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Systems biology comprehensive 
analysis on breast cancer 
for identification of key gene 
modules and genes associated 
with TNM‑based clinical stages
Elham Amjad1,3, Solmaz Asnaashari1,3, Babak Sokouti1* & Siavoush Dastmalchi1,2*

Breast cancer (BC), as one of the leading causes of death among women, comprises several subtypes 
with controversial and poor prognosis. Considering the TNM (tumor, lymph node, metastasis) based 
classification for staging of breast cancer, it is essential to diagnose the disease at early stages. 
The present study aims to take advantage of the systems biology approach on genome wide gene 
expression profiling datasets to identify the potential biomarkers involved at stage I, stage II, stage 
III, and stage IV as well as in the integrated group. Three HER2-negative breast cancer microarray 
datasets were retrieved from the GEO database, including normal, stage I, stage II, stage III, and 
stage IV samples. Additionally, one dataset was also extracted to test the developed predictive 
models trained on the three datasets. The analysis of gene expression profiles to identify differentially 
expressed genes (DEGs) was performed after preprocessing and normalization of data. Then, 
statistically significant prioritized DEGs were used to construct protein–protein interaction networks 
for the stages for module analysis and biomarker identification. Furthermore, the prioritized DEGs 
were used to determine the involved GO enrichment and KEGG signaling pathways at various stages 
of the breast cancer. The recurrence survival rate analysis of the identified gene biomarkers was 
conducted based on Kaplan–Meier methodology. Furthermore, the identified genes were validated 
not only by using several classification models but also through screening the experimental literature 
reports on the target genes. Fourteen (21 genes), nine (17 genes), eight (10 genes), four (7 genes), 
and six (8 genes) gene modules (total of 53 unique genes out of 63 genes with involving those with the 
same connectivity degree) were identified for stage I, stage II, stage III, stage IV, and the integrated 
group. Moreover, SMC4, FN1, FOS, JUN, and KIF11 and RACGAP1 genes with the highest connectivity 
degrees were in module 1 for abovementioned stages, respectively. The biological processes, cellular 
components, and molecular functions were demonstrated for outcomes of GO analysis and KEGG 
pathway assessment. Additionally, the Kaplan–Meier analysis revealed that 33 genes were found to be 
significant while considering the recurrence-free survival rate as an alternative to overall survival rate. 
Furthermore, the machine learning calcification models show good performance on the determined 
biomarkers. Moreover, the literature reports have confirmed all of the identified gene biomarkers for 
breast cancer. According to the literature evidence, the identified hub genes are highly correlated with 
HER2-negative breast cancer. The 53-mRNA signature might be a potential gene set for TNM based 
stages as well as possible therapeutics with potentially good performance in predicting and managing 
recurrence-free survival rates at stages I, II, III, and IV as well as in the integrated group. Moreover, the 
identified genes for the TNM-based stages can also be used as mRNA profile signatures to determine 
the current stage of the breast cancer.
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Breast cancer (BC) is one of the most common health threatening problems among women in the world, leading 
to death of those patients with BC1. It has been reported in 2019 that the incidence and mortality of breast cancer 
worldwide are 24.2% and 15.0%, respectively, deserving more attention from healthcare systems and policy-
makers1. To clinically classify the status of breast cancer, the American Joint Committee on Cancer (AJCC) has 
announced eight editions on the Tumor-Node-Metastasis (TNM)-based staging of breast cancer, specifically 
for treatment and prognosis2,3. Since more than 50% of the affected patients were died, increasing the survival 
rate of these patients is highly important by determining the stage of the disease. The earlier the identification of 
the stage, the more superior the survival rate. To increase the therapeutic efficiency and consider the molecular 
portrait differences in BC along with their different clinical outcomes4, breast cancer can be classified into six 
main subtypes, including normal-like, luminal A, luminal B, HER2-positive, basal-like, and claudin-low5; the 
classification has also been confirmed by the Cancer Genome Atlas (TCGA) program6.

It has been frequently reported that the human epidermal growth factor receptor (HER) family (i.e., HER-1, 
HER-2, HER-3, and HER-4) plays a pivotal role in various cancers7. Among them, HER-2 (known as HER-2/neu 
gene), as an oncogene with 1,255 amino acids and 185kD transmembrane glycoprotein with tyrosine kinase activ-
ity, is located at chromosome 177,8. Moreover, HER-2/neu gene makes breast cancer classified as HER2-positive 
and HER2-negative9. In 15–30% of patients with invasive breast carcinomas, an overexpression or amplification 
of HER2 has been identified7,10.

It is worth mentioning that is not effective for HER2-negative. Although, endocrine therapy is the target 
of chemotherapy, there are no successful reports for survival rates of these types of patients in the literature11. 
Moreover, several traditional diagnostic approaches such as mammography, magnetic resonance imaging (MRI), 
ultrasound, computerized tomography (CT), positron emission tomography (PET), and biopsy have been studied 
in breast cancer diagnosis12.

Nowadays, molecular biomarkers have been proposed to provide more efficiency in the prognosis and diag-
nosis of cancers in deficiency of traditional cancer tests. Additionally, the biomarkers are now regularly utilized 
to better understand the development of the tumors13. Hence, owing to the large number of stored microarray 
gene expression profiles by several genomics laboratories in the most publicly available database websites such 
as National Center for Biotechnology Information (NCBI), their analyses by various bioinformatics and systems 
biology analyses are essential4. Finally, these biomarkers will be helpful in personalizing the treatments for each 
patient with their special stage of the disease4. Considering the HER2-targeted therapy, there are still no predic-
tive biomarkers validated for the prognosis and diagnosis of the stages of breast cancer14,15.

Consequently, the aim of the current study is to identify the potential biomarkers in breast cancer at stages I, 
II, III, IV as well as in the integrated group simultaneously regarded as one. To reach this aim, three microarray 
gene expression profiling datasets have been included to identify the differentially expressed genes (DEGs). By 
prioritizing those DEGs, their cellular and molecular functions will be further analyzed. Then, the involved GO 
(Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) signaling pathways will be studied. 
Moreover, the protein–protein interaction network for all stages are developed based on the STRING database, 
and the significant hub genes are identified by clustering algorithm from which the gene biomarkers will later 
be determined based on their higher connectivity degrees. Finally, the Kaplan–Meier analysis tool was used to 
assess recurrence-free survival rates of the identified gene biomarkers.

Materials and methods
Figure 1 presents the summarization of the flowchart diagram of the approach to satisfy the research question.

Data sources.  All the datasets used in this study were retrieved from the NCBI GEO database (i.e., https​://
www.ncbi.nlm.nih.gov/geo/). The platform and file type of the breast cancer microarray datasets were GPL96 
[HG-U133A] Affymetrix Human Genome U133A Array and CEL files, respectively. To cover the aim of this 
study, GSE124647, GSE129551, and GSE124646 were used as train set including 140 biopsy samples from meta-
static patients with stage IV breast cancer, 147 samples from patients with stages I, II, III, and IV breast cancer, 
and 10 normal samples (0 percent cancer) out of 100 samples, respectively. Moreover, GSE15852 (i.e., includes 
43 normal, 8 grade 1 ~ stage I, 23 grade 2 ~ stage II, and 12 grade 3 ~ stage III samples) was used as a test set for 
external validation.

Data preprocessing and identification of differentially expressed genes (DEGs).  The BRB-
ArrayTools (v4.6.0, stable version), an excel graphical user interface (GUI) for communicating with R (v 3.5.1) 
programming environment developed by Dr. Richard Simon and the BRB-ArrayTools Development Team, was 
used for all stages of preprocessing (i.e., data import, data filtering, and normalization), gene annotation using 
“hthgu133a.db” R annotation package16 and identification of DEGs. During the data import phase, Microarray 
Suite version 5.0 (MAS 5.0) algorithm was utilized, and then spot filtering, quantile normalization, and gene 
filtering (gene exclusion criteria of fold change ≤ 2 with expression data values less than %20) were carried out. 
Next, class comparison between groups of arrays in terms of their label classification was performed to identify 
the differentially expressed genes (DEGs) by enabling the two options, including univariate permutation tests 
and restricting gene list based on the fold change threshold with their default values (i.e., 10,000 and 2, respec-
tively). All of the identified DEGs were stored for the next stage (i.e., prioritization of DEGs) as test group. 
Furthermore, the volcano plot and box plot of the imported data were demonstrated for each stage versus the 
normal samples.

Prioritization for DEGs.  To prioritize identified DEGs from the previous section using the evidence of 
the literature, GeneCards17 and ToPPGene18 websites were used, respectively. The GeneCards database site 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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Figure 1.   Flowchart of the current research approach step by step to achieve the final validated gene biomarkers 
in terms of recurrence free survival in HER2-negative breast cancer.
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(i.e., https​://genec​ards.org) was used to extract the literature evidence on reported genes (denoted by the train 
group) for a specific disease by using approximately 150 web sources and the keywords. For this purpose, the 
used keywords included < “breast cancer” + ”stage I” > , < “breast cancer” + ”stage II” > , < “breast cancer” + ”stage 
III” > , < “breast cancer” + ”stage IV” > , as well as inclusion of the results of all four stages. Then, the ToPPGene 
website (i.e., https​://toppg​ene.cchmc​.org), which used the functional annotation and protein interactions to pri-
oritize the imported gene list, was used to order the test group of genes based on the train group to determine 
the most significant DEGs in all stages of breast cancer with the p-value less than 0.05. Moreover, the ToPPGene 
website uses the similarity scores of the train group based on fuzzy and Pearson correlation measurement values 
to score and rank the test group.

Gene ontology, pathway and functional enrichment analyses of prioritized DEGs.  To deter-
mine the biological and molecular functional processes of the prioritized gene list as well as their significant 
enriched pathways, the online tool provided in the DAVID v. 6.8 (Database for Annotation, Visualization, and 
Integrated Discovery) website (i.e., https​://david​.abcc.ncifc​rf.gov/summa​ry.jsp)19,20 was applied. This website 
took the advantages of the gene ontology (GO) annotation analysis and the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) to cover the required properties. Moreover, the results with the p-value ≤ 0.05 were consid-
ered significant.

Protein–protein interaction (PPI) network construction.  The protein–protein interaction network 
among prioritized DEGs was constructed by the Search Tool for the Retrieval of Interacting Genes/Proteins 
(STRING database ver. 11 plugin21 for Cytoscape v.3.7.122). The current STRING database (since January 
19, 2019) contains 24,584,628 proteins from 5,090 organisms with 3,123,056,667 interactions. Moreover, the 
STRING database is experimentally dependent on BIND, DIP, GRID, HPRD, IntAct, MINT, and PID, and the 
cumulative information is extracted from curated websites Biocarta, BioCyc, GO, KEGG, and Reactome21. Dur-
ing the gene list import using the Cytoscape software, the confidence score cutoff value was set as 0.4 for PPI 
network construction and visualization. In the PPI network, the involved proteins are denoted by nodes, and 
their corresponding protein–protein interactions are presented as edges. To further investigate the PPI net-
work of each of the breast cancer stages, the module (hub gene) analysis was performed using ClusterOne v.1.0 
cytoscape plugin23 with its default values. Then, the significant modules with the p-value ≤ 0.05 were retrieved 
for biomarker identification. A protein with the highest connectivity degree in each candidate module will be 
considered a biomarker.

Validation of gene biomarkers.  To validate the identified gene biomarkers for each stage, three valida-
tion approaches were considered. These include (i) the Kaplan–Meier (KM) plotter tool, (ii) classification model 
development and validation, and (iii) literature search for the identified gene biomarkers.

Kaplan–Meier plotter tool.  To further validate the prognostic value of the gene biomarkers obtained from the 
hub genes of five groups, the free online Kaplan–Meier (KM) plotter tool was used24,25. Using the KM plotter 
tool, a meta-analysis based approach on thirty-five separate datasets was presented to assess the gene biomark-
ers in terms of various survival rates such as relapse free survival (RFS) and overall survival (OS). However, it 
has been reported that there is no significant difference between recurrence or relapse or disease free survival 
and overall survival rates26,27. To this end, the relapse free survival (RFS) (n = 3,955) was used by restricting the 
analysis to only HER2 (ERBB2) considering the HER2 nature of the three abovementioned datasets. Moreover, 
to generate high-resolution images, an option, namely “Generate high resolution TIFF file” was enabled before 
drawing the Kaplan–Meier plot and then, their p-values were recorded for target biomarkers. Additionally, by 
analyzing the RFS rate, the clinical outcomes of a disease would be measured if the time to death of the patient 
would be observed rather than validating the prognostic value of the gene biomarkers at particular stages of a 
disease.

Classification model development and validation.  To validate the prognostic value of the identified biomark-
ers for a specific disease, a non-linear classification model was developed. For this purpose, nine classification 
models in Orange 3.22.0, including support vector machine, k-nearest neighbors, stochastic gradient descent, 
random forest, artificial neural network, Naïve Bayes, logistic regression, CN2 rule inducer, and adaboost were 
considered28. Furthermore, cross-validated accuracy (CA), precision (positive predictive value), recall (sensi-
tivity), F1 score (a harmonic mean of sensitivity), and AUC (area under curve) were assessed using validation 
criteria such as k-fold cross-validation (k = 5, 10), LOOV (leave-one-out validation) as well as testing the model 
on train and test sets. Overall, the developed models would be validated both internally and externally.

(1)Accuracy =
TP + TN

TP + TN + FP + FN

(2)Precision =
TP

TP + FP

(3)Recall =
TP

TP + FN

https://genecards.org
https://toppgene.cchmc.org
https://david.abcc.ncifcrf.gov/summary.jsp
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Literature screening for potential genes.  Another way of validating the identified genes was carried out based 
on the frequent appearance of the reported genes through experimental wet-labs of the literature investigations 
for the disease.

Results
Data preprocessing.  The numbers of genes remained after applying the filtering criteria at stages I (nor-
mal:10, stage I:20), II (normal:10, stage II:80), III (normal:10, stage III:15), IV (normal:10, stage IV:141), and 
in the integrated group (normal:10, all samples at stage I, II, III, and IV:256) were 1,873, 2,034, 2,016, 2,279, 
and 2,471, respectively. Among the filtered genes, 832 (341 downregulated genes and 491 upregulated genes), 
836 (392 downregulated genes and 444 upregulated genes), 980 (444 downregulated genes and 536 upregulated 
genes), 731 (455 downregulated genes and 276 upregulated genes), and 735 (464 downregulated genes and 271 
upregulated genes) DEGs were identified using the two-sample t-test for the order of the abovementioned stages.

Prioritization of DEGs.  After searching the GeneCards database for the specified breast cancer terms, 
2,264, 1,611, 1,856, 855, and 6,586 DEGs for stages I, II, III, IV, and the integrated group were extracted and 
exported as a .csv file and were set as training datasets for five groups, separately. Moreover, the identified DEGs 
for five groups from BRB-ArrayTools were set as test datasets. Then, the ToppGene database ranked the input 
test datasets based on training datasets in five groups separately for each stage. Considering the threshold of 
the p-value < 0.05, the numbers of the selected DEGs for the above order of stages were 287, 339, 365, 347, and 
224 that could play an important role in five specified stages of breast cancer. Among those DEGs identified 
for stage I, 131 genes were downregulated and 156 genes were upregulated. The values of downregulated and 
upregulated genes for stages II, III, IV and all stage were 174 and 165, 176 and 189, 218 and 129 as well as 134 
and 90, respectively. Table 1 presents the list of the top 10 upregulated and downregulated genes ranked for all 
stages considering their low p-values.

GO enrichment and KEGG pathway analysis.  The output of the DAVID bioinformatics tool provides 
diverse biological and functional analyses on the prioritized genes in five groups. These include biological pro-
cesses (BP), cellular components (CC), and molecular functions (MF) for GO analysis as well as the KEGG 
pathway assessment. Considering stage I, several biological processes (e.g., reactive oxygen species metabolic 
process, hemopoiesis), cellular components (e.g., proteinaceous extracellular matrix, extracellular exosome), 
molecular functions (e.g., actin binding, ATP binding), and KEGG pathways (e.g., Influenza A, Tyrosine metab-
olism) are mainly enriched by DEGs (Fig. 2a). Moreover, the DEGs at stage II are associated with extracellular 
matrix organization and cellular response to fibroblast growth factor stimulus in terms of BP, with extracellular 
exosome and proteinaceous extracellular matrix in terms of CC, with protein binding and actin binding in terms 
of MF as well as focal adhesion and ECM-receptor interaction in terms of KEGG pathways (Fig. 2b). The key 
genes at stage III are enriched in BP related to the positive regulation of the apoptotic process and extracellular 
matrix organization, in CC related to extracellular exosome and cytosol, in MF related to protein binding and 
ATP binding, and in KEGG pathways related to Tyrosine metabolism and TNF signaling pathway (Fig. 2c). 
Additionally, at stage IV, extracellular matrix organization, extracellular exosome, protein binding, and focal 
adhesion are the most statistically significant enrichments in BP, CC, MF groups and KEGG pathways (Fig. 2d). 
The GO analysis results of the integrated group show that DEGs in groups BP, CC, MF are significantly enriched 
in complement activation, extracellular exosome, and calcium ion binding. Furthermore, the KEGG pathways 
analysis for all stages reveals that complement and coagulation cascades and Staphylococcus aureus infection are 
significantly enriched by prioritized DEGs (Fig. 2e).

PPI network analysis and hub genes identification.  Using the Cytoscape and STRING database 
plugin, PPI networks are constructed for five groups (i.e., stage I (284 nodes and 512 edges), stage II (338 nodes 
and 1,263 edges), stage III (363 nodes and 1,170 edges), stage IV (346 nodes and 1909 edges), and the integrated 
group (221 nodes and 519 edges)). Among genes with higher interconnectivity within the constructed PPI net-
works of five groups, SMC4 (degree = 24, downregulated), FN1 (degree = 50, downregulated), FOS (degree = 42, 
upregulated), JUN (degree = 69, downregulated), and KIF11 and RACGAP1 (degree = 27, upregulated) for stage 
I, stage II, stage III, stage IV, and all stages, respectively, have the highest connectivity degrees in their PPI net-
works.

The significant outcomes for the ClusterOne module analysis in Cytoscape (p-value < 0.05) reveal 14, 9, 8, 4, 
and 6 protein modules for stages I, II, III, IV, and the integrated group, respectively.

Verification of central gene biomarkers.  KM plotter tool.  According to the visualization and numeri-
cal results obtained from the KM plotter and analysis tool, it has been revealed that 33 out of 53 potential bio-
markers have a statistical significant association with the recurrence of free survival for five groups in HER2 
breast cancer. Table 2 lists the characteristics of each of 53 genes in terms of their stages, gene symbol and expres-
sion, and overall p-value.

(4)F1 Score =
2TP

2TP + FP + FN
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Table 1.   Top 10 ranked genes resulted from ToppGene website based on significant p-values.

Rank Gene symbol Gene name Expression Overall p-value

Stage I

1 CDK5 cyclin dependent kinase 5 Downregulated 7.44E−04

2 PSEN2 presenilin 2 Downregulated 9.04E−04

3 IKBKB inhibitor of nuclear factor kappa B kinase subunit beta Downregulated 9.11E−04

4 PRNP prion protein Upregulated 0.001222546

5 ITGB4 integrin subunit beta 4 Upregulated 0.001326232

6 DDX58 DExD/H-box helicase 58 Downregulated 0.001337916

7 BIN1 bridging integrator 1 Upregulated 0.001404577

8 SPRY2 sprouty RTK signaling antagonist 2 Upregulated 0.001584877

9 PYCARD PYD and CARD domain containing Downregulated 0.001615065

10 EDNRB endothelin receptor type B Upregulated 0.002032487

Stage II

1 CDK5 cyclin dependent kinase 5 Downregulated 6.37E−04

2 FN1 fibronectin 1 Downregulated 6.57E−04

3 PRKCD protein kinase C delta Downregulated 7.17E−04

4 ADRB2 adrenoceptor beta 2 Upregulated 8.56E−04

5 PRNP prion protein Upregulated 9.66E−04

6 ITGB4 integrin subunit beta 4 Upregulated 0.001021494

7 DDX58 DExD/H-box helicase 58 Downregulated 0.001177986

8 NTRK2 neurotrophic receptor tyrosine kinase 2 Upregulated 0.001327566

9 PYCARD PYD and CARD domain containing Downregulated 0.001328362

10 TFRC transferrin receptor Downregulated 0.001379303

Stage III

1 PRKCD protein kinase C delta Downregulated 6.06E−04

2 CDK5 cyclin dependent kinase 5 Downregulated 6.15E−04

3 PSEN2 presenilin 2 Downregulated 6.84E−04

4 IKBKB inhibitor of nuclear factor kappa B kinase subunit beta Downregulated 8.94E−04

5 ITGB4 integrin subunit beta 4 Upregulated 0.001086698

6 FOS Fos proto-oncogene, AP-1 transcription factor subunit Upregulated 0.001097674

7 BMPR1A bone morphogenetic protein receptor type 1A Upregulated 0.001143067

8 ATP1A2 ATPase Na + /K + transporting subunit alpha 2 Upregulated 0.001219288

9 GSN gelsolin Upregulated 0.001295466

10 TCF7L2 transcription factor 7 like 2 Upregulated 0.001296722

Stage IV

1 APP amyloid beta precursor protein Downregulated 3.64E−04

2 CAV1 caveolin 1 Downregulated 3.81E−04

3 GNAS GNAS complex locus Upregulated 3.87E−04

4 PRKCD protein kinase C delta Upregulated 4.09E−04

5 CDK5 cyclin dependent kinase 5 Upregulated 4.77E−04

6 FYN FYN proto-oncogene, Src family tyrosine kinase Downregulated 7.47E−04

7 NR3C1 nuclear receptor subfamily 3 group C member 1 Downregulated 7.89E−04

8 STAT1 signal transducer and activator of transcription 1 Upregulated 7.92E−04

9 FLNA filamin A Downregulated 8.61E−04

10 IRS1 insulin receptor substrate 1 Downregulated 8.68E−04

Integrated group

1 PRKCD protein kinase C delta Upregulated 5.23E−04

2 CDK5 cyclin dependent kinase 5 Upregulated 6.15E−04

3 PSEN2 presenilin 2 Upregulated 9.13E−04

4 ITGB4 integrin subunit beta 4 Downregulated 0.001097106

5 DDX3X DEAD-box helicase 3, X-linked Downregulated 0.001227256

6 DDX58 DExD/H-box helicase 58 Upregulated 0.001230075

7 MAPK9 mitogen-activated protein kinase 9 Upregulated 0.002138409

8 FKBP4 FK506 binding protein 4 Upregulated 0.002241011

9 LMNB1 lamin B1 Upregulated 0.00228287

10 DST dystonin Downregulated 0.002355127
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Figure 2.   The biological processes (BP), cellular components (CC), and molecular functions (MF) for GO 
analysis as well as the KEGG pathway assessment for (a) stage I, (b) stage II, (c) stage III, (d) stage IV, and (e) 
Integrated group.
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Stages Rank Gene symbol Expression Overall P value Related cancers References

Stage I

1 SMC4 Downregulated 1.7e−14 ER-positive and ER-negative breast cancer 38

2 IRF7 Downregulated 0.1861 Suppressor of an innate immune pathway in breast cancer 38,39

3 POSTN Downregulated 0.3289 A factor in preventing and treating breast cancer 38,40

4 ABAT Downregulated 8.9e−16 ER-positive and ER-negative breast cancer 41

5 LMOD1 Upregulated 0.1821 Involved in the development of breast cancer 42

6 TRIM2 Upregulated 0.7228 Invasive and basal-like breast cancer 43,44

7 CHRDL1 Upregulated 2.4e−8 Malignant breast cancer 45

8 MFGE8 Upregulated 0.1294 Triple-negative and ER + breast cancers 46,47

9 GLRX5 Downregulated 0.0001
Breast cancer
Neurological disorders such as Parkinson’s disease and those associated with 
ageing

48

10 ELF5 Upregulated 0.1522 TNM staging system for all types of breast cancer and metastasis in breast cancer 49,50

11 CSN2 Upregulated 1.0e−8 Invasive breast cancer triple-negative breast cancer 51,52

12 PRLR Downregulated 7.7e−5 Progression of breast carcinoma 53–55

13 PPAP2B Upregulated 9.4e−10
Coronary artery disease
Breast cancer
Tumor growth in breast cancer

56–59

14 FZD2 Downregulated 3.3e−11 Breast cancer 60–62

15 FZD7 Upregulated 0.6871 Breast cancer 60–62

16 GPC4 Downregulated 0.0004 In both MCF-7 (human breast adenocarcinoma) and MCF-10F (normal-like 
breast cancer)

63–65

17 CERS2 Downregulated 0.2238 Less invasive breast cancer 66–68

18 UGCG​ Downregulated 1.1e−10
Triple-negative BC
ER-negative BC tumors
Lung metastases

69–73

19 LIPE Upregulated 0.0051 Prognostic cofactor in BC Cancer lipolysis 74–76

20 PLIN1 Upregulated 2.6e−5
HER2 tumors
Breast cancer
Triple-negative breast cancer

77–79

Stage II

1 CCNB2 Downregulated  < 1e−16 Basal-like, HER2, and luminal breast cancers 80–83

2 OAS3 Downregulated 0.697 Mutated gene in breast cancer 84–86

3 IRF7 Downregulated 0.1861 Suppressor of an innate immune pathway in breast cancer 38,39

4 OAS1 Downregulated 0.5676 Development of various cancer types like breast cancer 85–87

5 CDKN1C Upregulated 1.9e−5 Breast tumors 88,89

6 PEG3 Upregulated 0.0029 Several cancers such as breast and ovary cancers 90,91

7 PHLDA2 Downregulated 4.0e−10 PRL treatment
Tumor progression

92,93

8 PLAGL1 Upregulated 0.3823 Breast cancer patients under radiotherapy treatment 94

9 SGCE Upregulated 0.0293 Progression of breast cancer invasion in terms of stromal changes 95

10 SLC22A18 Downregulated 3.2e−8 Breast cancer 96

11 SERPING1 Upregulated 1.3e−8 Breast carcinoma cells 97

12 ACTA2 Upregulated 0.6126 Metastasis of breast cancer cells Dimerization of epidermal growth factor receptor 
(EGFR) and HER2

98–100

13 LCP2 Downregulated 0.7828 Predicting the development of secondary lymphedema followed by breast cancer 
surgery

101,102

14 ABCG1 Downregulated 0.2418 High expression level of ABCG1 transporters in MCF-7 cells 103,104

15 ZFP36L1 Upregulated 0.0507 In all types of breast cancer 105

16 BICC1 Upregulated 1.0e−10
Cystic renal dysplasia
embryonic node, kidney, liver, and pancreas in the mouse
Basal-like breast tumors

106,107

17 SSPN Upregulated 0.0007 Several types of cancer, including breast invasive cancer 108–110

Continued
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Performance of nine classifiers.  The classification prediction results of all nine non-linear models (i.e., AUC, 
CA, F1 score, precision, and recall parameters) were investigated. In the k-fold cross-validation procedure to 
keep and possibly increase the stability of the models within the folds, the stratification sampling is used. Except, 
the performance of the models on the test set, almost all of the machine learning classifiers are trained and 
cross-validated at the highest values while considering the five-fold cross validation, ten-fold cross validation, 
stratified shuffle sampling trained on 66% of data, leave one out validation, and trained and tested on the whole 
dataset. Once the trained model is tested on the test set, the performance results for stages I, II, and III show 
that naïve Bayes, random forest, and naïve Bayes outperform the other classifiers with 0.87, 0.83, and 0.89 AUC 
values, respectively. The results are indicative of the fact that the computational classification models are capable 
of validating the identified genes from the systems biology approach for several stages of breast cancer.

Literature screening for identified genes.  The other tactic commonly used in the systems biology related studies 
for validating the identified genes from a specific computational methodology is to gather the required evidence 
from the literature reports on a specific determined gene in a known disease (i.e., breast cancer). To this end, 
searching results present that all of the fifty three genes are found to be responsible for cell proliferation, growth, 
motility, and development at several stages of breast cancer disease. The next section discusses detailed informa-
tion on these genes (Table 2).

Discussion
Breast cancer as a heterogeneous disease and the most common invasive cancer is the second leading cause of 
mortality among women globally29. During the last thirty years, the trend of mortality rate for breast cancer 
in developed countries has been dramatically decreased; however, the condition for low-income countries has 
no significant changes30. The success in the mortality rate reduction of breast cancer in high-income countries 
is mostly owing to the improved treatment and early stage diagnosis as well as the appropriate selection and 
administration of therapies30. This will be followed by prolonging RFS and OS without complications29.

In this research, three microarray datasets, including stages I, II, III, IV, and the integrated group, were 
used, preprocessed, normalized and analyzed from which the significant DEGs for five groups were identified. 
After that, they were ranked based on the literature involved genes in breast cancer and selected based on the 

Table 2.   A summarized list of results of Kaplan–Meier plot tool for 53 potential genes categorized based on 
their stages and literature screening references.

Stages Rank Gene symbol Expression Overall P value Related cancers References

Stage III

1 FEN1 Downregulated  < 1e−16 High stages of breast cancer
Inhibition of the tumor growth

111–113

2 ADH1B Upregulated 0.0068 Risk factors for breast cancer 114–116

3 IRF7 Downregulated 0.1861 Suppressor of an innate immune pathway in breast cancer 38,39

4 ACTA2 Upregulated 0.6126 Metastasis of breast cancer cells Dimerization of epidermal growth factor receptor 
(EGFR) and HER2

98–100

5 CLDN5 Upregulated 9.4e−6 In both breast tumor stromal (BTS) and prostate tumor stromal (PTS) 117,118

6 SLC31A1 Downregulated 0.4854 Progression of breast cancer 119,120

7 FBLN1 Upregulated 3.6e−5 In several types of cancer, including breast cancer 121,122

8 MFAP4 Upregulated 5.8e−9 In cell adhesion, motility, invasion, and metastasis of BC 95,123,124

9 COL1A2 Downregulated 0.4121 High expression level at higher stages of breast cancer 125–127

10 ASPN Downregulated 0.2608 Upregulated expression in breast cancer 128,129

Stage IV

1 NUSAP1 Upregulated < 1e−16 A potential biomarker clinically correlated with breast cancer 130,131

2 COL6A2 Downregulated 0.0038 Important role in breast cancer development 132,133

3 HIST1H2BD Upregulated 0.2745 ER-positive breast cancer
In breast cancer development

42,134

4 HIST1H2BH Upregulated 0.0006 ER-positive breast cancer
In breast cancer development

42,134

5 HIST1H2BK Upregulated 8.6e−8 ER-positive breast cancer
In breast cancer development

42,134

6 HIST2H2BE Upregulated 0.1077 ER-positive breast cancer
In breast cancer development

42,134

Integrated group

1 KIF11 Upregulated  < 1e−16 Triple-negative breast cancer 135,136

2 IRF7 Upregulated 0.1861 Suppressor of an innate immune pathway in breast cancer 38,39

3 OAS1 Downregulated 0.5676 Development of various cancer types like breast cancer 85–87

4 OAS3 Downregulated 0.697 Mutated gene in breast cancer 84–86

5 SGCE Upregulated 0.0293 Progression of breast cancer invasion in terms of stromal changes 95

6 ALDH7A1 Downregulated 0.0208 Breast cancer
Potent marker in different types of cancer like prostate cancer

137–139

7 ABCG1 Downregulated 0.2418 Breast cancer 140

8 C1S Downregulated 1.2e−6 HER2-positive and basal-like breast cancer 140
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statistical significant p-value < 0.05. Then, GO and KEGG pathways analyses as well as PPI network construc-
tion were performed. The biological processes (BP), cellular components (CC), and molecular functions (MF) 
were also assessed for enrichment pathways. Moreover, the PPI network analysis using the STRING database 
revealed several effective hub genes for five groups separately. The significant gene biomarkers with the highest 
connectivity degree within the hub genes were selected. The validation of the obtained gene biomarkers in terms 
of recurrence free survival rate in HER2 was statistically carried out by Kaplan–Meier plotter tool with p-values 
less than 0.05. Moreover, the internal and external validation procedures revealed that the machine learning 
classification models specifically those developed based on naïve Bayes and random forest by employing various 
biomarkers at several stages were successful in differentiating between stages and normal samples with good 
predictive power. Finally, in Table 2, the available evidences collected from the experimental literature reported 
for breast cancer has been retrieved and listed according to the identified gene biomarkers. Additionally, some 
of the identified biomarkers were found to be common among different TNM stages. For example, IRF7 was the 
significant biomarker for stages I, II, and III; and, ACTA2 biomarker was found to have an increasing expression 
across stages II and III.

According to the outcomes of the current study, we identified a signature of potential biomarkers for BC stages 
to specifically diagnose breast cancer at developed stages as well as very early stages. These biomarkers could 
potentially be the target of wet-lab researchers for future investigations. The mathematical models developed for 
BC prediction and diagnosis at various stages showed significantly high and reasonable performance in clinical 
outcomes employing the identified biomarkers. It is worth noting that the current study is conducted for the first 
time that studied the high throughput gene profiling datasets for four stages of BC as well as its integrated stage. 
Finally, the strong point of the study relied on the three validation methodologies, however, the Kaplan–Meier 
analysis did not find some of the biomarkers statistically significant.

The systems biology approach could enlighten the path for wet-lab investigators in rapid identification of 
stages in patients with BC. Moreover, the developed non-linear models could be utilized in prediction procedure 
after the gene expression values for target biomarkers are determined through experimental tests. The workflow 
of the current study could be applied for other future microarray studies in terms of involving and investigating 
the stages of the diseases. Furthermore, the identified biomarkers along with their involved signaling pathways 
could be beneficial for drug design and discovery agents considering various disease stages and hence, the disease 
could be controlled, managed and treated at very early stages.

Any researches specifically those carried out on systems biology approaches will have limitations and it seems 
to be normal. Due to the computational nature of these studies, there will remain gaps between the wet- and 
dry-labs for further validating the results. The experimental and clinical literature studies do only report on the 
genes involved in BC disease without stating their stages. The lack of available sufficient microarray datasets in 
the repository databases investigating the stages of BC made us consider the stages and grades of BC equivalent 
for the validation process.

During the last decades, extensive genome-wide association studies and next generation sequencing tech-
niques were conducted and applied to identify the potent biomarkers using bioinformatics and experimental 
approaches for various diseases such as Parkinson’s disease and prostate cancer considering the exponential 
growth of Big Data generation in the field31–35. For future researches, it is useful to investigate the genome-based 
studies in a centralized manner to provide the datasets in further details in terms of being more specific at 
the disease stages and the follow-up procedures. Moreover, owing to the large generation of genome datasets, 
handling and managing them computationally and experimentally are still of many researches’ interest in the 
world. Therefore, close cooperation among systems biologists, bioinformaticians, and biologists is required in to 
identify potential biomarkers and their involvement in signaling pathways. In other words, understanding the 
functions of the target signaling pathways in specific diseases is highly important in accelerating the develop-
ment of new experimental drugs and diagnostics, paving the ways for personalized medicine and improving 
translational sciences32,36,37.

Conclusions
In this study, three HER2-negative breast cancer datasets were analyzed to identify differentially expressed genes 
and construct protein–protein interaction networks as well as GO enrichment and KEGG pathway analyses for 
the TNM-based staging system. The results indicate that a 53-gene signature is responsible for breast cancer 
prognosis at various stages. The identified gene signature could be further utilized in personalizing medicine 
for individuals with breast cancer. The identified PPI modules significantly involved at different stages of breast 
cancer show a different number of connectivity ranging from 1 to 69. The interesting finding noticeable in the 
results is that the lower number of interactions within hub genes is not correlated with the importance of genes 
as potential biomarkers. For example, module 5 with only three genes and two connections shows significant 
expression (downregulation) in the integrated group. Her2-negative breast cancer was further confirmed by 
the literature reports. Moreover, the Kaplan–Meier tool for assessing the recurrence-free survival rate is not a 
measure to exclude a biomarker based only on its statistical significant p-value. For instance, in Table 2, there 
are 20 genes identified to be non-significant in the RFS rate assessment evaluated by the KM tool. However, for 
example, IRF7 identified as a biomarker for almost all groups has not been significantly related to the RFS rate. 
However, according to the literature, IRF7 is significantly correlated with breast cancer development. Therefore, 
non-significant p-value in the KM assessment does not decrease the importance of an identified biomarker. The 
outcomes of this research have paved the way to evaluate the status of breast cancer development in terms of 
the TNM-based staging system. All of the identified DEGs were involved in breast cancer as confirmed by the 
evidence available in the literature derived solely from experimental studies. What is missing from the clinical 
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data in the literature is the staging of the condition, which now can be answered using the panel of gene bio-
markers proposed in this study.
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