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Abstract

HIV-1 enters the CNS soon after initial systemic infection; within the CNS parenchyma infected and/or activated perivascular
macrophages, microglia and astrocytes release viral and cellular toxins that drive secondary toxicity in neurons and other
cell types. Our previous work has largely modeled HIV-neuropathology using the individual viral proteins Tat or gp120, with
murine striatal neurons as targets. To model disease processes more closely, the current study uses supernatant from HIV-1-
infected cells. Supernatant from HIV-1SF162-infected differentiated-U937 cells (HIV+

sup) was collected and p24 level was
measured by ELISA to assess the infection. Injection drug abuse is a significant risk factor for HIV-infection, and opiate drug
abusers show increased HIV-neuropathology, even with anti-retroviral treatments. We therefore assessed HIV+

sup effects on
neuronal survival and neurite growth/pruning with or without concurrent exposure to morphine, an opiate that
preferentially acts through m-opioid receptors. Effects of HIV+

sup 6 morphine were assessed on neuronal populations, and
also by time-lapse imaging of individual cells. HIV+

sup caused dose-dependent toxicity over a range of p24 levels (10–
500 pg/ml). Significant interactions occurred with morphine at lower p24 levels (10 and 25 pg/ml), and GSK3b was
implicated as a point of convergence. In the presence of glia, selective neurotoxic measures were significantly enhanced
and interactions with morphine were also augmented, perhaps related to a decreased level of BDNF. Importantly, the arrest
of neurite growth that occurred with exposure to HIV+

sup was reversible unless neurons were continuously exposed to
morphine. Thus, while reducing HIV-infection levels may be protective, ongoing exposure to opiates may limit recovery.
Opiate interactions observed in this HIV-infective environment were similar, though not entirely concordant, with Tat/gp120
interactions reported previously, suggesting unique interactions with virions or other viral or cellular proteins released by
infected and/or activated cells.
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Introduction

Human immunodeficiency virus-1 (HIV-1) disrupts normal

immune system function and leads to acquired immunodeficiency

syndrome (AIDS). HIV-1 can also induce a wide range of central

nervous system (CNS) deficits, collectively known as HIV-1-

associated neurocognitive disorders (HAND). HIV-1 enters the

CNS soon after initial systemic infection [1,2]. It is widely believed

that virus penetrates the CNS within infected monocytes and

lymphocytes [2,3], which normally traffic across the blood-brain

barrier (BBB) as a part of immune surveillance of the brain.

Mature neurons are not infected by HIV-1; instead, infected and/

or activated glial cells release various viral and cellular factors that

induce direct and/or indirect neuronal toxicity, leading to HAND

[2,4–7]. Combination antiretroviral therapy (cART), which

controls systemic HIV-infection, has improved the health status

of a large segment of patients [8–10]. Although cART has reduced

the overall severity of neurocognitive disorders in HIV-1 patients,

the prevalence of HAND remains at approximately 50% [4,8,10–

12]. The persistence of relatively high rates of CNS disease is likely

due to a combination of longer patient survival, the relatively poor

CNS penetrance of most antiretroviral drugs [4,13], and their

neurotoxic effects [14]. Even if the CNS viral load is extremely low

or undetectable, neurodegeneration can still occur in response to

viral proteins, such as transactivator of transcription (Tat), that are

released from cells even when viral replication has been inhibited

[15].

Injection drug abusers are at high risk of acquiring HIV-

infection due to sharing of contaminated needles and unsafe sexual

behavior. Nearly 30% of HIV-infected patients have a history of

injection drug abuse involving opiates [16,17]. Additionally, a

subset of HIV+ patients is exposed to opiates through their

legitimate use for treatment of AIDS-related chronic pain

syndromes. As opiates by themselves are known to induce

immunomodulatory or immunosuppressive effects, both in the

periphery and CNS [18,19], it is hypothesized that they may

enhance virus spread or otherwise exacerbate disease processes.

Experimental evidence also suggests that opiates can interact with

HIV-1 or HIV-1-proteins directly on CNS cells and tissues

[16,20–26]. Among patients with HIV-1 infection, those who also
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abuse opiate drugs show faster progression to AIDS and more

severe neurocognitive deficits [27–29].

Many previous studies have modeled HIV-neuropathology

using individual viral proteins, such as Tat, glycoprotein 120

(gp120), and others. However, the CNS of HIV-infected patients is

not only exposed to individual viral proteins, but instead to all

cytokines/chemokines and other cellular products, viral proteins

and virus particles released from infected and/or activated cells.

Thus, to more closely model HIV-1-mediated neurotoxicity, we

have used supernatant from HIV-1SF162-infected differentiated-

U937 cells (HIV+
sup). The R5-tropic HIV-1SF162 strain was used

since R5-tropic (monocyte/macrophage-tropic) viruses are pre-

dominant in cerebrospinal fluid (CSF) and CNS parenchyma

[30,31].

Multiple outcome measures were studied after HIV+
sup 6

morphine treatments, including both cell death and neurite

degeneration. Studies in the presence of glia allowed us to

distinguish between direct and indirect neurotoxicity. Our results

indicate that morphine worsens selective neurotoxic effects of

HIV, and that glycogen synthase kinase-3b (GSK3b) signaling

may be a point of convergence. Importantly, morphine limits the

ability of neurons to recover from sublethal damage.

Material and Methods

Ethics statement
Experiments were conducted in accordance with procedures

reviewed and approved by the Virginia Commonwealth Univer-

sity Institutional Animal Care and Use Committee (Protocol

Number: AM10158).

Mixed glial cultures
Cells were cultured from the striatum, a region targeted by HIV

where opioid receptor levels are relatively high. Mixed glial

cultures (astrocytes and microglia) from mouse striatum were

prepared as previously described [23,24], with minor modifica-

tions. Striata from P0-P1 ICR (CD-1) mice (Charles River

Laboratories International, Inc., Wilmington, MA) were dissected,

minced and enzymatically dissociated with trypsin (2.5 mg/ml;

Sigma-Aldrich, St. Louis, MO) and deoxyribonuclease (DNase;

0.015 mg/ml; Sigma-Aldrich) in Dulbecco’s Modified Eagle’s

Medium (DMEM; Gibco, Grand Island, NY) for 30 min at 37uC.

Tissue was resuspended in DMEM supplemented with 10% fetal

bovine serum (FBS; Gibco), triturated and filtered through 100

and 40 mm nylon mesh pore filters respectively. Cells were plated

and maintained in supplemented DMEM containing 10% FBS.

Neuronal cultures
Mouse striatal neuron cultures were prepared as previously

described [23,24]. Briefly, striata from E15-E16 ICR mice were

dissected, minced and enzymatically dissociated with trypsin

(2.5 mg/ml) and DNase (0.015 mg/ml) in neurobasal medium

(Gibco) for 30 min at 37uC. Tissue was resuspended in neurobasal

medium supplemented with B-27 additives (Gibco), L-glutamine

(0.5 mM; Gibco) and glutamate (25 mM; Sigma-Aldrich), triturat-

ed and filtered twice through 70 mm nylon mesh pore filters.

Neurons were plated and maintained in supplemented neurobasal

medium. Culture purity was determined by immunocytochemistry

using anti-MAP-2 antibody (Abcam, Cambridge, MA; ab32454)

and found to be .80% neurons.

Neuron-mixed glial co-cultures
All cultures were prepared in 24 well plates pre-coated with

poly-L-lysine (0.5 mg/ml; Sigma-Aldrich). Neurons were plated

alone in 12 wells (neuron cultures); in the remaining 12 wells we

established neuron-glia co-cultures as previously described [23].

Briefly, two deep midline grooves were made into the culture

surface to restrict the movement of glial cells between sides. Glial

cells (26105 cells/well) were plated on one side of the grooves;

when they became confluent (10 d), neurons (0.256105 cells/well)

were plated onto the entire culture surface. In these wells, all

neurons are exposed to glial conditioned medium, but neurons on

one side of the grooves contact the glial bedlayer, while neurons on

the other side grow in isolation on the culture surface. It is difficult

to visualize all neurite extensions when neurons are in contact with

the glial bedlayer. Thus, the co-culture studies used neurons that

did not have direct contact with glia. All cultures were maintained

in supplemented neurobasal medium; neurons were allowed to

mature for 5–7 d prior to treatment.

Supernatant from HIV-infected cells
U937 cells (ATCC, Manassas, VA), a leukemic monocyte cell

line originally derived from a histiocytic lymphoma, were plated at

0.56105 cells/ml in RPMI-1640 media (Gibco) supplemented

with 10% FBS, and activated/differentiated with interleukin-2 (IL-

2, 100 ng/ml; Sigma-Aldrich), phytohaemagglutinin (PHA, 5 mg/

ml; Sigma-Aldrich), and phorbol 12-myristate 13-acetate (PMA,

100 ng/ml; Sigma-Aldrich), for 48 h. Activated/differentiated

cells were treated with Polybrene (2 mg/ml; Sigma-Aldrich) for

30 min at 37uC, and exposed to HIV-1SF162 (p24 = 50–100 pg/

ml; from Dr. Jay Levy [32], through the NIH AIDS Research and

Reference Reagent Program, Germantown, MD). After 7 d,

supernatants were collected by filtering through a 0.20 mm filter.

HIV infection was confirmed by quantification of p24 levels (HIV-

1 p24 Antigen Capture Assay; Advanced Bioscience Laboratories,

Rockville, MD) in culture supernatants; a 4-6 fold increase in p24

antigen levels was typical over 7 d. Supernatants from uninfected

but differentiated U937 cells (Controlsup) were used as a control.

Cell culture supernatants were aliquoted and stored at 280uC.

Treatments
Morphine is the major metabolite of heroin in the CNS [33]; it

preferentially targets m-opioid receptors (MORs). Since opiates by

themselves can affect HIV-1 infection and replication [34], it was

important to assess the effects of opiate interactions using cell-free

supernatants. HIV+
sup or Controlsup were added to neuronal

cultures in the presence or absence of morphine sulfate (500 nM;

Sigma-Aldrich) 6 naloxone (1.5 mM; Sigma-Aldrich), a general

opioid receptor antagonist.

MTT assay
At specific times after treatment, cells were rinsed and incubated

with 1.2 mM 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium

bromide (MTT; Molecular Probes, Grand Island, NY) in fresh,

pre-warmed media at 37uC for 4 h. The medium was gently

aspirated, and formazan crystals, the product of reduction of MTT

by mitochondrial dehydrogenase in live cells, were dissolved in

100 ml of dimethyl sulfoxide (DMSO; Sigma-Aldrich) at 37uC for

10 min. The amount of formazan was measured by absorbance at

540 nm using a PHERAstar microplate reader (BMG LABTECH

Inc., Cary, NC).

TUNEL assay
At specific intervals after treatments, cells were fixed overnight

at 2–8uC in 4% paraformaldehyde (Sigma-Aldrich), permeabilized

at room temperature in 0.1% Triton-X 100 (Molecular Probes)

and 0.1% BSA (Invitrogen, Grand Island, NY) for 15 min, and
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blocked in 0.1% BSA and 1% horse serum for 30 min. Fixed cells

were stained for Hoechst 33342 (Sigma-Aldrich) and terminal

deoxynucleotidyl transferase dUTP nick end labeling (TUNEL;

Roche Applied Sciences, Mannheim, Germany). Cells were

visualized and digital images were acquired using an Axio

Observer Z.1 microscope and Zen 2010 software (Zeiss Inc.,

Thornwood, NY). Neuronal apoptosis was assessed by manually

counting the percentage of TUNEL(+) cells.

Assessment of neuronal viability
In each culture well, at least 50 healthy neurons were initially

selected in 6–8 non-overlapping fields. After treatment, repeated

images of pre-selected cells were captured at 1 h intervals, using a

microscope with a computer-regulated stage (Axio Vision 4.6; Carl

Zeiss Inc.) under controlled environmental conditions (37uC, 95%

humidity and 5% CO2) [23,24]. At the end of each experiment,

pre-selected neurons were assessed for viability at 6 h intervals in

the digital images. Cell death was confirmed using rigorous

morphological criteria including abnormal shrinking of the cell

body and eventual cell body fragmentation, nuclear destruction,

loss of phase-brightness, and excessive neurite loss [23,24,35]. In

some experiments, live and dead cells were confirmed at the end of

the experiment by staining respectively with calcein-AM and

ethidium homodimer-1 (LIVE/DEAD Viability/Cytotoxicity Kit;

Molecular Probes, Grand Island, NY). Findings were reported as

the average percentage of neuron survival, with respect to pre-

treatment neuron count 6 standard error of the mean (SEM), and

analyzed using a repeated measure analysis of variance (ANOVA)

and Duncan’s post hoc test using Statistica 8.0 (StatSoft, Tulsa,

OK).

Assessment of neurite length
At specific intervals after treatments, cells were fixed, permea-

bilized, blocked, and subsequently stained for TUNEL and MAP-

2 (Abcam; ab32454); cells were visualized and digital images were

acquired. In digital images, neuritic arborization was quantified

only for live [TUNEL(-)] neurons, using modified Sholl analysis. A

‘Sholl score’ was measured by counting the number of intersec-

tions of MAP-2-positive neurites with equidistant concentric circles

of increasing radius, centered on the cell body [36]. The Sholl

score was converted into neurite length in mm via micrometer

calibration at the same magnification.

Assessment of neurite growth/regrowth after treatment
removal

Prior to treatment, at least 15 healthy neurons were selected in

7–8 non-overlapping fields per well. Repeated images of pre-

selected cells were captured at 1 h intervals after treatment onset.

After 24 h, cells were gently rinsed with pre-warmed medium and

returned either to a ‘control 6 opiate environment’, which had

Controlsup, or to a ‘HIV 6 opiate environment’ which had

HIV+
sup (Table 1). We then continued to capture images of the

same neurons at 1 h intervals for an additional 48 h (total 72 h).

Thus, there were a total of 9 groups with varying exposure times to

HIV+
sup or Controlsup, in the presence or absence of morphine 6

naloxone; these are outlined in Table 1.

Neurons that remained alive until the experiment end (72 h)

were assessed for neuritic arborization in images taken at 0 h,

24 h, and 72 h using Sholl analysis. The findings were reported as

average Sholl scores at each time, normalized to pre-treatment

(0 h) scores 6 SEM. Data were analyzed using a repeated measure

ANOVA and Duncan’s post hoc test using Statistica 8.0 (StatSoft).

ELISA
Conditioned medium from mixed glial cultures were collected

on the schedule described in Table 1 and assessed for brain-

derived neurotrophic factor (BDNF), glial cell-derived neurotroph-

ic factor (GDNF), interleukin 6 (IL-6) and tumor necrosis factor a
(TNFa) by ELISA according to the manufacturer’s instructions

(BDNF and GDNF ELISAs: Abcam; IL-6 and TNFa ELISAs:

R&D Systems, Minneapolis, MN). 3,39,5,59-tetramethylbenzidine

(TMB) substrate was added for color development and plates were

read at 450 nm using a PHERAstar microplate reader immedi-

ately after terminating the reaction. Protein levels were determined

based on a standard curve.

Immunoblotting
Whole cell extracts were prepared using radioimmunoprecip-

itation assay (RIPA) buffer (Sigma-Aldrich) with protease and

phosphatase inhibitors (cOmplete - protease inhibitor cocktail

tablets, and PhosSTOP - phosphatase inhibitor cocktail tablets;

Roche), and total protein concentrations were determined by

bicinchoninic acid (BCA) assay (Thermo Fisher Scientific, Rock-

ford, IL). Cell lysates containing equal amounts of total protein

(,5–10 mg) were heated at 100uC for 5 minutes in laemmli buffer

(Sigma-Aldrich), electrophoretically separated on a 10% SDS-

polyacrylamide gels (Criterion Precast Gel; Bio-Rad, Hercules,

CA), and transferred onto polyvinylidene difluoride (PVDF)

membranes (Immun-Blot; Bio-Rad). Membranes were incubated

with primary antibodies for phospho-GSK3b-Ser9 (p-GSK3b-S9;

Cell Signaling Technology, Danvers, MA; 5558), GSK3b (t-

GSK3b; Cell Signaling Technology; 9832) and glyceraldehyde 3-

phosphate dehydrogenase (GAPDH; Abcam; ab8245). Appropri-

ate horseradish peroxidase-conjugated secondary antibodies

(SouthernBiotech, Birmingham, AL) were used. Membranes were

detected using SuperSignal West Femto Maximum Sensitivity

Substrate (Thermo Fisher Scientific), and visualized using a Kodak

Image Station 440CF.

Statistical analyses
All data were expressed as average 6 SEM. Unless otherwise

indicated, data were analyzed statistically using a one-way

ANOVA followed by Duncan’s post hoc test using Statistica 8.0

(StatSoft); an a level of p,0.05 was considered significant.

Results

Dose dependent neuron death and interactions with
morphine

To determine the HIV+
sup concentration for subsequent

experiments we assessed concentration-dependent toxicity in the

presence or absence of 500 nM morphine, a titer chosen to

maximally stimulate neuronal and glial MORs in vitro, and to

result in dynamic Ca2+ changes and secretion of multiple cytokines

and chemokines [21,23–26,37–39]. HIV+
sup at p24$25 pg/ml

and above showed significant toxicity even in the absence of

morphine in an MTT assay. As expected, there was a

concentration-dependent decrease in MTT reduction, indicating

lower mitochondrial activity at higher HIV+
sup levels. At p24

concentrations #10 pg/ml, HIV+
sup did not affect the MTT assay

unless cells were co-exposed to morphine, indicating a significant

synergistic effect (Fig. 1). At p24 concentrations $25 pg/ml, there

were no significant interactions of HIV+
sup with morphine. The

MTT assay is a measure of the activity of NADH and NADPH-

dependent cellular oxidoreductase enzymes [40–42]. Although it is

frequently used as an indicator of cell survival/toxicity or

proliferation, it is only an indirect measure. Therefore, neuron

HIV and Morphine-Mediated Interactive Effects on Neurons

PLOS ONE | www.plosone.org 3 June 2014 | Volume 9 | Issue 6 | e100196



survival was directly assayed using time-lapse imaging (Fig. 2). Like

the MTT assay, time-lapse image analysis showed a p24

concentration-dependent decrease in neuron survival over a

48 h period (Fig. 2B). In contrast to the MTT assay, time-lapse

image analysis also revealed interactive effects between HIV+
sup

and morphine on cell death at p24 concentrations of 10 and

25 pg/ml. As a p24 concentration of 25 pg/ml caused significant

death/toxicity and also showed interactive effects with morphine,

this titer was used in all further experiments. Importantly, 25 pg/

ml falls within the range of p24 levels detected in the CSF of

HAND patients on antiretroviral therapy (p24 = 43.2616.8 pg/

ml) [43].

Toxic effects of HIV 6 morphine in neuron cultures
Neuronal apoptosis was assessed using TUNEL staining (Fig. 3);

all HIV+
sup treatment groups showed significantly enhanced

neuronal apoptosis at all assessed time-points (Fig. 3B; Neuron

panel). At all time-points, except 12 h, morphine significantly

enhanced HIV+
sup-mediated neuronal apoptosis and the interac-

tive effects of morphine were blocked by naloxone. TUNEL

staining is specific for death involving apoptotic pathways, and

may not detect all dying neurons. Additionally, TUNEL does not

distinguish and permit the exclusion of cells that were dead at the

start of the treatment. Time-lapse imaging was used to more

exactly follow cell survival/death (Fig. 4). Over the period of 72 h,

HIV+
sup 6 morphine treatments significantly reduced neuronal

survival in cultures without glia (Fig. 4; Neuron panel). Morphine

significantly enhanced neuronal death mediated by HIV+
sup, and

interactive effects of morphine were blocked by naloxone.

Sublethal synaptic losses and neuritic pruning are thought to be

a major substrate of neurocognitive disorders [4,44–47]. There-

fore, effects of HIV+
sup 6 morphine treatment on neuritic

arborization were assessed using MAP-2-immunostaining followed

by modified Sholl analysis (Fig. 5); only those neurons determined

to be alive by TUNEL assay were used in the analysis. At all

assessed time-points, HIV+
sup 6 morphine treatment groups

showed significantly reduced neurite length (Fig. 5B; Neuron

panel). Morphine did not show a significant interaction with

HIV+
sup at any time.

Role of glia in HIV 6 morphine-mediated neurotoxicity
HIV does not infect mature neurons; instead, virotoxins can

cause indirect neuron damage via inducing an inflammatory

response in activated and/or infected glia [2,4–7]. To determine

the role of glia in HIV+
sup 6 morphine-mediated neurotoxicity,

treatments were carried out either in the presence or absence of

glia. The presence of glia significantly increased the proportion of

HIV+
sup 6 morphine-induced TUNEL(+) neurons (Fig. 3B;

compare panels). At the earliest time point examined (12 h),

HIV+
sup and morphine displayed a significant interaction;

however this only occurred in the presence of glia. Thus, glia

Table 1. Treatment paradigm for neurite growth/regrowth assessment.

Treatment Groups Treatment from 0 to 24 h Treatment from 24 to 72 h

72 h (C) Control Control

72 h (C+M) Control + Mor Control + Mor

72 h (C+M+N) Control + Mor + Nal Control + Mor + Nal

72 h (H) HIV HIV

72 h (H+M) HIV + Mor HIV + Mor

72 h (H+M+N) HIV + Mor + Nal HIV + Mor + Nal

24 h (H) then 48 h (C) HIV Control

24 h (H+M) them 48 h (C+M) HIV + Mor Control + Mor

24 h (H+M+N) then 48 h (C+M+N) HIV + Mor + Nal Control + Mor + Nal

Control = Controlsup; HIV = HIV+
sup (p24 = 25 pg/ml); Mor = morphine sulfate (500 nM); Nal = naloxone (1.5 mM).

doi:10.1371/journal.pone.0100196.t001

Figure 1. Concentration-dependent change in MTT reduction.
Cell toxicity/proliferation was analyzed in neuron cultures at 48 h after
treatment using an MTT assay. The findings were reported as percent of
control absorbance at 540 nm (A540) 6 SEM. Significance was analyzed
using a one-way ANOVA and Duncan’s post hoc test, from n = 3
separate experiments. All treatment groups, except morphine alone
[Control + Mor] and p24 = 10 pg/ml of HIV+

sup [HIV(10)], showed
significantly decreased absorbance at 540 nm (*p,0.05 vs. Control),
likely reflecting neurotoxicity. HIV+

sup caused a concentration-depen-
dent reduction in A540 ($p,0.05). Morphine did not show a significant
interaction with HIV+

sup at any p24 level. Control = Controlsup; HIV =
HIV+

sup (concentration of p24 in pg/ml is specified in parentheses); Mor
= morphine sulfate (500 nM).
doi:10.1371/journal.pone.0100196.g001
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appeared to accelerate the HIV+
sup-morphine interaction. At all

time points except 72 h, the interactive effects of morphine were

significantly attenuated by naloxone. Chronic exposure to

naloxone is occasionally ineffective, even when acute blockade

reverses morphine effects [48]. This may be due to blocking the

cellular effects of the multiple opioids normally released by glia

Figure. 2. Concentration-dependent neuronal death in cultures treated with HIV+
sup ± morphine. Individual striatal neurons were

selected prior to treatment and repeatedly imaged for 48 h after treatment. (A) Digital images of the same cells/fields, at 0 h, 24 h and 48 h after
treatment (white arrowheads indicate cells that have died over the previous 24 h period). Live and dead cells were confirmed at the end of the
experiment by staining respectively with calcein-AM (green) and ethidium homodimer-1 (red); scale bar = 40 mm. (B) Cells were assessed for viability
at 6 h intervals in digital images. Findings were reported as the average neuronal survival as a percent of pre-treatment neuron count 6 SEM.
Significance was analyzed by repeated measures ANOVA and Duncan’s post hoc test, from n = 3 separate experiments (at least 150 neurons per
treatment group). Over the period of 48 h, all treatment groups except morphine alone [Control + Mor] and p24 = 10 pg/ml of HIV+

sup alone
[HIV(10)], showed significantly reduced neuronal survival (*p,0.05 vs. Control). Neuronal survival declined in a concentration dependent manner with
HIV+

sup treatment ($p,0.05). Morphine showed significant interaction with HIV+
sup, but only at lower levels of exposure (p24 = 10 and 25 pg/ml)

(#p,0.05 vs. HIV+
sup alone at corresponding titer). Control = Controlsup; HIV = HIV+

sup (concentration of p24 in pg/ml is specified in parentheses);
Mor = morphine sulfate (500 nM).
doi:10.1371/journal.pone.0100196.g002
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[49,50]. The presence of glia significantly enhanced HIV+
sup 6

morphine-mediated neuron death over the entire 72 h experi-

mental period (Fig. 4; compare panels).

In the subpopulation of neurons that survived, HIV+
sup induced

significant neurite pruning or growth arrest. The presence of glia

did not significantly affect HIV+
sup-induced neurite pruning, even

when neurons were co-exposed to morphine. In fact, in the

Figure. 3. Neuronal apoptosis induced by HIV+
sup ± morphine. Cells were fixed at specific intervals after treatment and labeled for Hoechst

33342 (blue) and TUNEL (red). (A) Digital images of neuronal cultures at 72 h after treatment; scale bar = 40 mm. (B) Apoptosis was assessed by
manually counting the percentage of TUNEL(+) cells. Findings were reported as the average percentage of TUNEL(+) cells 6 SEM. Significance was
analyzed by one-way ANOVA and Duncan’s post hoc test, from n = 4 separate experiments. At all assessed time points, in both culture systems, all
groups exposed to HIV+

sup showed significantly enhanced neuronal apoptosis (*p,0.05 vs. respective C group). In all cases, except at 12 h in cultures
with neurons alone, morphine significantly augmented HIV+

sup-mediated neuronal apoptosis (#p,0.05 vs. respective H group). In all cases, except for
72 h in neuron-glia cultures, the interactive effects of morphine were significantly attenuated by naloxone. In most cases, the presence of glia
significantly enhanced HIV+

sup 6 morphine-mediated neuron apoptosis ($p,0.05 vs. corresponding treatment in neuron cultures; compare panels).
C = Controlsup; H = HIV+

sup (p24 = 25 pg/ml); M = morphine sulfate (500 nM); N = naloxone (1.5 mM).
doi:10.1371/journal.pone.0100196.g003

Figure 4. HIV+
sup ± morphine-mediated neuronal death. Neurons were repeatedly imaged for 72 h after treatment. Cells were assessed for

viability at 6 h intervals in digital images. The findings were reported as the average percentage of neuron survival with respect to pre-treatment
neuron count 6 SEM. Significance was analyzed by repeated measures ANOVA and Duncan’s post hoc test, from n = 6 separate experiments. Over the
period of 72 h, in both culture systems, all groups exposed to HIV+

sup showed significantly reduced neuronal survival (*p,0.05 vs. C). Morphine
significantly enhanced HIV+

sup-mediated neuronal death (#p,0.05 vs. H), and the interactive effects of morphine were blocked by naloxone. In the
presence of glia, HIV+

sup 6 morphine-mediated neuronal death was significantly enhanced ($p,0.05 vs. corresponding treatment in neuronal
cultures; compare panels). C = Controlsup; H = HIV+

sup (p24 = 25 pg/ml); M = morphine sulfate (500 nM); N = naloxone (1.5 mM).
doi:10.1371/journal.pone.0100196.g004
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presence of glia, Controlsup-treated groups had significantly longer

neurites (Fig. 5B; compare panels).

Reversibility of HIV 6 morphine-mediated neurite
damage

Neurons appear to recover from certain types of sublethal

damage caused by HIV-related insults [4,44,46]. Therefore, the

reversibility of HIV- and morphine-mediated neurite damage was

tested. HIV+
sup 6 morphine treatments caused significant neurite

growth arrest over the period of 24 h in cultures without glia

(Fig. 6B; Neuron panel). With continuous exposure to HIV+
sup 6

morphine for 72 h, neurite length remained significantly reduced.

When HIV+
sup was removed at 24 h, neurites resumed their

growth. Interestingly, sustained exposure to morphine by itself was

sufficient to reduce and/or delay neurite recovery/outgrowth

despite the removal of HIV+
sup. This effect of morphine was

blocked by naloxone.

Since glia support neurite outgrowth and synapse remodeling

through multiple mechanisms [51–54] we tested whether glia play

a role in the reversibility of HIV- and morphine-mediated neurite

pruning/growth arrest. As in the neuron-only cultures, HIV+
sup 6

morphine treatments caused significant neurite growth arrest over

24 h when glia were present (Fig. 6B; Neuron-glia panel). In the

presence of glia, neurite outgrowth was significantly faster after

removal of HIV+
sup than it was in neuron-only cultures (Fig. 6B;

compare panels).

HIV- and morphine-mediated effects on secretion of
growth factors and cytokines by glia

Our results show that glial effects on neuron injury and recovery

are dependent on the context of HIV and morphine. Glia

enhanced HIV-driven neuronal death (Fig. 3B and 4), but

accelerated neurite recovery after removal of HIV (Fig. 6B). To

determine how glia might direct these outcomes, we examined

whether HIV and morphine affect glial production of secreted

factors known to influence neuronal survival and outgrowth.

ELISA was used to assay levels of the neurotrophic factors (BDNF

and GDNF), as well as cytokines (IL-6 and TNFa) that indicate

glial inflammatory activation (Fig. 7); they showed multiple

response patterns. BDNF levels were significantly reduced by

HIV+
sup 6 morphine treatments. BDNF recovered to control

levels after removal of HIV+
sup, even though morphine remained

present. GDNF levels were unaffected by any treatment. IL-6

levels were increased by HIV+
sup or morphine treatment alone,

and in addition, morphine significantly augmented the effect of

HIV+
sup. Although IL-6 levels returned to control after removal of

HIV+
sup, the elevated levels were maintained in the continued

presence of morphine. TNFa release was significantly increased by

HIV+
sup alone, but not by morphine alone, although morphine co-

treatment augmented the effect of HIV+
sup. TNFa levels returned

to control after removal of HIV+
sup, even in the continuous

presence of morphine. Thus, among the secreted factors whose

levels were influenced by HIV and morphine, BDNF, TNFa and

IL-6 responded to HIV+
sup alone, while only IL-6 was affected by

morphine itself. Both TNFa and IL-6 showed HIV-morphine

interactive effects. Only IL-6 continued to respond to morphine

exposure after HIV removal.

Figure. 5. HIV+
sup ± morphine-mediated neurite damage. Cells were fixed at specific intervals after treatment and labeled for MAP-2 (green)

and TUNEL (red). (A) Digital images of neuronal cultures at 72 h after treatment; scale bar = 40 mm. (B) The ‘Sholl score’ was assessed only for TUNEL(-
) neurons in the digital images and converted into neurite length in mm via a micrometer-scale calibration. The findings were reported as average
total neurite length per neuron (mm) 6 SEM. Significance was analyzed by one-way ANOVA and Duncan’s post hoc test from n = 4 separate
experiments. At all time-points and in both culture systems, all groups exposed to HIV+

sup showed significantly reduced neurite length (*p,0.05 vs.
C). Morphine did not show a significant interaction with HIV+

sup treatment. The presence of glia did not have a significant effect on HIV+
sup 6

morphine-mediated neurite damage, but in the presence of glia, Controlsup-treated groups showed significantly longer neurite length ($p,0.05 vs.
corresponding treatment in neuron cultures; compare panels). C = Controlsup; H = HIV+

sup (p24 = 25 pg/ml); M = morphine sulfate (500 nM); N =
naloxone (1.5 mM).
doi:10.1371/journal.pone.0100196.g005
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Figure 6. Reversibility of HIV+
sup ± morphine-mediated neurite damage. Images of pre-selected neurons were captured for 24 h after initial

treatments, and for an additional 48 h after treatments were changed as described in Table 1. (A) Digital images of neuronal cultures after specified
time and treatments (white arrowheads indicate area of neurite outgrowth since previous image); scale bar = 40 mm. (B) Neurons that remained alive
until the experiment end (72 h) were assessed for their arborization in images taken at 0, 24 and 72 h, using Sholl analysis. The findings were
reported as average Sholl scores at each time, normalized to pre-treatment (0 h) scores 6 SEM. Significance was analyzed by repeated measures
ANOVA and Duncan’s post hoc test, from n = 45–60 neurons per treatment group (sampled from 3 separate experiments; at least 15 neurons per
group per experiment). Over the period of 24 h, and in both culture systems, HIV+

sup 6 morphine treatments induced neurite growth arrest; in
neuron-glia co-cultures, HIV+

sup + morphine treatment appeared to cause neurite pruning (*p,0.05 vs. 0 h, for corresponding treatment). After
removing HIV+

sup at 24 h, neurite growth arrest was reversible ($p,0.05 vs. 24 h, for corresponding treatment); however, if HIV+
sup 6 morphine

treatments were continued for 72 h, then neurite growth arrest was persisted. If morphine treatment continued after the removal of HIV+
sup, neurite

outgrowth was significantly reduced/delayed compared to neurons returned to Controlsup (#p,0.05 vs. ‘24 h (H) then 48 h (C)’). This effect of
morphine was blocked by naloxone. In the presence of glia, neurite outgrowth after removal of HIV+

sup was significantly enhanced, even in the
continued presence of morphine (1p,0.05 vs. corresponding treatment and time point in neuronal cultures; compare panels). C = Controlsup; H =
HIV+

sup (p24 = 25 pg/ml); M = morphine sulfate (500 nM); N = naloxone (1.5 mM).
doi:10.1371/journal.pone.0100196.g006
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GSK3b as a point of convergence for HIV and morphine
Previous studies have shown that HIV-1 induces neurotoxic

effects by enhanced activation of GSK3b [55–60], and that

GSK3b is also linked to neuropathology seen with opiate-abusing

patients [61,62]. We therefore tested whether GSK3b might be a

site of HIV and morphine interactions. Neurons grown in isolation

were lysed at 24 h after treatments with HIV+
sup 6 morphine and

immunoblotted for phospho-GSK3b-Ser9 (p-GSK3b-S9; an

inactive form of GSK3b [63–66]), GSK3b (total GSK3b; t-

GSK3b) and GAPDH (Fig. 8). HIV+
sup and morphine by

themselves induced significant reduction in p-GSK3b-S9 with

respect to t- GSK3b. Morphine co-treatment significantly

augmented HIV+
sup-mediated effects. All of the effects of

morphine were blocked by naloxone.

Discussion

Our studies conclusively show that opiates can directly

exacerbate the deleterious effects of HIV-1 on neurons in an

infective model in vitro, although past studies have demonstrated

that morphine interacts with the HIV-1 proteins Tat [21,23] and

gp120 [24]. The present studies also confirm and extend prior

findings of glial involvement in interactions between opiates and

HIV proteins, demonstrating that combined morphine and HIV-

1SF162 neurotoxicity can be amplified in the presence of glia.

Lastly, we found that continuous morphine exposure significantly

restricted the ability of neurons to recover from exposure to

HIV+
sup. This suggests that HIV-opiate co-exposure may trigger

maladaptive cellular responses that persist in the presence of

opiates alone, even after HIV infection is mitigated. Importantly,

this situation is relevant to opiate-exposed patients whose HIV

infection is controlled with cART.

Figure 7. HIV+
sup ± morphine-mediated effects on secretion of growth factors and cytokines by glia. After specified times and

treatments, conditioned medium from mixed glial cultures was collected and assessed for levels of BDNF, GDNF, IL-6 and TNFa by ELISA; Growth
factor/cytokine levels were determined based on a standard curve. The findings were reported as average concentrations (pg/ml) 6 SEM. Significance
was analyzed using a one-way ANOVA and Duncan’s post hoc test, from n = 3 separate experiments. BDNF: HIV+

sup 6 morphine treatments
significantly reduced levels of BDNF (*p,0.05 vs. ‘72 h (C)’); after removal of HIV+

sup, BDNF returned to control levels ($p,0.05). GDNF: HIV+
sup 6

morphine treatments did not have significant effects on GDNF levels. IL-6: HIV+
sup treatment significantly enhanced levels of IL-6; morphine

treatment alone also significantly elevated IL-6 levels (*p,0.05 vs. ‘72 h (C)’), and morphine co-treatment significantly augmented HIV+
sup-mediated

effects (#p,0.05). After removal of HIV+
sup, IL-6 returned to control levels ($p,0.05); in the continuous presence of morphine, IL-6 remained at a

significantly higher level than control (*p,0.05) and [24 h (H) then 48 h (C)]-treatment group (#p,0.05). TNFa: HIV+
sup treatment significantly

enhanced levels of TNFa (*p,0.05 vs. ‘72 h (C)’); morphine co-treatment significantly enhanced the HIV+
sup-mediated effect (#p,0.05). After removal

of HIV+
sup, TNFa levels returned to control values ($p,0.05). C = Controlsup; H = HIV+

sup (p24 = 25 pg/ml); M = morphine sulfate (500 nM).
doi:10.1371/journal.pone.0100196.g007
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Experimental models for HIV 6 opiate-mediated
neurotoxicity

Since HIV is a human-specific disease, models in other species

have deficiencies as well as strengths. For example, non-human

primates have been an invaluable model to assess interactive

effects of the HIV-like simian immunodeficiency virus (SIV) and

opiates [67,68]. However, limited availability and the lack of

established simian culture models make mechanistic studies

difficult. There are rodent in vivo models that closely mimic viral

infection, including an HIV-1 transgenic rat that expresses a

majority of HIV-1 proteins without viral replication [69], and

‘‘humanized’’ SCID mice in which establishment of a human

immune system in mice permits HIV infection [70]. However, in

both cases the peripheral and central target cells are those of the

rodent host. Our past in vivo studies have used a Tat transgenic

mouse in which Tat production is largely restricted to the CNS

[20,25], and we have also examined effects of HIV-1 proteins on

murine cells in vitro [21,23,24,35,71,72]. In general, the findings in

culture have paralleled outcomes in vivo; all have closely modeled

key aspects of neurodegeneration and inflammatory biomarker

production seen clinically in the CNS. We are specifically

interested in effects on striatal neurons, since the striatum is a

major target of HIV-1, and since levels of opioid receptors in the

striatum are relatively high [21,73,74]. Although primary human

cells may be preferable as an in vitro model, we have used murine

targets since human neurons/glia from specific brain regions are

not consistently available, and outcomes frequently show regional

specificity [75,76]. Additionally, murine cultures (a) eliminate

human genetic variability in terms of MOR [77], CCR5 [78,79],

and other factors that influence infective and neurodegenerative

processes; and, (b) are free from any confounding effects of

morphine on HIV replication in human microglia [34]. Still, the

issue of species mixing must be considered when interpreting

results in this model.

Neurotoxicity induced by HIV 6 morphine
The extent to which opiates contribute to the progression of

HAND in the era of cART remains controversial, although some

large clinical studies now support moderate interactive effects

[27,29]. Opiate drugs of abuse have been shown to enhance

particular damaging effects of HIV-1 proteins in vitro [21–24,72].

However, the CNS of HIV-1-infected patients is exposed to a

great many other cellular and viral factors released from infected

and/or activated cells. Current studies therefore used supernatant

from HIV-infected cells to more fully represent the variety of those

toxic and protective elements. HIV+
sup caused neuronal death in a

concentration-dependent manner over a range of p24 levels (10–

500 pg/ml, Fig. 1 and 2), but significant morphine interactions

were observed only at lower p24 levels (10 and 25 pg/ml). Very

high levels of neuronal death at p24$100 pg/ml may have

masked interactive effects. If, as our data suggest, HIV-1-opiate

interactions are partly governed by the level of infection, HIV-1

patients receiving cART may be especially vulnerable to opiate

interactions since cART has greatly reduced the viral load [8–10].

The sensitivity of HIV-opiate interactions to levels of infection

may also explain some controversy concerning the role of opiates

in severity of HAND.

Since synaptic losses and neuritic pruning/degeneration are

thought to be the principal substrate underlying HAND [4,44–47],

we also examined length of neurites in cells that survived

treatments. Our results show that HIV+
sup reduced the length of

neurites, but unlike the cell death results, there were no significant

morphine interactions (Fig. 5). Since HIV+
sup and morphine can

induce multiple pathways, it is easily envisioned that interactions

may differ between outcome measures. In some instances,

cumulative reductions in synapses and dendritic simplification

may culminate in cell death. Alternatively, neurite pruning may

result in significant loss of cellular functions, but neurons may

remain alive [71,80]. Control treated groups actually showed an

increase in the length of neurites over the same timeframe. This

suggests that neurite length changes mainly reflected neurite

growth arrest/inhibition. Results from repeated neurite length

assessments of individual cells (Fig. 6) support this hypothesis.

These conclusions are in conflict with some previous studies

[71,72,81], where reduction in neurite length was mainly

attributed to pruning of existing neurites. Disparate findings may

reflect different types of neurons, their age and relative maturity,

the response of neurons to individual viral proteins versus the

multiple stimuli in HIV+
sup, and the selection criteria for neurons;

we specifically evaluated sub-lethal neurite length changes by

assessing only [TUNEL(-)] cells instead of the entire population.

Although many experimental and epidemiological studies have

indicated a link between opiate drug exposure and HAND

severity, the mechanisms underlying interactions between HIV-1

and opiates remain largely obscure. HIV-1 is known to induce

neurotoxic effects through abnormal activation of GSK3b, and the

GSK3b inhibitors, lithium (Li) and sodium valproate (VPA),

ameliorate HIV-1-mediated neurotoxicity [55–60]. GSK3b sig-

naling is also implicated in neuropathologic responses to opiates.

For example, the accelerated deposition of hyperphosphorylated

Figure. 8. HIV+
sup ± morphine-mediated GSK3b activation. Cells

were lysed and immunoblotted for p-GSKb-S9 (an inactive form of
GSKb), t- GSKb (total GSKb) and GAPDH in neuronal cultures at 24 h
after treatment. Findings were reported as a percent of control values
of p-GSKb-S9 levels normalized with t-GSKb (p-GSKb-S9/t-GSKb) 6 SEM.
Significance was analyzed using a one-way ANOVA and Duncan’s post
hoc test, from n = 3 separate experiments. HIV+

sup caused significant
loss of p-GSKb-S9 (*p,0.05 vs. C). Treatment with morphine alone also
caused significant loss of p-GSKb-S9, and morphine co-treatment
significantly augmented the HIV+

sup-mediated effect (#p,0.05). The
effects of morphine were blocked by naloxone. C = Controlsup; H =
HIV+

sup (p24 = 25 pg/ml); M = morphine sulfate (500 nM); N = naloxone
(1.5 mM).
doi:10.1371/journal.pone.0100196.g008
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tau that occurs in the CNS of young opiate abusers [61,62] may be

related to elevated GSK3b expression seen in opiate abusers [61]

since GSK3b is a principal tau kinase [82–84]. GSK3b plays a

crucial role in regulating the levels and function of various

structural and signaling proteins in neurons including tau, MAP2,

b-catenin, activator protein 1 (AP-1), cyclic AMP response element

binding protein (CREB), heat shock factor-1 (HSF-1), and among

others, all of which regulate neuronal plasticity, gene expression

and survival [65,66,85]. GSK3b is thus well-positioned to be a

potential convergence point for interactions between HIV-1 and

opiates that regulate neuronal damage. Our results show that

morphine co-exposure significantly augments HIV+
sup-mediated

GSK3b-activation (Fig. 8), supporting this hypothesis.

Role of glia in HIV 6 morphine-mediated neurotoxicity
Opiates exacerbate the release of numerous factors with

neurotoxic potential from glia exposed to HIV [16,26,86], and

alone or in concert with HIV can disrupt certain neuron-

supportive functions of glia, including glutamate buffering, free

radical scavenging, phagocytosis and release of neurotrophic

factors [23,86–88]. It is easily appreciated that glia might play a

crucial role in HIV-opiate interactions; in our previous studies glia

were actually required for interactive neurotoxicity between

morphine and HIV-1 Tat [23]. In the present study, morphine

significantly enhanced HIV+
sup-mediated striatal neuron death

even in the absence of glia. One obvious interpretation is that

morphine interacts with factors in addition to HIV-1 Tat in the

HIV+
sup. Even among R5 strains, unique gp120 sequences may

result in a different degree of interaction between opiates and HIV

[24]. While glia are clearly important determinants of neurotoxic

HIV-opiate interactions, some interactions, perhaps those involv-

ing factors other than Tat, seem to occur directly upon neurons.

Glia also modified neurite recovery, enhancing outgrowth when

HIV was removed. The effect of glia on neurons is never entirely

positive or negative but instead reflects the net input of various

effectors that either promote or damage neurite/neuron structure

and function [51–54]. In this context, our finding that glial

production of BDNF is suppressed by HIV+
sup but then rebounds

to control levels after removal of HIV+
sup shows a return towards a

more trophic glial function. The normalization of proinflamma-

tory cytokines TNFa and IL-6 after HIV removal indicates a

similar trend, although note that continued exposure to morphine

partly abrogates the effect of removing HIV (Fig. 7).

Overall, our results show that cellular and viral products

released from HIV-1SF162-infected leukemic monocytes have

significant negative consequences on striatal neurons. Coincident

exposure to morphine worsens neuronal outcomes in a concen-

tration- and time-dependent manner. This is especially true when

glia are present, although the net effects of glial exposure depend

upon the local levels of virus and opiates. At lower viral titers,

HIV+
sup has sublethal effects on growth of neurite arbors,

indicating that neurons may undergo functional changes long

before they die. This may be quite relevant to the situation in

HIV-infected patients where dendritic/synaptic plasticity, not

neuron death, is the presumed substrate of HAND. Diminished

infection levels in the CNS are probably critical in reversing HIV-

driven neurite damage, although our results caution that chronic

exposure to opiates may inflict damage even in the absence of

HIV.
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