consistent with existing knowledge, and visualization of the pre-
dicted modification-containing regions unveiled the potentials of detecting RNA modifications with improved
resolution.

Availability implementation: The source code for the WeakRM algorithm, along with the datasets used, are freely
accessible at: https://github.com/daiyun02211/WeakRM

Contact: jia.meng@xjtlu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Increasing evidence suggests that post-transcriptional ribonucleic
acid (RNA) modifications regulate essential biological processes and
are related to the pathogenesis of various diseases including multiple
cancers (Esteve-Puig et al., 2020; Shulman and Stern-Ginossar,
2020; Zaccara et al., 2019). Precise identification of RNA modifica-
tion sites is essential for an in-depth understanding of the regulatory
circuitry of RNA life. Over 170 distinct RNA modifications have
been identified in living organisms to date (Boccaletto et al., 2018),
among which, more than 10 modifications have been shown to
widely occur in the human transcriptome and can be profiled with
high-throughput sequencing approaches (Li et al., 2017; McCown
et al., 2020). Since wet experiments for studying the epitranscrip-
tomes are usually laborious and expensive (Jones et al., 2020), com-
putational approaches have become increasingly popular as a useful
alternative, especially for preliminary studies.

To date, many in silico methods have been developed for the
computational prediction of RNA modification sites from RNA (or

DNA) sequences as well as other predictive genomic features.
Among them, SRAMP is one of the earliest and widely applied pre-
dictive approaches for m6A RNA methylation based on the Random
Forests method from RNA sequences (Zhou et al., 2016). Recently,
by taking advantage of both sequence and 35 additional genomic
features, the WHISTLE method has achieved the best performance
in m6A site prediction to date (Chen et al., 2019). Gene2Vec is a
very powerful deep learning framework that supports m6A predic-
tions, which are enhanced by employing word embeddings to repre-
sent RNA sequences (Zou et al., 2019). Some recent works further
developed computational algorithms to predict modifications from
direct RNA sequencing data like Oxford Nanopore Technologies
(Jenjaroenpun et al., 2020; Liu et al., 2019). Together, these effects
have greatly improved our understanding of the localization and
working mechanisms of various RNA modifications under different
biological contexts; see for example the comprehensive recent
reviews (Anreiter et al., 2021; Chen et al., 2020; Liu et al., 2020).

A major limitation of epitranscriptome prediction approaches is
that, to the best knowledge of the authors, all of them are based on
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strong supervision. Strong supervision-based approaches perform
well on modifications with base (or high)-resolution data, but usual-
ly overlook the weakly supervised information of RNA sequences
when applied to low-resolution datasets, such as 5-hydroxymethyl-
cytidine (hm5C) and N4-acetylcytidine (ac4C). These two modifica-
tions can be detected by enrichment-based sequencing approaches,
such as hMeRIP-seq and acRIP-seq, respectively (Arango et al.,
2018; Delatte et al., 2016), from which we can identify the RNA
modification-containing regions (or peaks enriched with signals of
RNA modification) of around 100 nt resolution. As there usually
exist multiple Cs within such regions, it is not exactly clear which
one is the true modifiable nucleotide and which are non-modifiable
ones. Although it is possible to further enhance the resolution by
searching for the motif of a specific modification, our previous study
showed that this remedy will generate a large number of false-posi-
tive sites due to random occurring sequence motifs located close to
real modification sites (Chen et al., 2019). Meanwhile, it is clear
that predictive methods based on this remedy have very limited per-
formance (Liu et al., 2020) or very narrow applicable scope (Zhao
et al., 2019). To address the challenges of learning from low-reso-
lution epitranscriptome data, we consider here a weakly supervised
learning framework.

Weakly supervised learning is aimed at constructing predictive
models by learning from weakly labeled data (Zhou, 2018). An im-
portant scenario is when there are only coarse-grained labels pro-
vided (or with only labels for bags but not for instances), for
example, in the case of image analysis, when the labels are only
available at image level but not at object level. In genomics, weakly
supervised learning, especially multi-instance learning (MIL), has
been intensively applied for studying protein–DNA interaction (Gao
and Ruan, 2015, 2017; Zhang et al., 2019, 2020), with the basic as-
sumption that the sequences captured by CLIP (or ChIP-seq) tech-
nologies contain both the interacting and non-interacting elements
with the proteins. We know only the label of the entire sequence,
but it is not exactly clear which part of the sequence plays the key
role, and a significant proportion of it may not contribute to the
binding between DNA and protein at all. MIL3D (Gao and Ruan,
2015) first treated each probe sequence as a labeled bag, utilized de-
cision trees and probabilities averaging methods to predict bag-level
classes. MIL-TeamD (Gao and Ruan, 2017) extended MIL3D by
using TeamD (Annala et al., 2011) as the instance classifier.
WSCNN and its updated version WSCNNLSTM (Zhang et al.,
2019, 2020) further applied convolution neural network (CNN) and
long short-term memory (LSTM) to capture sequence features
through learning. Additionally, weakly supervised learning (MIL)
has also been used for the functional prediction of proteins (Wu
et al., 2014), protein splicing variants (Panwar et al., 2016),
microRNA target prediction (Bandyopadhyay et al., 2015) and pro-
tein–protein interaction (Mei and Zhu, 2014). Conceivably, as low-
resolution epitranscriptome data provided labels only at region level
but not at single-nucleotide level, the problem of learning from it
can be suitably formulated with the weakly supervised learning
framework.

We propose WeakRM, a general weakly supervised learning
framework for predicting RNA modifications from low-resolution
epitranscriptome datasets, such as those generated from acRIP-seq
or hMeRIP-seq. Our model takes labels at the sequence level (rather
than a nucleotide level) as input and predicts the sub-regions that
are most likely to contain the modification of interest. To the best of
our knowledge, this is the first time that RNA modification predic-
tion was formulated under the framework of weakly supervised
learning. Additionally, compared to existing MIL algorithms, which
were originally developed for transcription factor binding site
(TFBS) prediction, our model achieved better performance in RNA
modification site prediction with major improvements, i.e. using the
gated attention (Ilse et al., 2018) for result merging and using ran-
dom cropping data augmentation. Attention-based MIL was first
proposed for image analysis, allowing the model to assign learnable
weights to each instance. This method can aggregate information
from all instances while adapting to sparse site distribution and high
correlation between instances. In addition, such weights also

indicate the region of interest by selecting high-weight instances.
Random cropping, from another perspective, takes advantage of the
key feature of the related biotechnology and uses the natural divisi-
bility of RNA modification peaks to improve the model perform-
ance. By randomly cutting the ‘bag’ to generate new inputs, our
network model can see more cases and learn the patterns more ef-
fectively and robustly.

Evaluations on three independent datasets (corresponding to
three different RNA modification types and their respective sequenc-
ing technologies) demonstrated the general effectiveness of our ap-
proach in predicting RNA modifications from low-resolution data.
Our approach outperformed state-of-the-art MIL algorithms for
genomic sequences, such as WSCNN, which was originally designed
for TFBS prediction. Our approach captured motifs that are consist-
ent with existing knowledge. Visualization of the predicted modifi-
cation-containing regions unveiled the potentials of detecting RNA
modifications with improved resolution. WeakRM should make a
powerful and useful tool for learning RNA modifications with only
low-resolution epitranscriptome data.

2 Materials and methods

2.1 Epitranscriptome data
The proposed WeakRM framework described below was tested on
three independent epitranscriptome datasets of low-resolution
(around 100 nt), which corresponded to three distinct RNA modifi-
cations (ac4C, hm5C and m7G) and their respective sequencing tech-
nologies (acRIP-seq, hMeRIP-seq and m7G-MeRIP-seq) (see Table
1). All three technologies are based on the FRIP-seq protocol
described previously (Meng et al., 2013), in which, the fragmented
RNAs are immunoprecipitated by the antibody targeting the modifi-
cations of interests, and then the RNAs were purified for next gener-
ation sequencing. The reads were aligned to the reference genome,
and peak calling was conducted to capture the regions enriched with
signals of RNA modification (or the ‘peak’s) with around 100 nt
resolution (Dominissini et al., 2013; Meng et al., 2013). The peak
regions should contain the RNA modification signal, and are consid-
ered as ‘positive’. Meanwhile, only the non-peak regions of peak-
carrying genes were used as the ‘negative’ regions to exclude false
negatives due to condition-specific gene expression. The obtained
‘negative’ regions were randomly cropped to balance the length and
number between regions. Due to limited sensitivity, the RNA modi-
fication sites located on very lowly expressed genes will be missing
from epitranscriptome data. The genomic sequences within the posi-
tive and negative regions were then extracted from the whole gen-
ome assembly and then used in this study.

Additionally, to further validate the trained WeakRM model, we
also extracted the precise locations of m7G sites from m7GHub
(Song et al., 2020), which contains the human m7G sites determined
by base-resolution technology (see Table 1), and examined whether
WeakRM reported a higher weight near known m7G sites.

2.2 Weakly supervised learning of RNA modifications
We provided in this subsection more details of the proposed
WeakRM framework, including data preparation, network architec-
ture, and post-analysis. A simplified illustration of our model is
given in Figure 1.

2.2.1 Data preparation

MIL framework treats each RNA sequence as a ‘bag’ with more
than one ‘instance’. The target label (with or without RNA modifi-
cation) is associated with the bag rather than with each instance,
indicating whether the RNA modification of interest has occurred
within a piece of sequence. In practice, the algorithm divides the en-
tire sequence into multiple overlapping sub-sequences as the ‘instan-
ces’ contained within the bag (Zhang et al., 2019, 2020).
Specifically, a fixed-length sliding window (length c) runs over each
bag (length l) to capture different portions of it with stride s, result-
ing in total dðl � cÞ=se þ 1 instances. Here, the window length c and
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the step-wise shift s are two tunable hyperparameters. Reducing c
and s may allow us to locate modifications at a higher resolution but
can increase computational load or decrease the prediction accur-
acy. The difference between those two parameters (c–s) reflects the
number of nucleotides shared by two adjacent instances.

2.2.2 Data augmentation

A salient feature of the FRIP-seq protocol, including acRIP-seq,
hMeRIP-seq and m7G-MeRIP-seq, is that a single modifiable nu-
cleotide, in theory, can only generate a narrow peak (regions
enriched with RNA modification signal) of around 100–300 nt long,
depending on the peak calling algorithm and the fragment length in
the protocol. Very wide peaks, in theory, reflect multiple modifiable
nucleotides located in proximity. This property allows us to break
up the labeled long sequence into shorter pieces and still ensure a re-
liable label (see Fig. 2). We used this property for random cropping
data augmentation. In each epoch of training, each sequence will be
input to the model once. To ensure that the trimmed positive
sequences contain at least one RNA modification site, for those
peaks with a width greater than 400 nt, different fragments of 3/4
length were randomly selected each time and trained with the same

label. Although the actual amount of data has not increased, such
random cropping ensures that the same target will not always ap-
pear in the same position of the corresponding sequence, which
helps our model generalize better.

2.2.3 Model architecture

Starting from the input layer, this sub-section presents a detailed de-
scription of the proposed weakly supervised learning framework.
The first step in feeding RNA sequences into the WeakRM model is
to numerically represent the nucleotides. One-hot encoding is a com-
mon way in deep learning-based models which maps each nucleotide
into a vector of size 4 (A! [1, 0, 0, 0]T, C! [0, 1, 0, 0]T, G! [0,
0, 1, 0]T and U! [0, 0, 0, 1]T).

To pursue improved resolution in the prediction of RNA modifi-
cation, instance length is often set to a small value like 50 nt. The
used model architecture is as follows: the first convolutional layer
captures motifs; a max-pooling layer removes weak features and
enlarges the receptive field; a dropout layer prevents overfitting in
training, and the second convolutional layer learns local dependen-
cies among motifs. Each instance passes through the same networks
(weights are shared) and outputs instance-level features.

2.2.4 Score function

As referred to earlier, in the case of the MIL problem, only an over-
all binary label associated with the input bag can be assessed.
Therefore, how to obtain bag-level probabilities from instance-level
features without instance-level labels becomes the key to the MIL
framework. Generally, we can divide existing label probability mod-
eling methods into two categories:

1. The instance score merging approach: this method requires the

construction of an instance-level classifier to estimate the score

of each instance. A chosen pooling method then aggregates all

instance scores and returns the bag-level class (probability of at

least one RNA modification site contained within the input

sequence).

2. The instance feature merging approach: this method aims at

obtaining bag-level feature representations using weighted sum-

mation along instance embeddings. The bag-level features are

subsequently fed into the final classifier.

Maximum and average are the two most common fusion meth-
ods for score merging. However, max-pooling only extracts infor-
mation concerning the most favored instance, which overlooks
other valuable instances and may suffer from outliers. This weak-
ness can even be amplified when our subsequence instances overlap
with each other and are therefore highly correlated. Average pool-
ing, on the other hand, assigns equal weights to all instances, which
ignores the fact that our instances are sparsely distributed. Other
score merging approaches such as, log-sum-exp pooling (Ramón
and Raedt, 2000) and noisy-or (Maron and Lozano-Perez, 1997)
share a common drawback that they are rule-based and not
learnable.

Table 1. Epitranscriptome data

Modification Technology Resolution Sample size Cell line Species GEO Source

(nt) (positive versus negative)

ac4C acRIP-seq �100 8630 versus 11 912 HeLa Homo sapians GSE102113 Arango et al. (2018)

ac4C acRIP-seq �100 21 542 versus 27 590 HeLa Homo sapians GSE102113 Arango et al. (2018)

hm5C hMeRIP-seq �100 2347 versus 3557 S2 Drosophila — Delatte et al. (2016)

m7G m7G-MeRIP-seq �100 6022 versus 9096 HeLa Homo sapians GSE112276 Zhang et al. 92019)

m7G m7G-MeRIP-seq �100 6873 versus 10 230 HepG2 Homo sapians GSE112276 Zhang et al. (2019)

m7G m7G-seq 1 6032 HeLa Homo sapians GSE112276 Zhang et al. (2019)

m7G m7G-seq 1 3333 HepG2 Homo sapians GSE112276 Zhang et al. (2019)

aBase-resolution m7G-seq sites were used to verify the locating ability of WeakRM. The sample size does not include data augmentation.

A sliding window
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. . .

Instance 1 Instance N

Instance 1 features Instance N features

. . .

Instance attention: [Weight 1, · · ·, Weight N]

Bag level features

Bag level probability

One-Hot Encoding

CNN

Gated Attention

⊗

Dense + Sigmoid

Fig. 1. A simplified graphic illustration of the proposed WeakRM framework
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Noisy-and (Kraus et al., 2016) is the fusion method preferred in
WSCNN and WSCNNLSTM (Zhang et al., 2019, 2020). Unlike the
above methods, it offers a learnable threshold and an auxiliary
hyper-parameter for tuning. However, it is still built based on mean
scores of instances, which may suffer from the same disadvantage of
average pooling.

In our framework, we used the gated attention (Dauphin et al.,
2017) as our score function. As a feature merging approach, gated
attention uses a three-layer neural network to learn weights ak of the
low-dimensional representation of each instance and obtains the
bag-level embedding according to the equation z ¼

PK
k¼1 akhk,

where fh1; . . . ;hkg is a bag of K instance features. When calculating
the weights, a gating mechanism (Dauphin et al., 2017) provides a
learnable sigmoid non-linearity sigmð�Þ to enhance the tanh non-lin-
earity tanhð�Þ. A fully connected layer then takes the element-wise
multiplication of two non-linearities and returns the gated attention
weigths for each instance as presented in equation (1), where w;V
and U are parameters in layers and > stands for transpose.

ak ¼
exp fw>ðtanhðVh>k Þ � sigmðUh>k ÞÞgPK

j¼1 exp fw>ðtanhðVh>j Þ � sigmðUh>j ÞÞg
(1)

Attention measures the degree of similarity among instances and
thus is suitable for our context-dependent data. The softmax activa-
tion function ensures that all weights add up to 1, which makes the
score function invariant to bag size. In addition, the learnable
weights indicate the contribution of each instance to bag-level prob-
ability. Therefore, the selected method not only effectively leverages
all underlying information of instances but also gives an estimation
of the site-containing regions. Ideally, the instance that covers a
modification should have a specific pattern (motif) and contribute
most (highest attention weight) to bag-level prediction.

2.3 Validation of site prediction
Aside from distinguishing the RNA modification-containing and
non-containing sequences, a key purpose of our model is to identify
the sub-regions containing RNA modifications from a long input se-
quence. Unfortunately, for hm5C and ac4C, their transcriptome map
of base-resolution is not yet available. Therefore, we developed a
validation approach based on low-resolution data. For each peak,
we obtained the two marginal areas connecting the negative and
positive regions. Specifically, 600 nt of sequences were extracted
from both the 50 and 30 side of the identified peaks, with 300 nt
within the peak and 300 nt outside of the peak, respectively. RNA
modification sites are expected to be on the 30 half for the sequences
extracted from the 50 end of the peak or the 50 half for those
extracted from the 30 end of the peak (see Fig. 3). We can then check
whether this is consistent with the predictions made by WeakRM.

To demonstrate the effectiveness of our model more convincing-
ly, we select m7G RNA internal modification data for further valid-
ation. Both non-base and single-base techniques are available for
m7G, which allows us to train our model using peak data and valid-
ate using ground truth base-resolution sites. To visually display the
results, we placed the known modifiable sites in the center and
extracted 300 flanking regions on both sides to obtain a set of
601 nt sequences. For both cases, we picked the most important in-
stance from each true positive bag, recorded their distance to the
middle point and plotted their distributions.

2.4 Model interpretation
Interpretability of predictive models is often highly desired for bio-
logical systems. In the case of RNA modification prediction, this
refers to finding the recurring sequence patterns preferred by the
model and elucidating the difference between the high-weight and
low-weight instances.

Existing motif discovery methods for neural networks can gener-
ally be divided into two types. One method is to extract the weights
of convolutional kernels in the first network layers, count the occur-
rence of nucleotides that activate the kernels, and visualize them as
position weight matrices (Alipanahi et al., 2015; Kelley et al., 2016).
However, these methods only analyze the low-level representation
captured by the model, without considering the fact that the neural
network learns distributed patterns and makes decisions through the
combination of multiple neurons in multiple layers. The other
method to interpret predictions is based on the gradients of the out-
put score with respect to the input nucleotide, which follows the nat-
ural design of neural networks (back-propagation). The gradient
can be analogous to the coefficients in a linear model. Various meth-
ods have been developed in the past few years quantifying either the

N1 P1 P2 N2 P3 N3 N4

Positive peak
Reads
Modifiable nucleotides
Non-modifiable nucleotides

Fig. 2. Data augmentation. For FRIP-seq technology, the peaks above 300 nt are formed from multiple sub-peaks corresponding to multiple modifiable nucleotides located in

proximity. Therefore, tailoring-wide peaks allow us to obtain multiple sub-sequences, each of which contains at least one site. Two positive sub-sequences P1 and P2 can be

generated from a single-wide peak, which corresponds to three RNA modification sites located in proximity. The positive sequence P3 corresponds to a single narrow peak,

which may be generated from a single modifiable nucleotide. On the other hand, any sub-sequence from the negative region remains negative, such as N3 and N4

5′ 3′

Modifiable nucleotides
5′ margin dataset
3′ margin dataset

Positive
peak

Negative
region

Negative
region

300 nt 300 nt 300 nt300 nt

Fig. 3. Data for validation of site prediction. A total of 600 nt of sequences were

extracted from both the 50 and 30 side of the identified peaks, with 300 nt within the

peak and 300 nt outside of the peak, respectively. RNA modification sites are

expected to appear on the 30 half for sequences extracted from the 50 end of the

peak or the 50 half for those from the 30 end of peaks
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gradient itself (Simonyan et al., 2014) or the products of the gradient
and feature values (Bach et al., 2015; Shrikumar et al., 2017;
Sundararajan et al., 2017).

In our framework, the integrated gradients (IG) method
(Sundararajan et al., 2017) was chosen to quantify the attribution
scores of each input feature. As formulated in equation (2), the score
sums the gradients of interpolated points along the linear path from
the base reference x0 to the inputs x. In practice, trapezoidal IG
(Sotoudeh and Thakur, 2019) was used, which is closer to the real
theory in the calculation.

IGiðxÞ ¼ ðx� x0Þ �
Xm

k¼1

@F x0 þ k
m� ðx� x0Þ

� �

@x
� 1

m
(2)

As suggested in Kindermans et al. (2019), the reliability of IG
depends on the choice of the reference input. Instead of feeding a
zero matrix or a fixed letter frequencies matrix into the model as a
reference input, we shuffled the original input to construct a refer-
ence sequence while retaining the dinucleotide frequencies. This di-
nucleotide shuffled reference is consistent with the case of
regulatory proteins prediction presented in Shrikumar et al. (2017)
and is suggested in TF-MoDISco (Shrikumar et al., 2018).

Through the visualization of the per-base contribution score gen-
erated by the IG method as a saliency map, we were able to identify
the portion of each sequence that has a substantial contribution to
the prediction. However, there is still a need for systematic analysis
to generate a high-quality consensus motif for target modification.
TF-MoDISco (Shrikumar et al., 2018), which was developed on the
transcription factor, provides a solid solution to generate non-redun-
dant motifs from sequences and the corresponding base-resolution
important scores. Segments of the input that are highly relevant to
prediction are first identified in all regions of test sequences, and
then their contribution scores are clustered and aligned into a motif.
This method is applicable to RNA modification analysis from both
the biological and computational perspectives, except for the setting
of the reverse complementary strands.

3 Results and discussion

3.1 Model validation on m7G data
N7-methylguanine (m7G) has traditionally been considered a cap
modification of mRNAs. Recent studies identified its widespread in-
ternal existence and pivotal roles in translation control (Zhang
et al., 2019). Since we previously established benchmark datasets
and developed a base-resolution m7G predictor (Song et al., 2020),
we first verify the proposed WeakRM on m7G data. The availability
of base-resolution profiling (m7G-seq) also enabled a more reliable
validation using data produced from an independent biotechnology
(Zhang et al., 2019).

To reduce the number of false-positive samples, we extracted the
sequences that appear as peaks in both cell lines (HeLa and HepG2)
as the positive samples, as in the case of the original study (Zhang
et al., 2019). For negative data, only the sequences that appeared as

negative in both two cell lines were used. The model performance of
each cell line data and two-way cross cell line evaluation were also
provided in Supplementary Table S1. We treated the base-resolution
m7G-seq sites as our ground truth data and extracted the sequences
from the 300 nt flanking region on both sides to form a testing se-
quence of 601 nt. It was expected that the central instance covering
the known m7G site should have greater attention weights.

3.1.1 Prediction performance

To reduce the potential perturbation of model performance caused
by randomness in data splitting, data augmentation, and the scoring
function used, an evaluation was performed using 10-fold cross-val-
idation over the low-resolution m7G datasets (m7G-MeRIP-seq) to
produce a reliable comparison. The data were evenly divided into 10
parts, each with the same amount of positive and negative peaks.
For all models, an instance length of 50 nt and a stride size of 10 nt
were chosen because they generally have better performance on the
m7G dataset (see Supplementary Table S2). As shown in Table 2,
WeakRM outperformed WSCNN under all three evaluation metrics
(especially for the average area under ROC curves measure, 0.896
versus 0.862). Equipped with random cropping data augmentation,
an overall improvement can be observed, which indicates that by
looking at the different sub-sequences of the input, our model can
generalize better. Although the data augmentation does not increase
the actual amount of data, random cropping can ensure that the
same target does not always appear in the same position in the cor-
responding sequence. In practice, we have observed that the per-
formance of the WeakRM can be further improved by using the
LSTM layer.

3.1.2 Location estimation

To explore the potential of identifying RNA modification sites from
the instances with high attention weights, we applied the well-
trained model built on low-resolution m7G-MeRIP-seq data to the
sequences generated from base-resolution data, for which we know
the exact location of m7G sites. For each predicted true positive se-
quence, we selected the most important instance based on the gated
attention weight and visualized their relative distances to the known
m7G sites in the middle. As shown in Figure 4, a strong peak of the
distribution appeared near the location of the known m7G site (0 on
X-axis). Given the instance length (50) and stride (10), there exist
five instances containing the m7G site detected using base-resolution
technology in each bag. The instances with the m7G site near their
centers are likely to produce the highest attention weights. There are
still some high-weight instances that do not contain known m7G
sites. Among them, those near the center area showed a higher prob-
ability to be high-weight instances. This may indicate that WeakRM
has captured some sequence patterns that are not immediately close
to the m7G site, or there existed previously undetected m7G sites
and the modification exhibits a clustering effect, as previously
observed in the case of N6-methyladenosine (m6A) (Chen et al.,
2019). Our results provided strong evidence that the proposed
WeakRM framework has the potential to estimate the location of
RNA modifications from low-resolution data alone.

Table 2. Predictive performance on m7G MeRIP data with standard deviation

Model AUROC AP Accuracy

WSCNN (Max.) 0.766(60.072) 0.762 (60.044) 0.667(60.023)

WSCNN (Avg.) 0.664(60.032) 0.706 (60.043) 0.628(60.024)

WSCNN (noisy) 0.775(60.055) 0.789 (60.062) 0.705(60.046)

WSCNNLSTM (Max.) 0.849(60.013) 0.837 (60.015) 0.773(60.015)

WSCNNLSTM (Avg.) 0.851(60.021) 0.858 (60.022) 0.760(60.024)

WSCNNLSTM (noisy) 0.862(60.021) 0.870 (60.019) 0.772(60.023)

WeakRM 0.892(60.014) 0.889 (60.020) 0.815(60.017)

WeakRM (crop) 0.896 (60.013) 0.897 (60.016) 0.816 (60.015)

Note: All methods were evaluated using the same datasets.
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3.1.3 Model interpretation

To gain further insights into the sequence-dependent forming mech-
anism of RNA modification unveiled by our proposed WeakRM, we
implemented a trapezoidal IG method with zero matrixes, fixed let-
ter frequencies (GC content) and dinucleotide shuffled references to
obtain attribution maps on the input instances. For each test se-
quence, we simulated 50 shuffled references and used 20 steps in cal-
culating IG values. As our input data were all one-hot encoded, such
scores of contribution can be easily transformed to the importance
of each nucleotide.

As shown in Figure 5, our proposed model assigned high atten-
tion weights to adenine (A) and guanine (G) enriched areas, which
coincides with the two major bases in known motifs. Our target,
m7G, is a modification that happens on nucleotide G. By observing
the distribution of the G contribution score, we observe that not all
guanines have received high values, and some may even have a nega-
tive impact on the positive peak prediction. Therefore, such inter-
pretable scores can be a potential way to further narrow the range
of predicted modified sites.

On the other hand, continuous cytosine (C) and uracil (U) patterns
were abundant in the low weight instances (Fig. 5), which often made a
negative contribution to the prediction of m7G-containing region. For
visualization purposes, we individually normalized the contribution
scores for each instance, which resulted in comparable score ranges be-
tween the high-weight and low-weight instances. However, the former
is usually much larger than the latter in the absolute sense.

Attribution maps show only the model preference of nucleotides
in every single test. To summarize the recurring motifs captured by
WeakRM, the current general pipeline carries out high-weight k-
mers selection, clustering of similar patterns, and multiple sequence
alignment for obtained motifs in each cluster. In our work, we use
TF-MoDISco to extract consensus motif from instances with higher
than average weights. A great advantage of TF-MoDISco is that it
provides the continuous Jaccard similarity calculation to carry out
alignment directly based on contribution scores instead of only
selecting the most important bases. By allowing three gaps and two
mismatches and trimming using overall letter frequencies, we found
one consensus motif, given in the Figure 6. Compared with the
known motifs identified with m7G-MeRIP-seq using HOMER soft-
ware and reported in data source paper (Zhang et al., 2019), we
found the motif learned by WeakRM can be matched to the Top-1
known motif with a P-value of 8.71e-03. The P-value here repre-
sents the probability that a random motif of the same width has the
same or better matching score as the target. The value 8.71e-03 is
sufficient to infer a high similarity between the motifs.

3.2 Case study 1: prediction of 5-hydroxymethylcytidine
Recent studies have revealed a relatively high abundance of 5-
hydroxymethylcytidine (hm5C) in fly and mouse brains (Delatte
et al., 2016; Miao et al., 2016). To date, high-throughput profiling

of hm5C is only possible via the hMeRIP-seq technique (Delatte
et al., 2016), which reports regions enriched with hm5C signal (or
low-resolution hm5C-containing peaks). Due to the existence of
multiple Cytosines within such regions, it is not exactly clear which
specific Cytosine can be modified by hydroxylmethylation. When
WeakRM was applied to hm5C, all sequences under the hm5C
peaks from Drosophila S2 cells hMeRIP-seq data were used as the
positive samples. Negative samples were collected from negative
regions that do not intersect with the positive peaks in the same cell
line. These samples were further selected and randomly trimmed to
fit the number and width of the positive sequences.

3.2.1 Weakrm outperformed competing algorithms

We randomly split the dataset into training, validation and testing
sets using a ratio of 8:1:1. Each dataset contains an equal number of
positive and negative sequences and of roughly the same size distri-
bution. The area under the ROC curve (AUROC), average precision
(AP) and accuracy with 0.5 threshold were selected as the main
evaluation metrics during performance evaluation.

As shown in Table 3, the proposed WeakRM model achieved the
best performance with respect to all three evaluation metrics com-
pared with WSCNNLSTM with Noisy-and fusion method. Random
cropping data augmentation effectively improved the predictive per-
formance of WeakRM on hm5C data, and the improvement is more
obvious than that of m7G. This may be because the peak of hm5C
has a larger width overall. Furthermore, through data augmentation,
the training is more stable.

It is worth noting that, to the best of our knowledge, there exist
only two computational approaches iRNA5hmC (Liu et al., 2020)
and iRNA5hmC-PS (Ahmed et al., 2020) for predicting hm5C RNA
modification from RNA sequences. Both methods were based on
strongly supervised learning of the same dataset (Delatte et al.,
2016) as the one used in our study. Although both of them achieved
positive predicting results (AUROC of 0.70 and 0.86), the perform-
ance of WeakRM is even better (AUROC of 0.909), suggesting the
advantage of the proposed computational framework.

3.2.2 Weakrm detected sub-regions containing hm5C

A potentially useful application of the trained WeakRM model is to
detect the sub-regions containing hm5C out of a long input

Fig. 4. Density of highest weight instance location on single-base m7G validation

data. The known site is placed in the center (0 on X-axis). The red dashed line indi-

cates the boundaries of instances that contain the m7G site

Attribution map of the highest-weight instance

Attribution map of the lowest-weight instance

Fig. 5. Attribution maps for the instance with the highest and lowest attention

weight from the single-base m7G sequence with highest predicted probability
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sequence. Since there exist no high-throughput approaches for
profiling hm5C at base resolution, ground truth data (base-reso-
lution hm5C sites) was unavailable. As such, we developed a new
peak margin-based method to demonstrate the effectiveness of our
model in identifying the sub-regions containing hm5C out of a long
input sequence. Specifically, the peaks from hMeRIP-seq data natur-
ally have two margins, one toward the 50 end and the other towards
the 30 end, which allows us to construct datasets containing both
positive and negative sequences. Ideally, our model should assign
higher weights to the positive side while giving lower weights to
the negative. To display our results, for each sequence, we selected
the most important instance and recorded its relative position to the
margin (0 on axis, which indicates the margins of the peaks). We
show in Figure 7 the density of these relative distances. It is clear
that the most important instances were enriched on the positive sides
of the corresponding datasets, which provided strong evidence that
our model can discriminate hm5C-containing sub-regions against
the rest of the sequences.

3.3 Case study 2: prediction of N4-acetylcytidine
Recently, despite some controversy (Sas-Chen et al., 2020), N4-ace-
tylcytidine (ac4C) were identified on poly(A) RNA isolated from a
variety of human cells (Dong et al., 2016; Guo et al., 2020). Similar
to hm5C, high-throughput profiling approaches of base resolution is
not yet available for ac4C. Only low-resolution epitranscriptome
data are available for this modification via acRIP-seq, making it a
suitable subject for weakly supervised learning. When preparing the
data, we extracted the ac4C peaks mutually detected in cell lines as
the positive samples. Correspondingly, the negative data were
extracted from the intersection of negative regions as well. The
negative samples were further selected to match the number and
width distribution of the positive samples.

3.3.1 Weakrm outperformed competing algorithms

To the best of our knowledge, only two computation methods,
PACES (Zhao et al., 2019) and XG-ac4C (Alam et al., 2020), have
been developed so far for the prediction of ac4C from sequences,
and again, both were based on strong supervision. Although both
approaches achieved positive prediction performance, they require a
very specific sequence pattern and consider only sequences that have
at least five continuous CXX repeats, which may limit the applicable
scope of these methods. Compared to them, our WeakRM model
does not presume any motifs of ac4C in advance and lets the neural
networks learn the sequence patterns associated with ac4C directly
from the complete low-resolution epitranscriptome data, and is thus
applicable to all input sequences with no prerequisites.

Since the webserver of XG-ac4C allows a fixed input of length
415 nt, we constructed our ac4C dataset by selecting the peaks that
do not exceed 415 nt and resizing the width of selected peaks to
415 nt for a fair comparison. Following the setting in our previous
example, we used the same ratio 8:1:1 to split the dataset into the
training, validation, and testing sets. Each dataset contains an equal
number of positive and negative samples.

As shown in Table 4, although trained by strong supervision,
XG-ac4C still achieved positive results on our newly constructed
dataset. Our WeakRM approach performed the best and is more ro-
bust than WSCNNLSTM. Nevertheless, it may not be appropriate

to compare directly WeakRM with existing methods based on
strong supervision, as they have different assumptions and goals,
and require different experimental settings.

3.3.2 Weakrm detected sub-regions containing ac4C

To demonstrate the ability of the proposed WeakRM algorithm in
detecting sub-regions containing ac4C out of a long input sequence,
we performed the peak margin-based testing as described in Case
Study 1. As shown in Figure 8, the high-weight instances were again
enriched on the positive sides of the corresponding datasets, showing
strong evidence that our model is capable of discriminating ac4C-
containing sub-regions from the rest of the sequences. Interestingly,
compared with the observed patterns for hm5C (see Fig. 7), the most
important instances of ac4C appear closer to the boundary (coordin-
ate 0 of X-axis), indicating a better spatial accuracy in detecting
RNA-modification containing sub-regions. It may be because com-
pared with hm5C, the peaks generated from ac4C sites are narrower
and have more accurate boundaries. This may be related to the ex-
periment protocol (e.g. fragment size) and peak calling algorithms
(e.g. sliding window size) used in their original studies.

4 Conclusion

Existing computational approaches for decoding the RNA modifica-
tions are mostly based on strong supervision and ideally require epi-
transcriptome data of base-resolution. Due to technical limitations,
such data may not be available for some modifications, such as ac4C
and hm5C. We proposed here the first weakly supervised learning
framework WeakRM for learning RNA modifications from low-
resolution epitranscriptome datasets, such as those generated from
hMeRIP-seq and acRIP-seq.

Fig. 7. Location of the most important instances reported on the peak-margin data-

sets. A total of 600 nt of sequences were extracted from both the 50 and 30 margins

of the called peaks, with 300 nt within the peak and 300 nt outside of the peak, re-

spectively. With this setting, hm5C sites are expected to appear on the 30 half for

sequences extracted from the 50 end of the peak or the 50 half for the sequences

extracted from the 30 end of peaks. It is worth noting that, a single hm5C site can

generate a peak of more than 200 bp in the MeRIP-seq data, so the true location of

the hm5C site should not be immediately before or after the edges of the peaks (co-

ordinate 0 of X-axis). These are all consistent with the distribution pattern of the

most important instances of the sequences

Table 4. Predictive performance on ac4C data with standard

deviation

Model AUROC AP Accuracy

XG-ac4C 0.786 0.774 0.680

WSCNNLSTM 0.912(60.012) 0.895(60.014) 0.835(60.015)

WeakRM 0.935(60.007) 0.925(60.008) 0.863(60.009)

Note: All methods were evaluated using the same datasets.

The bold indicates the proposed method and the best performance under dif-

ferent evaluation metrics.

Table 3. Predictive performance on hm5C data with standard

deviation

Model AUROC AP Accuracy

WSCNNLSTM 0.889 (60.007) 0.883 (60.011) 0.775 (60.022)

WeakRM 0.894 (60.014) 0.907 (60.007) 0.792 (60.025)

WeakRM (crop) 0.909 (60.003) 0.912 (60.003) 0.823 (60.018)

Note: All methods were evaluated using the same datasets.

The bold indicates the proposed method and the best performance under dif-

ferent evaluation metrics.
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We validated the proposed WeakRM method on three independ-
ent datasets, corresponding to three different RNA modification
types (m7G, hm5C and ac4C) and their respective sequencing tech-
nologies (m7G-MeRIP-seq, hMeRIP-seq and acRIP-seq). We demon-
strated that WeakRM substantially improved the prediction
performance and applicable scope compared with existing
approaches that were based on strong supervision. Importantly, our
model captured sequence patterns that are consistent to the known
motif detected by HOMOR software, and can vaguely identify
regions containing the RNA modifications of interest. These results
together demonstrated the generality and effectiveness of our ap-
proach for learning from low-resolution epitranscriptome data.

Notably, WeakRM also outperformed the existing weakly super-
vised learning algorithms for sequence analysis developed on TFBS
prediction. This was made possible by two major improvements
from the algorithm perspective. First, instead of using the wide-
spread instance score merging approach, we applied an attention-
based feature merging strategy to obtain learnable weights for each
instance. Second, data augmentation was performed by taking ad-
vantage of the salient features of the FRIP-seq protocol via random
cropping, which extended the diversity of training samples.

Given the positive results reported in our study, WeakRM and
weakly supervised learning framework should make a powerful tool
for studying RNA modifications when only low-resolution epitran-
scriptome data are available.
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