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Cross-modality medical image synthesis between magnetic resonance (MR) images and computed tomography (CT) images
has attracted increasing attention in many medical imaging area. Many deep learning methods have been used to generate
pseudo-MR/CT images from counterpart modality images. In this study, we used U-Net and Cycle-Consistent Adversarial
Networks (CycleGAN), which were typical networks of supervised and unsupervised deep learning methods, respectively, to
transform MR/CT images to their counterpart modality. Experimental results show that synthetic images predicted by the
proposed U-Net method got lower mean absolute error (MAE), higher structural similarity index (SSIM), and peak signal-to-noise
ratio (PSNR) in both directions of CT/MR synthesis, especially in synthetic CT image generation. Though synthetic images by the
U-Net method has less contrast information than those by the CycleGAN method, the pixel value profile tendency of the synthetic
images by the U-Net method is closer to the ground truth images. This work demonstrated that supervised deep learning method

outperforms unsupervised deep learning method in accuracy for medical tasks of MR/CT synthesis.

1. Introduction

Cross-modality medical image synthesis between magnetic
resonance (MR) images and computed tomography (CT)
images could benefit medical procedures in many ways. As
a multiparameter imaging modality, magnetic resonance
imaging (MRI) provides a wide range of image contrast
mechanisms without ionizing radiation exposure, while CT
images outperform MR images in acquisition time and res-
olution of bone structure. CT is also related with electron
density which is critical for PET-CT attenuation correction
and radiotherapy treatment planning [1]. Generating syn-
thetic CT (sCT) images from MR images makes it possible
to do MR-based attenuation correction in PET-MR system
[2-6] and radiation dose calculation in MRI-guided radio-
therapy planning [7-9]. Synthesizing MR images from CT

images can enlarge the datasets for MR segmentation task
and thus improve the accuracy of segmentation [10].

In recent years, there have been many efforts to work
on medical image synthesis between MR and CT images.
Among all these methods, deep learning method exhibited
superior ability of learning a nonlinear mapping from one
image domain to another image domain. It can be classi-
fied into two categories: supervised and unsupervised deep
learning methods. Supervised deep learning methods
required paired images for model training. In the MR/CT
synthesis task, MR and CT images have to be well-
registered at first and then used as inputs and corresponding
labels for the neural network model to learn an end-to-end
mapping. Nie et al. [11] used three-dimensional paired
MR/CT image patches to train a three-layer fully convolu-
tional network for estimating CT images from MR images.
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Other researchers [4, 5, 12-15] have trained deeper network
for MR-based CT image prediction. However, as for medical
image dataset, it is not that easy to get paired MR and CT
images. It may take a long time span to collect patients who
are scanned by both MR and CT scanners. Registration of
certain accuracy between MR and CT images are also neces-
sary to make paired MR-CT dataset.

Unsupervised deep learning methods enabled the possi-
bility of using unpaired images for image-to-image transla-
tion [16-20]. It was first proposed for natural image
synthesis and now has been implemented by many
researchers for medical image synthesis [10, 21-24]. Chart-
sias et al. [10] demonstrate the application of CycleGAN in
synthesizing cardiac MR images from CT images, using MR
and CT images of different patients. Nie et al. [21] synthe-
sized MR images from CT images with a deep convolutional
adversarial network. Since there are plenty of unpaired med-
ical images, the available datasets could be easily enlarged.

Unlike natural images, accuracy is highly emphasized
in medical images. In this paper, we aim to compare the
accuracy of supervised and unsupervised learning-based
image synthesis methods for pseudo-MR/CT generation
tasks. Two typical networks of U-Net [25] and CycleGAN
[17] were introduced as representatives of supervised and
unsupervised learning methods, respectively. Mean absolute
error (MAE), structural similarity index (SSIM), and peak
signal-to-noise ratio (PSNR) of the synthetic results were
calculated to evaluate their performance quantitatively. More
detailed comparisons and discussions about the advantage
and disadvantage of these methods are included in Results
and Discussion.

2. Materials and Methods

2.1. Neural Network Models. In our experiments of pseudo-
MR/CT generation tasks, U-Net and CycleGAN were used
as the typical representative network of supervised and unsu-
pervised deep learning methods, respectively.

U-Net has made a great achievement in segmentation
tasks [25-29]. The advantage of U-Net is that it could use
very few images to make a good performance. In this study,
we adapted U-Net to an end-to-end image synthesis task.

The basic architecture of U-Net consists of a contracting
part to capture features and a symmetric expanding part to
enable precise localization. As shown in Figure 1, we added
LeakyReLU [30, 31] as activation operation before convolu-
tion operation in the contracting part of the network. Activa-
tion operation of LeakyReLU was replaced with ReLU [32] in
the expanding part. Batch normalization [33] was introduced
to U-Net to enable faster and more stable training. In
Figure 1, the number of channels is denoted on top of each
of the convolution operation, and the size of feature maps
is signed in the parentheses.

In the medical image synthesis task, input image and
its corresponding label were fed to the proposed U-Net
to train and learn an end-to-end nonlinear mapping
between them. Figure 1 illustrated the MR-to-CT synthesis
using U-Net architecture, which takes MR images as input
and CT images as label to train a synthetic CT generating
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model. On the contrary, when we use CT images as input
and MR images as labels, U-Net could be trained as a syn-
thetic MR-predicting model. The loss function used in the
proposed U-Net is

LU—Net = Ex,y~13data [”f(x) _yHJ (1>

CycleGAN [17] which is proposed by Zhu et al. could
be seen as an updated version of generative adversarial
networks (GAN) [16]. GAN methods can learn a nonlinear
mapping from input image domain to target image domain
by adversarial training. CycleGAN introduced the idea of
cycle consistency to general GAN methods. Cycle consis-
tency adds restriction that the generated pseudoimage in
target domain should be able to be transformed back to the
original input image.

We used the CycleGAN architecture from Zhu et al. [17]
for our medical image synthesis task. It takes unpaired MR
and CT images as inputs to learn nonlinear mappings
between these two image modalities. As illustrated in
Figure 2, the CycleGAN architecture has two cycles, forward
cycle and backward cycle. The forward cycle consists of three
networks: two generative networks of G and F and one
discriminator of Dip.. The backward cycle uses the same gen-
erative networks of F and G and a counterpart discriminator
of Dyg.

In the forward cycle, network G was used to generate syn-
thetic CT (sCT) from input MR images, while network F
generated synthetic MR (sMR) from network G-generated
sCT images. Network D discriminates whether the gener-
ated sCT image is real CT or fake. The backward cycle works
just the opposite way. Network F took CT images as input
images and generated sMR; then, network G synthesized
sCT from the F-generated sMR images. Network Dy, was
used to distinguish whether the sMR image is real MR or
take.

The adversarial losses of CycleGAN are as follows:

Lean_c mr,cr = Ecrer, (cT) [||log (Der(CT)) || 1]
+Eygpop, (MR) [Hlog [1- (DCT(G(MR)))]HI]’

Lean_r_cromr = Emrop,,, (v [||log (Dyr(MR)) || J
+Ecrop, cn) [Hlog [1- (DMR(F(CT)))]HJ'

(2)

The cycle-consistency loss consists of forward cycle loss
Liorward_cyc and the backward cycle 1oss Ly, qqyard_cye- It 18 rep-

resented as follows:

Lforward_cyc = EMRNPdm(MR) [H (F(G(MR)) - MR) H 1} >
Lbackward_cyc = ECT~Pdm(CT) [H (G(F(CT)) - CT) || J > (3)

LCycle—consistency = Lforwardfcyc + Lbackwardfcyc'
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FIGURE 1: Architecture of proposed U-Net for image synthesis.

Then, we have the full objective as the below equation:

Leyaecan = Laoan g mr,cr T Loan_r_cr MR  ALcydleconsistency,

(4)

where A is the weight of the objectives of cycle consistency.

2.2. Cross-Modality MR/CT Image Synthesis and Evaluation.
We used PyTorch to implement the proposed U-Net and
CycleGAN. Both the networks were trained for bidirectional
image synthesis, which includes learning a MR-to-CT model
for generating synthetic CT images from MR images and a
CT-to-MR model for generating synthetic MR images from
CT images.

U-Net and CycleGAN used similar parameters for train-
ing nonlinear mapping models between MRI/CT images.
Adam optimizer was adopted for both the networks. The
batch size was set to 1. Both networks were trained for 200
epochs, with fixed learning rate for the first 100 epochs.

The learning rate decreased linearly to 0 for the following
100 epochs.

Whole 2D slices of axial medical images with size of
256 * 256 pixels were used as inputs. During the training
process, the images would be padded to 286 % 286 pixels
and then random cropped to 256 * 256 for data augmenta-
tion. While U-Net should utilize paired MR and CT datasets
for training nonlinear mapping, CycleGAN can take use of
unpaired MR and CT images as inputs for both the forward
and backward cycles in training procedure. As for the Cycle-
GAN method, we randomly shuffled the MR image input
sequences and CT image input sequences in the paired data-
sets to make the input MR and CT slices unpaired. The MRI
input sequence in unpaired datasets were not the same as that
in paired datasets.

Three metrics were used to quantitatively characterize
the accuracy of the prediction of synthetic images compared
with the ground truth images. The mean absolute error
(MAE) measures the discrepancies by voxels. Structural sim-
ilarity index (SSIM) [34] quantifies the similarities in a whole
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F1GURE 2: CycleGAN architecture for bidirection synthesis of MR and CT images. The forward cycle generated synthetic CT from input MR
by G while F translate the synthetic CT back to the MR image domain. D discriminate whether the generated images is real or fake CT. The
backward cycle generated synthetic MR from input CT by F while G translate the synthetic MR back to the CT image domain. Dy
discriminate whether the generated images is real or fake MR. Two cycle-consistency loss was introduced to capture the intuition that the
synthetic image should be translated back to the original image modality.

image scale. Peak signal-noise-ratio (PSNR) assesses the
quality of prediction.
These evaluation metrics are expressed as follows:

LYY
MAE = X(5.4) - V(0.1
H+ WG =1
SSIM =

/N

2u 4, + C1) (20, + cz)/(,ui + 4y + Cl)
: (oi+a§ +c2>,
¢ = (KiL)% ¢ = (KL)%,

1
H =+ W ¢

1

M=
M=

PSNR = 10 log,,(L/MSE), MSE = (X(inj) = Y(ir )%

()
where H and W are the height and width of the images,

respectively. X is the ground truth images, and Y is the pre-
dicted synthetic images. p, and y,, are the average values of
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ground truth images and synthetic images, respectively. o2
and 05 are the variance of ground truth images and syn-
thetic images, respectively. o,, represents the covariance
of ground truth images and synthetic images. L denotes

the dynamic range of the voxel values. ¢; and ¢, are two
variables to stabilize the division with a weak denominator.
Here, we take k; =0.01 and k, = 0.03 by default.

2.3. Dataset Preparing. The datasets contain 34 patients. Each
patient has both T2-weighted MR images and CT images of
the head region. We acquired T2-weighted MR images (TR:
2500ms, TE: 123ms, 1 % 1 * 1 mm?>, 256 * 256) on a 1.5T
Avanto scanner (Siemens). The CT images (120kV,
330 mA, exposure time: 500ms, 0.5 % 0.5 % 1 mm3, 512 *

512) were acquired on SOMATOM Definition Flash
(Siemens).

In this experiment, CT images were resampled to a size of
256 * 256 (1 * 1 mm?) by bicubic interpolation [35] to match
the voxel size of MR images. Binary head masks were gener-
ated by the Otsu threshold method [36] for MR and CT
images to remove unnecessary background information
around the head region.

Since the head region is mainly a rigid construction of
bone structure, we applied rigid registration to the MR and
CT images to make paired MR/CT images for the proposed
U-Net. CT images were set as a fixed volume. MR images
were set as a moving volume to register with CT images by
Elastix toolbox [37]. The paired datasets were randomly
shuffled to make an unpaired dataset for CycleGAN.
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FIGURE 3: (a-d) From left to right: the 4 columns are input images, ground truth images, synthetic images, and the difference maps. sCT
results generated by U-Net (a) and CycleGAN (b), respectively; sMR results by U-Net (c) and CycleGAN (d), respectively.

In our medical image synthesis task, 28 patients with
4063 image pairs were randomly selected for model training.
The remaining 6 patients with 846 image pairs were used for
evaluation procedure.

3. Results and Discussion

The results of synthetic MR and synthetic CT images gener-
ated by U-Net and CycleGAN and their ground truth are
showed in Figure 3. The first column is the input images,
and the second column is ground truth images. The third
column showed the generated synthetic images predicted
from input images by the two networks. The difference
map between synthetic images and ground truth images
was calculated and showed in the fourth column.

The first two rows in Figure 3 are sCT images synthesized
by U-Net and CycleGAN, respectively. For the task of syn-
thesizing CT images from MR images, the soft tissue area is
translated from high contrast to low contrast. It could be seen
from the difference map images that the soft tissue area of
synthetic CT images by both networks is well-translated with

little error. The translation error mainly occurred in the bone
area. Their difference map demonstrates that the sCT by
CycleGAN synthesized more error than sCT by U-Net in
the bone areas.

The third and fourth rows in Figure 3 are sMR images
generated by U-Net and CycleGAN, respectively. It could
be seen that sMR by CycleGAN seems more realistic for
it has more complex contrast information than sMR by
U-Net. However, the difference map images illustrated that
the CycleGAN method generated much more error than
U-Net does. The abundant image contrast information in
sMR by CycleGAN may be false and unnecessary.

In synthesizing CT tasks, the difference between syn-
thetic images and ground truth mainly occurs in the bone
area. But in synthesizing MR tasks, the error is evenly distrib-
uted in the whole head region. It means synthesizing high
contrast images of MR from low contrast image domain of
CT is tougher than its reverse synthesizing direction.

To compare the image details, 1D profiles of pixel inten-
sity were also plotted. Figure 4 shows the 1D profiles passing
through the short red lines and long blue lines as indicated in



sCT - U-Net

~
§ T a

Ground truth CT

2000

1500

1000

Pixel intensity

500

0 10 20 30 40 50 60 70 80 90 100110120
’ Pixel '

1800
1600
1400
1200

Pixel intensity

1000
800

600

0 5 10 15 20
Pixel
—— Ground truth CT

—— sCT - U-Net
—— sCT - CycleGAN

()

BioMed Research International

sMR - U-Net

Ground truth MR

sMR - CycleGAN

900 A
800 A
700 A
600 A
500 A
400 A
300 A
200 A
100 -

Pixel intensity

0 20 40 60 80 100 120 140 160\180 200
Pixel !

800 A
750 A
700 A
650 A
600 A

Pixel intensity

550 A
500 A

450 1 . . . .
0 5 10 15 20
Pixel

—— Ground truth MR
—— sMR - U-Net
—— sMR - CycleGAN

(®)

F1GURE 4: Comparison of 1D profiles of pixel intensity passing through the short red lines and long blue lines as indicated in the images: (a)
1D profile and its close-up marked by the horizontal lines in ground truth CT, U-Net sCT, and CycleGAN sCT images; (b) 1D profile and its
close-up marked by the horizontal lines in ground truth MR, U-Net sMR, and CycleGAN sMR images.

the corresponding images in the first row. The red line is
overlapped with the blue lines. The 1D profile in the second
row of Figure 4 demonstrates pixel intensities of the long blue
lines. The 1D profiles in the third row are the pixel intensities
of the short red lines of 20 pixels, which shows close-ups of
part of the long blue lines’ 1D profile.

In the profiles, the red curve indicates pixel intensities of
ground truth CT or MR. The blue curve represented for U-
Net and the green curve for CycleGAN. It could be clearly
seen in Figure 4(a) that the blue curve is close to the red
curve, while some of the peaks of the green curve deviated
from the red curve to an opposite direction. It means that
the tendency of 1D profiles in sCT by U-Net was closer to
the ground truth CT, while the CycleGAN method tends to
generate fake contrast information in sCT images.

The profile in Figure 4(b) shows that the blue curve
vibrated less from the red curve. Some peaks of the green
curve deviated more from the red curve. It could be seen in
the close-up 1D profile that some peaks of the green curve
are biased to the opposite from the red curve, while the ten-
dency of the blue cure seems like a smoothened or flattened

red curve. It means that the pixel value of sMR by U-Net
was closer to the ground truth but may lack contrast details.
The pixel value of sMR by CycleGAN exhibits more devia-
tion from the ground truth along the profile whereas the ten-
dency may be false or exaggerated.

The quantitative metrics have been calculated for com-
parison. Figure 5 shows the MAE of sCT and sMR for each
of the 6 patients in the evaluation datasets and the average
result. It is obvious that the U-Net method generated lower
MAE either in sCT image generation or sMR image genera-
tion for all the patients. This also demonstrates the robust
performance of the U-Net method in bidirection MR/CT
image translation tasks.

Figures 5(a) and 5(b) show that the deviations of the
MAE between the U-Net and CycleGAN method for sMR
images of all the 6 patients are not as significant as those
for sCT images. In Figure 3, the difference map of sMR indi-
cated that the main predicted errors are evenly distributed in
the whole head region, while the main error of sCT mainly
occurs mainly in the bone structure. This could be inter-
preted that generating MR images of high soft tissue contrast
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FIGURE 5: (a) MAE of sMR images for all the 6 patients in test set and their average value. (b) MAE of sCT images generated for all the 6
patients in test set and their average value. Both the blue columns denoted the U-Net method, and the red columns represented the

CycleGAN method.

TaBLE 1: Quantitative evaluation results between ground truth CT
images and sCT images: MAE, SSIM, and PSNR.

TaBLE 2: Quantitative evaluation results between ground truth MR
images and sMR images: MAE, SSIM, and PSNR.

Model MAE+SD (HU) SSIM+SD  PSNR +SD (dB) Model MAE+SD (HU) SSIM+SD  PSNR +SD (dB)
U-Net 6536 £4.08  0.972+0.004  28.84+0.57 U-Net 73.43+9.16  0.946+0.004  32.35+0.78
CycleGAN ~ 93.95+589  0.955+0.007  26.32+0.55 CycleGAN ~ 88.71+10.04  0.924+0.003  30.79+0.73

from CT images of low soft tissue contrast is much complex
than the inverse direction synthesis of generating CT from
MR images.

Table 1 shows the overall statistics of three quantitative
metrics for sCT by both the U-Net and CycleGAN methods.
The SSIM values indicate that the sCT images by both
methods have fairly high similarity with the ground truth
CT images. The U-Net method outperformed the CycleGAN
method with a much lower MAE of 65.36 HU, a higher SSIM
of 0.972, and a higher PSNR of 28.84 dB. The average sCT
MAE deviation between the two methods is nearly 30 HU.

Table 2 shows the overall statistics of three quantitative
metrics for sSMR images by the U-Net method and Cycle-
GAN method. The U-Net method outperformed the Cycle-
GAN method with a lower MAE of 73.43HU, a higher
SSIM of 0.946, and a higher PSNR of 32.35dB.

The qualitative and quantitative results demonstrate that
the proposed U-Net, a typical supervised learning method,
outperforms CycleGAN, a representative advanced unsuper-
vised learning method, in synthesis accuracy of medical
image translation task. Since medical images highly value
accuracy for the purpose of disease diagnosing, clinical treat-
ment, and therapeutic effect evaluation, the supervised learn-
ing method is more recommended in medical practice.

Nevertheless, the success of supervised learning cannot
do without well-registered image pairs. The performance of
the trained model also depends on the registration accuracy
of the paired images. Unlike natural images, paired medical
images are not that easy to get. It would take a long time span
to collect enough patients who need to be scanned for both
MR and CT images at the same time. It is well-known that
big amount of datasets could greatly improve the perfor-
mance of the deep learning method. Though it outperforms
the unsupervised learning method, the limit of dataset vol-

ume may constrain the further improvement of the super-
vised learning method in medical image synthesis tasks.

From the experiments discussed above, the image synthe-
sis by using unsupervised learning methods still has a long
way to go for practical application in clinic due to their rela-
tively low accuracy. But still, the unsupervised learning
method could benefit when there is lack of paired medical
image datasets. The good news is that there are abundant
easy-to-obtain retrospective unpaired MR and CT images
for the unsupervised learning method to take advantage of.
No registration is needed.

Our experiments show that when the same datasets were
taken as inputs, the unsupervised learning method got infe-
rior quality in the synthesis accuracy for medical image
translation. But nonetheless, if the dataset is large enough,
it could be expected that the performance of the unsuper-
vised learning method would be improved to a certain
acceptable extent in clinical practice.

4. Conclusions

Cross-modality medical image synthesis between MR and
CT images could benefit a lot from the fast growing of deep
learning methods. In this paper, we compared different deep
learning-based image synthesis methods for pseudo-MR/CT
generation, including the unsupervised learning method of
CycleGAN and supervised learning methods of the proposed
U-Net. Synthetic images produced by the CycleGAN method
contain more but fake contrast information in the whole
image scale. Though the proposed U-Net method blurred
the generated pseudoimages, its pixel value profile tendency
is basically close to the ground truth images. The quantitative
results also indicate that the U-Net method outperformed the
CycleGAN method, especially in synthesizing CT image task.



As accuracy is highly demanded in medical procedures, we
recommend the supervised method such as the proposed
U-Net in cross-modality medical image synthesis at present
clinical practice.
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