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Abstract: Background: Alzheimer’s disease (AD) is a progressive neurodegenerative dis-
order that often begins decades before clinical symptoms manifest. Early detection remains
critical for effective intervention, particularly in younger adults, where biomarker devia-
tions may signal pre-symptomatic risk. This research presents a computational modeling
framework to predict cognitive impairment progression and stratify individuals into risk
zones based on age-specific biomarker thresholds. Methods: The model integrates sigmoid-
based data generation to simulate non-linear biomarker trajectories reflective of real-world
disease progression. Core biomarkers—including cerebrospinal fluid (CSF) amyloid-beta
42 (Aβ42), amyloid positron emission tomography (amyloid PET), cerebrospinal fluid Tau
protein (CSF Tau), and magnetic resonance imaging with fluorodeoxyglucose positron
emission tomography (MRI FDG-PET)—were analyzed simultaneously to compute the
cognitive impairment (CI) score of instances, dynamically adjusted for age. Higher CSF
Aβ42 levels consistently demonstrated a protective effect, while elevated amyloid PET and
Tau levels increased cognitive risk. Age-specific CI thresholds prevented the overestimation
of risk in younger individuals and the underestimation in older cohorts. To demonstrate
its applicability, we applied the full four-stage framework—comprising data aggregation
and cleaning, sigmoid-based synthetic biomarker simulation with descriptive analysis,
parameter accumulation modeling, and correlation-driven CI classification—on a curated
dataset of 307 instances (ages 10–110) from Kaggle, the Alzheimer’s Disease Neuroimaging
Initiative (ANDI), and the Open Access Series of Imaging Studies (OASIS) to evaluate
age-specific stratification of preclinical AD risk. Results: The study highlights the model’s
potential to identify individuals in risk zones from a pool of 150 instances, enabling targeted
early interventions. Furthermore, the framework supports retrospective disease trajectory
analysis, offering clinicians insights into optimal intervention windows even after symptom
onset. Conclusions: Future work aims to validate the model using longitudinal, inclusive,
real-world datasets and expand its predictive capacity through machine learning tech-
niques and integrating genetic and lifestyle factors. Ultimately, this research contributes to
advancing precision medicine approaches in Alzheimer’s disease by providing a scalable
computational tool for early risk assessment and intervention planning.

Keywords: Alzheimer’s disease; cognitive impairment; biomarkers; machine learning;
computational modeling; age-specific risk; precision medicine; sigmoid simulation

1. Introduction
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized

by impaired memory, cognitive decline, and diminished capacity to perform daily activ-
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ities, representing the leading cause of dementia among the elderly. According to the
Alzheimer’s Association’s 2024 Facts and Figures report [1], approximately 7 million Amer-
icans currently suffer from AD, impacting one in nine individuals aged 65 and older. By
2050, the number of affected individuals is projected to rise to 12.7 million, barring any
significant medical breakthroughs in disease prevention or cure.

The diagnosis of AD has traditionally been based on clinical evaluation, compris-
ing a detailed history, cognitive testing, and exclusion of other causes of dementia, for-
malized in the National Institute of Neurological and Communicative Disorders and
Stroke–Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA) cri-
teria [2] and later updated by the National Institute on Aging–Alzheimer’s Association
(NIA-AA) research framework [3]. These guidelines stratify individuals into “probable”
or “possible” AD based on insidious onset and progressive impairment in memory and
other cognitive domains, complemented by neuropsychological assessments such as the
Mini-Mental State Examination (MMSE) and the Clinical Dementia Rating (CDR) scale [4].
However, clinical diagnosis alone often lacks specificity, particularly in early or preclin-
ical stages, where symptoms overlap with normal aging and other neurodegenerative
conditions can lead to misclassification [5,6].

Over the past decade, the integration of fluid and imaging biomarkers has revolu-
tionized AD diagnosis, enabling the detection of underlying pathology long before overt
dementia. Core cerebrospinal fluid (CSF) biomarkers—reduced amyloid-beta 42 (Aβ42)
and elevated total Tau (t-Tau) or phosphorylated Tau (p-Tau)—provide high diagnostic
accuracy for amyloid plaque and neurofibrillary tangle burden [7,8]. Positron emission
tomography (PET) ligands targeting amyloid (e.g., Pittsburgh Compound B) and Tau (e.g.,
Flortaucipir) allow in vivo visualization of hallmark lesions, while fluorodeoxyglucose
positron emission tomography [18F]FDG-PET reveals characteristic patterns of cortical
hypometabolism in temporoparietal regions [9,10]. Structural MRI further contributes
by quantifying hippocampal atrophy and cortical thinning—changes that correlate with
progression from mild cognitive impairment (MCI) to dementia [11].

The 2018 NIA-AA “ATN” framework formally classifies individuals by amyloid (A),
Tau (T), and neurodegeneration (N) biomarker status, fostering a shift from syndromic to
biologically defined AD [12]. This biomarker-driven paradigm promises earlier and more
precise identification of at-risk individuals, guiding clinical trials and paving the way for
targeted interventions in the preclinical phase of AD.

Presently, there is no cure for AD, and current therapeutic strategies offer limited
efficacy in halting the disease progression, providing only temporary symptomatic relief.
Extensive research has identified multiple primary risk factors associated with AD, in-
cluding advanced age, genetics, lifestyle factors, head trauma, cardiovascular conditions,
cognitive engagement, and chronic neuronal inflammation [13–15]. Notably, emerging
evidence indicates that brain atrophy and pathologic changes begin several decades be-
fore clinical symptoms become apparent [16,17], underscoring the critical need for early
interventions to delay or potentially mitigate the disease’s trajectory [18–20].

Due to the complexity of AD pathology, no single biomarker currently provides
a definitive indication of cognitive risk or disease progression. Reliance on a solitary
biomarker often leads to misclassification, as each captures only specific aspects of
the disease mechanism. For example, low cerebrospinal fluid (CSF) Aβ42 levels can
indicate amyloid plaque formation, yet similar decreases occur in cognitively normal
aging [8,21,22]. Likewise, amyloid PET imaging quantifies plaque burden but does not
consistently correlate with present cognitive impairment [10,23]. CSF Tau and phosphory-
lated Tau (p-Tau) levels reflect neurodegeneration but are less sensitive indicators in early
disease stages [10,24]. FDG-PET imaging, which captures brain glucose hypometabolism,
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typically detects downstream metabolic changes following amyloid and Tau pathology;
consequently, it is traditionally considered less sensitive for early-stage detection [10,25].

However, recent advancements highlight that magnetic resonance imaging (MRI) and
fluorodeoxyglucose positron emission tomography (FDG-PET) imaging have significant
potential in the early diagnosis of AD. MRI offers non-invasive visualization of structural
brain changes, such as hippocampal atrophy, cortical thinning, and ventricular enlargement,
potentially detectable even before overt clinical symptoms appear [10,26]. FDG-PET, by
detecting altered glucose metabolism indicative of synaptic dysfunction and neuronal injury,
provides valuable insights into early metabolic changes that precede cognitive decline,
enhancing diagnostic accuracy and prognosis [27,28]. Combining MRI with FDG-PET could
further improve early detection by simultaneously capturing complementary anatomical
and metabolic biomarkers, thereby offering a comprehensive diagnostic approach to early-
stage AD.

This study centers on two primary pathological hallmarks of AD:

1. Amyloid beta (Aβ) plaques;
2. Neurofibrillary tangles (NFTs).

From a computational standpoint, this research explores the Time Factor Hypothesis,
which postulates that early detection, quantification, and intervention targeting neuronal
biomarker alterations—potentially decades before clinical manifestation—could facilitate
timely diagnosis and effective preventative strategies. The hypothesis advocates screening
younger adults to identify early biomarker deviations, representing a potentially trans-
formative approach to combating AD onset and progression. In the absence of a cure,
early detection enables prompt diagnosis and the timely initiation of preventive measures,
helping to avoid the expense of prolonged patient suffering, patient care, and management.

Ultimately, elucidating the age-related progression dynamics of AD biomarkers may
significantly enhance diagnostic precision and inform the development of targeted ther-
apeutic interventions. Our findings underscore the critical importance of initiating early
interventions, potentially as early as ages 30 to 40, to substantially reduce both the preva-
lence and severity of Alzheimer’s disease.

2. Computational Framework
This section presents the computational framework developed to model cognitive

impairment progression and assess Alzheimer’s disease (AD) risk in younger adults.
Grounded in the Time Factor Hypothesis, the model is designed to capture the non-linear
trajectory of biomarker changes leading to cognitive decline, potentially decades before
clinical symptoms manifest. The conceptual diagram for this fit is represented in Figure 1
starting from Biomarker Data → Simulation → Risk Zones → Correlative Risk Scoring →
Risk Classification.

Axiom: The framework is based on gradual pathological changes in the brain.
The gradual pathological accumulations follow a non-linear progression—starting

subtly, accelerating over time, and eventually plateauing. This biological behavior is
best represented by a sigmoid function, which allows the model to simulate early-stage
deviations in biomarkers before cognitive impairment becomes clinically apparent.

The model incorporates the following key biomarkers, each weighted based on its
relative contribution to cognitive risk:

• Cerebrospinal fluid (CSF) Aβ42;
• Amyloid PET imaging;
• CSF Tau and phosphorylated Tau (p-Tau);
• MRI FDG-PET (brain metabolism).
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Figure 1. Conceptual diagram illustrating the computational framework for Alzheimer’s disease risk
prediction. It captures Biomarker Data → Simulation → Risk Zones → Correlative Risk Scoring →
Risk Classification.

The computational framework is structured into three main components:
Descriptive Analysis—Under this cadre, we performed a descriptive analysis to

establish the expected physiological ranges for the cognitive risk associated with each
biomarker. These baseline values were modeled using a sigmoid function to generate a
synthetic dataset that captures the biomarker’s variability over time and across age groups.

Parameter Accumulation—This component tracks the progression and accumulation
of biomarkers over time. By modeling these trajectories, we assessed deviations from
normal levels, providing insights into the temporal dynamics of each biomarker concerning
AD risk.

Correlation and Classification—We analyzed the correlation between biomarker
accumulation and neuronal changes associated with Alzheimer’s disease. This enabled us
to classify cognitive risk into distinct categories—normal, mild risk, or high risk—based on
biomarker fluctuations and their combined effect on cognitive impairment (CI) scoring.

This structured computational approach provides a quantifiable framework for iden-
tifying early biomarkers of AD and refining predictive models for early diagnosis and
risk stratification.

2.1. Descriptive Analysis

Previous studies [29–33] have evaluated the expected average levels of key CSF
biomarkers across different age groups and populations, including individuals living
with HIV infection. Based on these findings, CSF Aβ42 levels below 480 pg/mL or above
800 pg/mL are considered clinically significant indicators of cognitive health status. Specif-
ically, reduced Aβ42 levels suggest amyloid plaque accumulation, while elevated levels are
typically associated with normal cognitive function.

For CSF Tau, age-specific thresholds have been proposed: levels should remain below
300 pg/mL for individuals aged 21 to 50, below 450 pg/mL for those aged 51 to 70, and
under a critical threshold in individuals aged 70 to 90. Similarly, in amyloid PET imaging, a
Centiloid score of 0 is typical in younger adults, while scores approaching 100 are indicative
of mild neurodegenerative changes [29–33].

Further research shows that individuals with CSF Aβ42 levels between 600 and
800 pg/mL generally maintain normal cognitive function, whereas levels below 480 pg/mL
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are linked to progressive cognitive decline [8]. Additionally, [21,34] observed that amyloid
PET values less than 7 and CSF Tau levels below 7 are commonly found in cognitively
normal individuals. In contrast, amyloid PET values exceeding 7–10 correlate with amyloid
positivity and an increased risk of mild cognitive impairment (MCI) and Alzheimer’s
disease. Tau levels above the 7–10 range are also associated with early neurodegenera-
tive processes.

CI score further contextualizes these biomarkers, with scores below 3 (CI ≤ 3) as-
sociated with normal cognitive aging and scores above 6 indicating early-stage cognitive
impairment [34]. Integrating these biomarker thresholds with cognitive impairment scoring
provides a structured and quantifiable framework for classifying individuals into cognitive
risk zones relevant to Alzheimer’s disease onset and related neurodegenerative disorders.

2.2. Sigmoid Simulation and Parameter Accumulation

To standardize the accumulation of biomarker values and imaging results relative
to age, we modeled the biomarker measurements using a sigmoid function, defined in
Equation (1). In this formulation, L represents the maximum potential value of a given
parameter, while k serves as a scaling factor to adjust for variability in the input data. The
term (x) denotes the individual biomarker measurement, and x0 represents the mean of the
respective biomarker column, acting as a reference point for standardization. The sigmoid
function is mathematically expressed as:

S(x) =
L

1 + ek(x−x0)
(1)

This function effectively constrains the output between 0 and L, making it well suited
for classification tasks where the goal is to assess the likelihood of an individual belonging
to a specific cognitive risk category. Within the context of this research, the sigmoid function
enables the stratification of individuals into normal, mild-risk, and high-risk groups based on
their biomarker profiles associated with Alzheimer’s disease.

To further analyze biomarker progression, we computed the derivative of the sigmoid
function, S′(x), to identify critical points and ensure smooth curve behavior. By lever-
aging regression analysis alongside the derivative S′(x), we reverse-engineered feature
distributions, allowing for the controlled generation of synthetic instances representing
individuals aged 10 years and older. This approach enriched the dataset, supporting the
modeling of early biomarker changes potentially preceding clinical symptoms (see Figure 1
for reference).

Henceforth, the term donor may be written as donor to reflect the enrichment and
synthetic extension of the original dataset.

2.3. The Dataset

Most existing datasets in Alzheimer’s research predominantly comprise data from
older individuals, typically aged 50 years and above. However, due to the scarcity of
available data for younger individuals, particularly those aged 30–50, and the defined
nature of available biomarker data —often either MRI imaging or numerical with categorical
values, but rarely both— this study adopts a hybrid dataset approach to enrich the dataset
and broaden age representation.

The dataset was constructed by aggregating 307 instances from sources including
Kaggle, ANDI, and OASIS. Rigorous data cleaning and filtering procedures were applied
to retain relevant features. Duplicate or similar entries were identified and subsequently
grouped, with averaged values calculated, using Age as the primary instance identifier.
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To manage missing data, especially for individuals younger than 50, synthetic data points
were generated employing the sigmoid-based simulation detailed in Equation (1).

Table 1 presents a snapshot of the resulting biomarker dataset designed for Alzheimer’s
disease (AD) risk assessment. Notably, the dataset starts from age 10, reflecting an inten-
tional focus on early-stage biomarker progression rather than traditional cohorts limited to
older populations.

Initial observations suggest that CSF Aβ42 levels increase with age during early devel-
opment, potentially reflecting normal physiological changes before the expected decline
associated with AD. Similarly, amyloid PET and CSF Tau levels demonstrate gradual
increases, indicating progressive biomarker changes that may begin well before clinical
symptoms emerge.

The dataset includes the following key attributes:

• Age: The individual’s age (beginning at 10 years).
• CSF Aβ42: Cerebrospinal fluid amyloid beta 42 levels, a biomarker indicating amyloid

plaque accumulation, a hallmark of AD.
• Amyloid PET: Positron emission tomography measurements of amyloid deposition

in the brain, where higher values denote greater amyloid accumulation.
• CSF Tau: Levels of Tau protein in cerebrospinal fluid, serving as an indicator of

neurodegeneration associated with AD.
• MRI FDG-PET: A neuroimaging metric capturing structural and metabolic brain changes.

This enriched dataset enables the investigation of biomarker dynamics across a broader
age range, offering valuable insights into early-stage Alzheimer’s risk assessment.

Table 1. Early biomarker progression and cognitive assessment in young individuals. This table
presents the biomarker levels for individuals. Ages 10 to 110 years were considered, focusing on
early-stage Alzheimer’s disease (AD) risk factors. The dataset includes key cerebrospinal fluid (CSF),
neuroimaging biomarkers such as CSF Aβ42, amyloid PET, CSF Tau, and MRI FOG PET.

Age CSF_Ab42 Amyloid PET CSF Tau MRI FOG PET

10 1.422776195 1.15055579 0.839682182 0.63837886

11 1.546666892 1.251055685 0.91156436 0.689563902

12 1.719772277 1.36639224 0.989358424 0.74564352

13 1.88920682 1.488831819 1.073507365 0.805661359

14 2.0745661 1.60277478 1.164480779 0.878329193

15 2.225745401 1.76235397 1.262772013 0.033977347

16 2.45188095 1.197938204 1.368893079 1.014954524

17 2.73368883 2.085104465 1.483419148 1.055688099

18 2.995514674 2.265577082 1.606890123 1.188384416

19 3.272046536 2.400189615 1.739908743 1.275627274

20 3.576887651 2.666988017 1.883888619 1.375780022

21 3.003254331 2.885211264 2.037061649 1.48328319

22 4.255311947 3.13731708 2.202474709 1.598592854

23 4.633957953 3.396927461 2.379885564 1.722181014

24 5.03344846 3.6748514 2.570257903 1.885453881

25 5.72765714 3.771898817 2.773955443 1.996147716

26 5.934483343 4.288584041 2.991735033 2.147521424

27 6.4249505099 4.625735365 3.224238726 2.309173001
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2.4. Correlation Analysis and Cognitive Risk Categories

It is critical to identify correlations between biomarkers and establish classification
regions that stratify donors into normal (no_risk), mild_risk, and high_risk cognitive categories
associated with AD. For instance, the significance of CSF Aβ42 is that its reduction signals
amyloid plaque accumulation in the brain, a hallmark of Alzheimer’s disease (AD) [30].

Furthermore, Figures 2 and 3 illustrate two key relationships in the dataset. Figure 2
presents the age-dependent trajectory of CSF Aβ42 levels, displaying a sigmoidal trend. CSF
Aβ42 levels rise gradually during early life (ages 10–30), possibly reflecting normal amyloid
metabolism. From midlife (ages 30–60), Aβ42 levels increase more rapidly, potentially
indicating changes in amyloid clearance efficiency. Levels plateau in later years (60+), likely
due to reduced clearance or plaque accumulation in brain tissues.

This trajectory aligns with established AD biomarker models, where CSF Aβ42 con-
centrations decline in individuals with amyloid pathology [16,29,35].

Figure 3 on the other hand, highlights the correlation between CSF Aβ42 and CSF Tau
levels. The scatter plot and regression line reveal an inverse relationship: CSF Tau increases
sharply as CSF Aβ42 decreases. This supports the hypothesis that amyloid deposition
(low Aβ42) is linked to neurodegeneration (elevated Tau), both of which are critical to
AD progression.

Figure 2. Age-dependent sigmoidal increase in CSF Aβ42, reflecting key transitions in amyloid
metabolism over time.

Figure 3. Age-dependent correlation plot showing that elevated Tau levels are associated with
reduced Aβ42, supporting amyloid-driven neurodegeneration in AD.
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Applying predefined medical thresholds, Section 2.1 provides clear cutoffs for
biomarker levels, enabling the classification of cognitive states (Figure 4). This visual-
ization traces biomarker trajectories across the lifespan, highlighting cognitive risk zones.
The shaded backgrounds (green, yellow, orange, and red) indicate transitions from nor-
mal cognitive function to mild cognitive impairment. With increasing age, deviations in
biomarker levels become more pronounced, particularly in individuals transitioning into
high-risk or MCI categories.

These cognitive risk zones are defined as:

1. Normal: Biomarker levels within safe physiological ranges;
2. Mild Risk: Slightly elevated biomarker levels indicating potential early changes;
3. High Risk: Significant biomarker abnormalities but without formal clinical diagnosis;
4. MCI (Mild Cognitive Impairment): Biomarker levels exceed critical thresholds

indicating cognitive deterioration.

As illustrated, CSF Aβ42 (purple) declines sharply with age, while amyloid PET
(red), CSF Tau (yellow), and MRI + FDG PET (blue) show progressive increases. The
green cognitive impairment curve mirrors this upward trend, reinforcing the relationship
between biomarker deviations and cognitive decline.

Figure 4. Age-related biomarker trajectories transformed by sigmoid scaling. CSF Aβ42 (purple)
declines with age, while amyloid PET, CSF Tau, and MRI + FDG PET levels rise, reflecting the
progressive risk of cognitive impairment. Shaded areas indicate transitions between cognitive
risk categories.

Figure 5 models the progression of cognitive impairment as a function of age, seg-
mented into cognitive risk categories. Data points, color-coded by risk level, reveal a
nonlinear increase in cognitive impairment over time. Initially, most individuals remain in
the normal range (blue). As age advances, the probability of transitioning into mild risk
(orange), high risk (green), and MCI (red) increases significantly.

The trajectory indicates a critical period around midlife (50–60 years), where cognitive
risk accelerates sharply. This observation aligns with neurodegenerative models suggesting
that biological and cognitive reserves initially buffer against decline until cumulative
damage leads to rapid deterioration.

These findings emphasize the importance of early detection and monitoring. In-
dividuals classified as mild-risk still represent a key intervention window where pre-
ventive strategies could delay or mitigate progression. Integrating machine learning
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techniques could further enhance this model by identifying subtle early indicators of
cognitive impairment.

Figure 5. Cognitive impairment progression over age, color-coded by risk levels. The model shows
an initial period of cognitive stability, followed by gradual and then accelerated increases in risk,
particularly after age 50.

Considering Figures 4 and 5, the central research question emerges: What biomarker
values can individuals aged 30–40 (and 40–50) maintain to remain within the safe (green) zone for
healthy AD-free old age? Or put it in another way, what thresholds signal progression toward mild
or high risk of developing Alzheimer’s disease at an older age?

3. Computational Summation
To answer the final question in the previous section, it is essential to recall and reaffirm

the objective of this paper. To achieve this, we restrict and define the potential symptoms
of brain atrophy based on cognitive impairment observed in donors.

Cognitive Impairment

Cognitive impairment (CI) was modeled as a weighted sum of biomarker values (CSF
Aβ42, amyloid PET, CSF Tau, MRI FDG PET), incorporating an exponential scaling factor
to account for the accelerated impairment. Since biomarkers contribute (approximately)
linearly to cognitive impairment, an increase in amyloid PET and CSF Tau elevates the
risk, while a decrease in CSF Aβ42 also contributes to increased risk. The terms can be
modeled as

B1(A) = k1e−m1 A, B2(A) = k2e−m2 A, B3(A) = k3e−m3 A, B4(A) = k4e−m4 A

where B1(A) is the CSF Aβ42 value, which decreases exponentially with age. B2 corre-
sponds to the amyloid PET value, which increases exponentially with age. B3(A) represents
(CSF Tau), and B4(A) denotes MRI FDG PET, both of which increase at different rates over
time, such that cognitive impairment (CI) can be rewritten as:

CI(A) = α.eβA + w1k1e−m1 A + w2k2e−m2 A + w3k3e−m3 A + w4k4e−m4 A (2)

Thus, we define the risk zones—safe, mild risk, and unsafe—using Equation (2), based on
the values of the underlying biomarker parameters. Specifically, this equation determines
the range of biomarker values an instance aged 30–40 (30–50) must possess to remain
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safe, be at mild risk, or become unsafe from the disease at an older age. Specifically, the
following system of exponential equations explains it succinctly:

Safe Zone: CI(A) = α.eβA + ∑
i

wi.Bi(A) ≤ γ (3)

Mild Risk Zone: γ < α.eβA + ∑
i

wi.Bi(A) ≤ δ (4)

Unsafe Zone: α.eβA + ∑
i

wi.Bi(A) > δ (5)

where A represents age, CI(A) denotes the cognitive impairment score at age A, and Bi(A)

corresponds to the biomarker level at age A. The parameter wi is the weight coefficient
that determines the contribution of each biomarker value to cognitive impairment. The
parameters α and β are scaling factors of CI(A) [36], where cognitive decline is modeled
by the exponential function eβA, capturing the accelerated progression of impairment
with aging.

Safe zone holds when CSF Aβ42 dominates over other biomarkers and remains high,
and amyloid PET, CSF Tau, and MRI FDG PET remain below mild risk levels. A mild
zone occurs if CSF Aβ42 declines slightly, but amyloid PET and CSF Tau rise moderately
(perhaps accounting for the early onset of AD). The evidence for an unsafe zone is given
by a significant drop of CSF Aβ42 and amyloid PET, CSF Tau, and MRI FDG PET reach
high threshold levels. Referencing Section 2.1, we conclude that γ = 3 and δ = 6 within the
30–40 age bracket and 4 and 7 for 40–50 years age bracket, respectively.

4. Model Output and Cognitive Risk Zone Classification
We leveraged ChatGPT 4o [37] to generate a synthetic dataset containing 150 instances

for testing (due to the challenge of acquiring heterogeneous real-world datasets) and
computed the cognitive impairment score for each instance using Equation (2). Each
instance was then classified into its respective cognitive risk zone based on the thresholds
defined in Equations (3)–(5), with an example of the classification summarized in Table 2.

Table 2. Sample classification results of selected instances with CI scores and risk zones.

Age CSF Aβ42 Amyloid_PET CSF_Tau MRI_FDG_PET CI Risk Level

58 428.21 14.28 382.99 6.92 3.18 Safe
40 411.53 19.13 370.31 14.58 3.37 Mild Risk
53 516.39 8.62 478.00 3.19 3.21 Safe
39 413.08 14.25 403.98 6.57 4.41 Mild Risk
34 422.18 15.37 393.98 6.55 3.62 Mild Risk
47 427.23 14.69 411.34 6.29 5.30 Mild Risk
48 419.70 14.01 414.07 6.95 4.21 Mild Risk
50 418.06 15.26 399.28 7.18 5.35 Mild Risk

The model output produced age-specific CI risk bands (Table 3) guided by strict
threshold templates (Tables 4–6). Notably, risk classification dynamically references the
age-specific intervals during CI analysis—failure to do so would result in overestimating
risk in younger individuals and underestimating it in older ones.

The 30–40 age group applies the strictest thresholds, reflecting the expectation of
relatively healthy biomarkers. In contrast, the 40–50 age group tolerates mild biomarker
deviations, shifting the “Safe” range upward. The 50–60 age group follows a similar trend,
reflecting normal biomarker drift with aging.
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Table 3. Age-specific cognitive impairment (CI) risk bands used for model classification.

Age Group Safe CI Mild Risk CI Unsafe CI

30–40 0–3 3–6 6–10
40–50 1–4 4–7 7–12
50–60 1.5–5 5–8 8–13
60–70 2–6 6–9 9–14

Key observations include the following:

1. Higher CSF Aβ42 levels are protective, reducing the cognitive risk score.
2. Elevated amyloid PET and Tau levels increase the CI score, indicating greater neu-

rodegenerative risk.
3. Age contributes exponentially, but moderately, due to the model’s exponential scaling

component.

Notably, MRI scan results can reveal structural brain changes, including mild parietal
or temporal lobe atrophy, cortical thinning, white matter lesions, or hippocampal volume
loss. The model identified 17 instances classified within the mild-risk zone. Next, we exam-
ine six representative mild-risk cases to gain deeper simultaneous insights into biomarker
patterns and cognitive risk profiles in the next section.

Our model further supports retrospective analysis of disease trajectories, providing
estimates of the optimal intervention window. This is particularly valuable for aged donors
already exhibiting Alzheimer’s disease (AD) symptoms, helping to infer when earlier
intervention might have slowed disease progression. In such cases, this perhaps serves as
evidence in support of further aggressive medical attention.

Table 4. Estimated biomarker thresholds for ages 30–40.

Biomarker Normal (Green) Low Risk (Yellow ) High Risk (Orange)

CSF_Aβ42 (15, 22) (10, 15) (5, 10)
Amyloid_PET (4, 7) (7, 10) (10, 15)

CSF_Tau (3, 6) (6, 9) (9, 12)
MRI_FDG_PET (2, 5) (5, 8) (8, 12)

Cognitive_Impairment (0, 3) (3, 6) (6, 10)

Table 5. Estimated biomarker thresholds for ages 40–50.

Biomarker Normal (Green) Low Risk (Yellow) High Risk (Orange)

CSF_Aβ42 (12, 18) (8, 12) (5, 8)
Amyloid_PET (5, 9) (9, 12) (12, 18)

CSF_Tau (4, 7) (7, 10) (10, 14)
MRI_FDG_PET (3, 6) (6, 9) (9, 13)

Cognitive_Impairment (1, 4) (4, 7) (7, 12)

Table 6. Estimated biomarker thresholds for ages 55–65.

Biomarker Normal (Green) Low Risk (Yellow) High Risk (Orange)

CSF_Aβ42 (10, 15) (6, 10) (3, 6)
Amyloid_PET (7, 12) (12, 16) (16, 22)

CSF_Tau (5, 8) (8, 12) (12, 16)
MRI_FDG_PET (4, 7) (7, 10) (10, 15)

Cognitive_Impairment (2, 5) (5, 9) (9, 14)
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Discussion of Table 2: Sample Classification Results of Selected Instances with CI Scores and
Risk Zones

Table 2 presents the classification of eight sampled instances based on their biomarker
values, computed cognitive impairment (CI) scores, and assigned cognitive risk zones
according to the model’s age-specific thresholds. Key Observations are:

1. Higher CSF Aβ42 values are associated with lower cognitive impairment (CI) scores
and safer classifications. For instance, the 53-year-old individual exhibits the highest
CSF Aβ42 level (516.39 pg/mL), which corresponds to a low CI score of 3.21 and
a Safe classification, despite moderate Tau levels. This observation highlights the
protective role of CSF Aβ42, where higher levels reduce cognitive risk, while lower
CSF Aβ42 levels are indicative of amyloid plaque formation and increased risk of
Alzheimer’s disease.

2. The 40-year-old instance exhibits high amyloid PET (19.13) and elevated MRI FDG-
PET (14.58) values. Despite being relatively young, this drives its CI to 3.37, placing it
in the mild risk zone due to age-specific stricter thresholds for younger adults. Simi-
larly, higher CSF Tau levels (e.g., 411.34 at age 47) contribute to mild risk classification,
reiterating that elevated amyloid PET and Tau drive risk upward.

3. Notice the age-specific sensitivity to biomarker deviations. For example, the 34- and
39-year-old instances fall into the mild risk zone even with moderate biomarker levels.
This reflects the model’s stricter criteria for younger adults, where any abnormal
biomarker deviation is penalized more heavily. Older individuals (47–58) tolerate
similar or higher biomarker values but remain classified as safe or mild risk due to
relaxed thresholds.

4. Elevated MRI FDG-PET (metabolic changes) values are seen in mild risk cases, espe-
cially in the 40-year-old (14.58), suggesting early structural/metabolic brain changes
contributing to increased cognitive risk.

5. Overall, safe cases maintain CI below 4 (Ages 58 and 53). Mild risk cases occupy the
CI range of 3.37 to 5.35, with no instances classified as unsafe in this sample.

5. Discussion: Limitations and Result Interpretation
5.1. Limitations

• To address sparse biomarker data in adults under 50, we generated synthetic instances
using a sigmoid-based simulation. While this method captures plausible non-linear
trajectories, it may not fully reflect the true variability or covariation patterns present
in real-world cohorts. As a result, our age-specific risk thresholds—particularly in
younger age brackets—could be overly simplified, optimistic, or fail to account for rare
but critical deviations. Future validation on longitudinal clinical datasets is essential
to confirm that the synthetic profiles do not bias the model toward underestimating
early pathology.

• Our framework relies on cross-sectional snapshots of biomarker levels across ages
rather than following the same individuals over time. This limits our ability to capture
intra-individual change dynamics and may conflate cohort effects (e.g., generational
differences in risk factors) with true aging trajectories. Consequently, the risk-zone
boundaries derived here may shift when applied to actual longitudinal data, poten-
tially altering the predicted optimal intervention windows.

• Each core biomarker—CSF Aβ42, amyloid PET, CSF Tau, and FDG-PET—has inherent
technical variability: assay differences, scanner calibration, and inter-laboratory proto-
cols can introduce measurement noise or systematic offsets. Although we modeled
thresholds broadly, unaccounted measurement noise could widen confidence inter-
vals around our CI scores, reducing the precision of individual risk stratification and
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potentially increasing false positives or negatives. We were also not involved in the
data acquisition processes.

• Our current model weights only biochemical and imaging biomarkers, omitting
key genetic (e.g., APOE ϵ4 status) and lifestyle (e.g., exercise, diet) modifiers of
AD risk. This simplification may overlook synergistic effects, such as how physical
activity might mitigate Tau-related risk, thereby limiting predictive power and po-
tentially misclassifying individuals whose biomarker profiles interact strongly with
non-biological factors.

• We selected a standard sigmoid to model biomarker accumulation and decline. How-
ever, real-world biomarker trajectories may deviate, exhibiting multi-phase kinetics,
plateaus, or even transient regressions. Relying on a fixed functional form constrains
the model’s flexibility and could misestimate early or late-life risk slopes, affecting
downstream CI calculations and the timing of recommended screenings.

• All results stem from externally generated or synthetic datasets. Without testing on
independent cohorts—especially those with diverse genetic backgrounds, comorbidi-
ties, and imaging platforms—our thresholds remain provisional. External validation
is crucial both for confirming generalizability and for recalibrating CI cut-points to
local populations or different imaging centers.

• We categorize risk into four discrete zones (normal, mild, high, MCI) based solely
on CI cut-points. In practice, AD progression is a continuum. Discrete zoning may
overlook subthreshold changes and fail to capture personal trajectories that straddle
boundary regions. More granular or individualized probabilistic risk scores could
provide finer guidance for clinicians.

5.2. Limitations Impact on Results

Collectively, these limitations imply that our absolute risk estimates and age-specific
thresholds should be interpreted cautiously. Synthetic augmentation and cross-sectional
design may bias early-age risk downward, potentially delaying necessary interventions.
Measurement variability and missing non-biological factors could reduce predictive accu-
racy, leading to misclassification in a minority of cases. Finally, without external validation,
the model’s translational applicability remains unproven. Addressing these limitations
in future work, through longitudinal cohort studies, richer feature integration, flexible
modeling approaches, broader discussions, and rigorous external benchmarking, will be es-
sential to refine our computational tool and ensure reliable, personalized risk stratification
in clinical practice.

6. Conclusions
This research presents a computational modeling framework designed to explore and

predict the early onset of Alzheimer’s disease (AD) in younger adults, decades before the
manifestation of clinical symptoms. By leveraging sigmoid-based data generation and
cognitive impairment modeling, the study simulates non-linear biomarker trajectories that
align with known patterns of disease progression.

Through the development of age-adjusted cognitive risk zones, the model provides a
quantifiable system for classifying individuals based on biomarker deviations and their
impact on cognitive decline. Notably, higher CSF Aβ42 levels consistently demonstrated
a protective effect, while elevated amyloid PET and Tau levels correlated with increased
cognitive impairment scores. These findings underscore the importance of integrating age-
specific thresholds to prevent over- or under-estimation of cognitive risk across different
age groups.
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A key contribution of this work is its focus on pre-symptomatic risk detection using
computational methods. The framework enables researchers to model early disease trajec-
tories and offers clinicians a tool for identifying individuals who may benefit from timely
preventive interventions. Importantly, the model’s flexibility allows for future expansion to
incorporate genetic factors, neuroimaging metrics, and lifestyle variables, enhancing its
applicability in clinical settings.

Future directions include validating the framework with longitudinal real-world
datasets, enhancing predictive accuracy using machine learning architectures such as
recurrent neural networks, and applying explainability tools to interpret feature contri-
butions. Additionally, integrating digital twin simulations could further personalize risk
assessments and support precision treatment planning.

Overall, this research demonstrates the potential of computational modeling to bridge
the gap between complex biomarker dynamics and early diagnostic opportunities in
Alzheimer’s disease. By establishing a robust mathematical and statistical foundation,
this work contributes to advancing precision medicine approaches in neurodegenerative
disease research and clinical care.
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