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Abstract

Plant breeding strategies to optimize metabolite profiles are necessary to develop health-promoting food crops. In oats (Avena sativa L.),
seed metabolites are of interest for their antioxidant properties, yet have not been a direct target of selection in breeding. In a diverse oat
germplasm panel spanning a century of breeding, we investigated the degree of variation of these specialized metabolites and how it has
been molded by selection for other traits, like yield components. We also ask if these patterns of variation persist in modern breeding
pools. Integrating genomic, transcriptomic, metabolomic, and phenotypic analyses for three types of seed specialized metabolites—ave-
nanthramides, avenacins, and avenacosides—we found reduced heritable genetic variation in modern germplasm compared with diverse
germplasm, in part due to increased seed size associated with more intensive breeding. Specifically, we found that abundance of avenan-
thramides increases with seed size, but additional variation is attributable to expression of biosynthetic enzymes. In contrast, avenacoside
abundance decreases with seed size and plant breeding intensity. In addition, these different specialized metabolites do not share large-
effect loci. Overall, we show that increased seed size associated with intensive plant breeding has uneven effects on the oat seed metabo-
lome, but variation also exists independently of seed size to use in plant breeding. This work broadly contributes to our understanding of
how plant breeding has influenced plant traits and tradeoffs between traits (like growth and defense) and the genetic bases of these shifts.
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Introduction
Plants produce diverse arrays of specialized metabolites, generating
a classification of hundreds of thousands of metabolites (Sorokina
et al. 2021), that are nonessential for plant survival and frequently
only found in specific plant lineages (Mutwil 2020). Plant specialized
metabolites are of interest for their role in biotic and abiotic stress
tolerance as well as their implications for human health as nutra-
ceutical compounds (Afendi et al. 2012; Jacobowitz and Weng 2020).
Plant breeding efforts to enhance specialized metabolite abundance
in crop plants, however, are constrained by resource-intensive
metabolomic phenotyping, genotype by environment interactions,
and limited understanding of the genetic drivers of phenotypic
variation in cultivated germplasm (Soltis and Kliebenstein 2015).
While advances in the study of model organisms like Arabidopsis
have contributed to our understanding of specialized metabolism
(Wager and Li 2018), large-scale studies on metabolomic diversity in
cultivated germplasm—like glycoalkaloids in tomato (Solanum
lycopersicum L.) (Zhu et al. 2018) and benzoxazinoids in maize (Zea
mays L.) (Zhou et al. 2019)—provide information about specialized

metabolism limited to specific lineages and in contexts more di-
rectly applicable for plant breeding programs. Overall, characteriza-
tion of genomic variation and strategies to translate this
information into widely applicable plant breeding strategies are crit-
ical steps to making specialized metabolite composition an
accessible goal for plant breeding.

Studying specialized metabolites in cultivated plants in addi-
tion to wild progenitors or model organisms is important as spe-
cialized metabolite profiles may have also shifted in response to
direct selection or indirect selection for other traits, or through
genetic drift. While there is a longstanding prediction that culti-
vated plants would have reduced specialized metabolite concen-
tration as compared with wild-plants (as cultivated plants are
more susceptible to biotic stress), there is not a consistent rela-
tionship between cultivation status and specialized metabolites
across multiple species (Whitehead et al. 2017). Instead, differen-
ces in specialized metabolite abundance are frequently observed
in distinct breeding pools and pedigrees. For instance, divergence
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in volatiles has been noted in roots of maize (Rasmann et al.
2005), and leaves in cranberry (Rodriguez-Saona et al. 2011) and
there is variation in leaf glucosinolates in cultivated Brassicas
(Poelman et al. 2008). For plant breeders, insight into how selec-
tion processes affected specialized metabolites can provide a ba-
sis for ongoing work and germplasm selection for breeding
efforts.

We explored existing variation of specialized metabolites in
oats (Avena sativa L.) and how the metabolomic profile has been
shaped by plant breeding. Oats were domesticated from weedy
progenitors (Loskutov 2008) and, like other cereal crops, domesti-
cated oats have increased seed size compared with wild species
(Preece et al. 2017). Oats are used as livestock feed and have been
an important part of human diet in some parts of Europe since
before the Renaissance (Murphy and Hoffman 1992). The nutra-
ceutical benefits of fiber, skin soothing and general health pro-
motion of oats were also noted in the first century CE by
Dioscorides (Murphy and Hoffman 1992). Today, oats are still
known as a healthy whole grain (Singh et al. 2013; Stewart and
McDougall 2014), with high concentrations of unsaturated fats
(Carlson et al. 2019) and heart health-promoting b-glucans
(Newell et al. 2012). Both have been the subject of plant breeding
efforts, but yield and disease resistance are still predominant
traits of interest for plant breeding (Haikka et al. 2020; González-
Barrios et al. 2021). In addition to these health-promoting com-
pounds, oat seeds contain multiple specialized metabolites (Sang
and Chu 2017) but, to the best of our knowledge, these metabo-
lites have not been a direct target of selection. With this history,
we predict that oat specialized metabolites may have been sub-
ject to genetic drift or indirect selection processes (e.g., for seed
traits or disease resistance) leading to changes in patterns of vari-
ation. Characterizing the genetic bases of variation will provide a
starting point for plant breeding.

We focused on three types of specialized metabolites in oat
seed: avenanthramides, and the saponins avenacins and avena-
cosides. Avenanthramides are in highest concentration in the
outer layers of the seed, most notably the aleurone layer (Liu and
Wise 2021), while the saponin avenacosides are concentrated in
the endosperm (Önning et al. 1993). Avenanthramides have anti-
oxidant properties (Meydani 2009; Sang and Chu 2017) that are
retained through processing of oats into many consumer
products (Pridal et al. 2018). The committed enzymes of avenan-
thramide biosynthesis have been characterized, and it is well-
established that avenanthramides are the result of condensation
between phenolic acids and anthranilic acid, products of differ-
ent branches of aromatic amino acid biosynthesis (Collins 2011;
Wise 2014; Li et al. 2019). Avenanthramides are associated with
resistance to crown rust (pathogen Puccinia coronata f. sp. avenae)
(Wise et al. 2008; Wise 2014), and demonstrate variation in re-
sponse to the environment (Emmons and Peterson 2001; Peterson
et al. 2005; Redaelli et al. 2016; Michels et al. 2020). The avenacins
and avenacosides are both saponins that have been implicated in
reducing plant fungal infections and in lowering cholesterol
when consumed, but have received less attention for research
and breeding (Sang and Chu 2017). Core biosynthetic genes for
avenacin biosynthesis have been identified in roots of the noncul-
tivated species, Avena strigosa (Kemen et al. 2014; Leveau et al.
2019), but whether variation in expression of these genes affects
abundance in seed tissues of cultivated oat remains unknown.

Knowledge of biochemical pathways is a crucial foundation
but, for plant breeding, it is important to further investigate
whether variants that affect enzyme activity, or regulation, or
pathway flux, or metabolite transport contribute to the observed

phenotypic variation (Soltis and Kliebenstein 2015). While loss of
function mutations in biosynthetic enzymes are observed and
employed by breeders for specialized metabolites in some crops
[e.g., Pun1 mutation prevents capsaicin production in pepper
(Stewart et al. 2005)], mutations in regulatory elements are critical
in others [e.g., transcription factor Bt mediates cucurbitacin accu-
mulation in cucumber (Shang et al. 2014)]. For oats, there is ex-
perimental evidence that avenanthramides increase in response
to activation of systemic acquired resistance (SAR) (salicylic acid
mediated defense) (Wise 2011, 2017; Wise et al. 2016), and degree
of induction varies between oat genotypes (Wise et al. 2016), sug-
gesting that regulatory variants could be an important target for
selection. While expression of key biosynthetic enzymes has
been profiled (Dimberg and Peterson 2009; Wise 2017), there has
not been a genome-wide association study (GWAS) or
transcriptome-wide association study (TWAS) to identify novel
genes. We are not aware of comparable studies of saponins. In
other crops, integrated genomic, transcriptomic, and metabolo-
mic analyses have been critical in understanding metabolic pro-
files. For instance, concomitant changes in fruit metabolome and
fruit size have been characterized in tomatoes (Zhu et al. 2018).

We sought to integrate oat seed metabolomic, transcriptomic
and genomic data to characterize genetic variation contributing
to specialized metabolite abundance in oat seed. We also mea-
sured oat seed size to evaluate if selection on that yield compo-
nent has affected specialized metabolite profiles, as some
dimensions of seed shape are negatively correlated with the
healthful compound b-glucan, in oat (Zimmer et al. 2021). Using a
diverse germplasm panel that includes oat varieties developed
beginning in 1920 and an elite germplasm panel, we measured
whole seed metabolome phenotypes and seed size and weight
traits. In the diverse germplasm panel, we also conducted tran-
scriptome sequencing of developing seed. We hypothesized that
heritable genetic variation is greater in the diversity than the elite
panel, and examined the relationship between seed traits and
specialized metabolites in both of these panels. We also investi-
gated the relative roles of variation in regulation and known bio-
synthetic enzyme pathway genes in mediating metabolite
variance. To test these predictions, we conducted a GWAS and
TWAS, respectively, and eQTL analysis for metabolites and seed
traits. Overall, this work provides insight into breeding for oat
specialized metabolites and more broadly adds to our foundation
of how the relative contributions of genetic variation in regula-
tion or direct biosynthesis shapes phenotypic variation of
specialized metabolites in crop plants.

Materials and methods
Oat germplasm
We used two germplasm panels of inbred lines, a diversity panel
intended to capture genetic diversity in cultivated oats and an
elite panel consisting of lines selected from the North American
uniform oat performance nursery. These germplasm panels have
been previously described in Campbell et al. (2021a) and Hu et al.
(2021). In the diversity panel, there were 368 entry genotypes
(inbred lines) and seven check genotypes planted in an aug-
mented design in plots at Ithaca, New York, United States in
2018. Six genotypes that lacked both genotyping data and gene
expression data were removed from our analysis. The elite panel
consisted of inbred lines and was evaluated in three northern US
environments (Minnesota, “MN”; South Dakota, “SD”; Wisconsin,
“WI”) in 2017 in plots in an augmented design with 232 entries
and three checks. Crown rust was not detected in MN or SD and
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had low incidence in WI, and was not recorded for the diversity
panel. Nineteen entries were included in both the diversity and
elite panels and were removed from the elite panel analyses to
compare independent sets of germplasm.

Oat seed secondary metabolite phenotypes
We profiled the seed metabolome in the oat diversity and elite
panels. Details of extraction and processing of these samples has
been previously described (Campbell et al. 2021b; Hu et al. 2021)
and is provided here in Supplementary Method S1. The extrac-
tions and measurements were conducted at the Bioanalysis and
Omics Center of the Analytical Resources Core (“ARC-BIO”), at
Colorado State University (Fort Collins, CO, USA). Briefly, 50 seeds
were dehulled, homogenized, and extracted using a biphasic ex-
traction method to separate polar and nonpolar compounds.
Chromatography analysis of the polar compounds (aqueous
layer) was done using a Waters Acquity UPLC system with a
Waters Acquity UPLC CSH Phenyl Hexyl column (1.7 lM,
1.0� 100 mm) and a Waters Xevo G2 TOF-MS with an electro-
spray source in positive mode. Mass features were annotated by
first searching against an in-house spectra and retention time
database using RAMSearch (Broeckling et al. 2016) and then by us-
ing MSFinder (Tsugawa et al. 2016). The final phenotype reported
was the relative signal intensity (relative concentration) of each
metabolite. Names and spectra of the specialized metabolites are
given in Supplementary Table S1. The mass spectra of the spe-
cialized metabolites were positively annotated by these methods
in the diversity panel, which was analyzed in 2018. Many of the
specialized metabolites were also annotated in the elite panel
(measured in 2017), and missing annotations were completed by
comparing spectra to the diversity panel and published mass
spectra for avenanthramides (de Bruijn et al. 2019), avenacins
(Leveau et al. 2019), and avenacosides (Bahraminejad et al. 2008).

Best linear unbiased predictions (BLUPs) were calculated for
each metabolite for the diversity panel, and separately for each
environment of the elite panel. To account for skew, data were
log2 transformed. Then, relative concentration of each metabo-
lite was modeled with a linear mixed model in R (R Core Team
2016) with lme4 (Bates et al. 2015). For each metabolite, there
were fixed effects of whether the genotype was a replicated check
and days to heading (“DTH”) as a numeric covariate, and random
effects of experimental block, batch in which the sample was run
on the LCMS, and genotype. Outliers were defined as having stu-
dentized residual >3 and were removed, and the model was
recalculated. Effect significance of the DTH covariate is shown in
(Supplementary Table S2). The BLUPs were then deregressed
(Garrick et al. 2009). The deregressed BLUPs (drBLUPs) were used
in all following analyses. Pearson’s correlations were estimated
between phenotypes using the “cor.test” function in R.

Oat seed size and mass phenotypes
After dehulling, 50 seeds were used for evaluating seed length,
width, and height. The seeds were scanned with a 2D scanner,
where seed length and width were extracted with the software
WinSeedle (Regent Instrument Canada Inc., version 2017). Seed
height was measured separately using an electronic caliper man-
ually with accuracy of 0.01 mm. Seed length and width measure-
ments are not available from the elite panel that was evaluated
in South Dakota. Seed volume was estimated as an ellipsoid
(Clohessy et al. 2018), and surface area of an ellipsoid was esti-
mated by S� 4p *((lw)1.6þ(lh)1.6þ(wh)1.6))/3)(1/1.6). Separately, 100
hand dehulled seeds and their respective hulls were weighed
(hundred kernel weight, “HKW” and hundred hull weight, “HHW,”

respectively) and the percent groat (kernel) was calculated as the
percent of total (kernel plus hull) weight. A summary of the raw
measured seed size and mass values (mean, standard error, and
range) is presented in Supplementary Table S3. Deregressed
BLUPs were then calculated from untransformed values in the
same manner as the metabolites (above) for use in further analy-
ses. The relationship between drBLUPs of seed traits and metabo-
lites was modeled with a linear model and effect significance was
tested by ANOVA.

Oat variety release year
We conducted an extensive literature search to determine the
year of variety release for as many varieties in the diversity panel
as possible. Most varieties were identified from information on
USDA GRIN (https://npgsweb.ars-grin.gov), some in Triticeae
Toolbox (https://triticeaetoolbox.org/POOL), others in the United
States (https://apps.ams.usda.gov/), Canada (https://www.inspec
tion.gc.ca/english/plaveg/pbrpov/cropreport/oat), or Europe
(https://ec.europa.eu/food/plant/plant_propagation_material/plant_
variety_catalogues_databases/) plant registrations, and finally as
published variety releases. In sum, we identified the year of variety
release for 155 varieties (Supplementary Table S4).

Genotyping and GWAS
Genotyping-by-sequencing data was retrieved from T3/Oat
(https://oat.triticeaetoolbox.org/), filtered to remove markers
with more than 60% missingness and markers with a minor allele
frequency of <0.02, and then imputed using the glmnet function
(Friedman et al. 2010) in R. Overall, there were 73,527 markers, of
which 54,284 could be anchored to the genome (PepsiCO
OT3098v1; https://wheat.pw.usda.gov/GG3/graingenes_down
loads/oat-ot3098-pepsico). All 54,284 SNPs were used for the di-
versity panel, and 54,219 SNPs were used for the elite panel after
these imputed SNPs were again filtered by minor allele fre-
quency. Kinship matrices were calculated for the diversity and
elite panels with their SNPs using the “A.mat” function, and geno-
mic heritability (de los Campos et al. 2015) was calculated from
variance components extracted from the “kin.blup” function in
rrBLUP (Endelman 2011). Genetic correlations were calculated in
sommer using the “mmer” and “cov2cor ”functions (Covarrubias-
Pazaran 2016). Principal components to use as covariates to ac-
count for population structure were calculated using the
“prcomp” function in R. The first 25 PCs were calculated, and the
scree plot was visually examined to determine the number of PCs
to use in future analyses (Supplementary Figure S1). Five PCs
were chosen for the diversity panel and four PCs were chosen for
the elite panel. A genome-wide association study (GWAS) was
conducted for each phenotype (drBLUP) in statgenGWAS
(Rossum and Kruijer 2020) using the PCs as covariates and the
kinship matrix. For GWAS results, P-values were adjusted with a
Bonferroni correction on a per-trait basis and SNPs with a PBonf <

0.05 were considered significant. To determine if any results colo-
calized with known QTL for crown rust, crown rust QTL were
recorded from recent publications and mapped to the latest ge-
nome version (Supplementary Table S5) (Lin et al. 2014; Babiker
et al. 2015; McNish et al. 2020; Zhao et al. 2020).

Transcriptome analyses of oat diversity panel
Developing oat seed tissue was dissected, and RNA was extracted
using a hot borate protocol at 23 DAA as this time point showed
slightly higher correlation between transcript and relative con-
centration of metabolites than other sampled developmental
time points (Hu et al. 2020). RNAseq reads were aligned to the oat
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transcriptome using Salmon v0.12 (Patro et al. 2017) and trans-
formed using variance stabilizing transformation in DESeq2 (Love
et al. 2014) as described by Hu et al. (2020). For these analyses, we
removed all transcripts expressed in fewer than 50% of samples
as these are not useful for TWAS, leaving 54% of the original set
(29,385). We examined the median absolute deviance of these
transcripts to look for outliers and none exceeded a cutoff of
MAD> 10. Deregressed BLUPs were then calculated in sommer
(Covarrubias-Pazaran 2016) using the “mmer” function. For each
transcript, there were fixed effects of whether the genotype was a
replicated check, the plate in which RNA was extracted from, and
DTH as a numeric covariate, and random effects of experimental
block and genotype. In all, 22,638 transcripts had converged
drBLUPs (nonzero heritability). To remove any additional factors
associated with experimental design, we ran probabilistic estima-
tion of expression residuals (PEER) and found that k¼ 5 factors
(determined by visual examination of scree plot) was sufficient
(Supplementary Figure S2).

We then conducted a TWAS and enrichment analyses. We
used the transcript PEER residuals and a kinship matrix, as well
as five genomic PCs as covariates for TWAS on the metabolite
and seed trait drBLUPs. We implemented TWAS using the
“createGData” and “runSingleTraitGwas” functions in the
statgenGWAS package (Rossum and Kruijer 2020). P-values were
adjusted per trait using a false discovery rate adjustment, and
transcripts with PFDR < 0.05 were considered significant. The ad-
justed P-values for all transcripts were used in gene ontology
(GO) enrichment analysis for each of the phenotypes for biologi-
cal processes GO terms. Enrichment analysis was implemented
in the R package topGO, where significance was determined
based on the default “weight01” algorithm followed by a Fisher
test (Alexa and Rahnenfuhrer 2016). Finally, transcripts had pre-
viously been assigned to temporally covarying groups (Hu et al.
2020) and these annotations were used to assign transcripts by
date (8, 13, or 18 DAA) and direction (up or down) that expression
pattern shifted. Those that changed on multiple dates were split
into the two respective days. We tested for enrichment of any
temporal and direction class using a hypergeometric test with
the “phyper” function in R.

We also identified transcripts associated with the avenanthra-
mide biosynthetic pathway (beginning at PAL) and the preceding
shikimate pathway using Ensemble Enzyme Prediction Pipeline
(E2P2) annotations (Chae et al. 2014) of transcripts
(Supplementary Table S6).

eQTL analysis
We implemented eQTL analysis in Matrix eQTL (Shabalin 2012)
in R using the PEER residuals for transcript counts and with five
genomic PCs as covariates. SNPs were defined as significant eQTL
at a threshold of PFDR < 0.05 per transcript. As only half of the
transcripts are mapped, we did not differentiate between cis and
trans eQTL, although future genome and transcriptome assem-
blies will facilitate this analysis.

Results
Heritability and correlations of specialized
metabolites in oat seed
Specialized metabolites (avenanthramides, “AVNs”; avenacins,
“AECs”; avenacosides, “AOSs”) were measured in seeds of a di-
verse germplasm panel evaluated in one environment and an
elite set of oat germplasm evaluated in three environments.
Genomic heritability was low to moderate for most metabolites,

and some metabolites had heritability <0.05 (Figure 1). In gen-
eral, there was a strong degree of phenotypic and genetic correla-
tion within metabolite groups (e.g., within AVNs) across
populations and environments, with the exception of avenaco-
side B (AOS_B) (Figure 1). In the diversity panel, the phenolic
AVNs tended to have negative phenotypic and genetic correla-
tions with both saponins (AEC and AOS), while AECs and AOSs
were positively correlated (Figure 1A). This trend was less pro-
nounced in the elite population phenotypes in most environ-
ments (Figure 1, B–D). While there was still strong within-group
correlation, there were no significant negative phenotypic corre-
lations between phenolics and saponins. Specialized metabolites
were significantly positively correlated between environments in
the elite panel (Supplementary Table S7).

Relationship between seed traits and specialized
metabolites
We examined seed size traits in dehulled seeds (volume, surface
area, and surface area to volume ratio), as well as kernel and hull
weight and percent groat (kernel). In general, heritability of the
seed traits was greater than those of the specialized metabolites
(Supplementary Table S8) and seed volume was used for further
analyses (diversity panel h2 ¼ 0.72; elite panel Minnesota h2 ¼
0.50; elite panel Wisconsin h2 ¼ 0.33). There were significant rela-
tionships between some metabolites and seed size (Figure 2;
Supplementary Table S9) and seed weight (Supplementary Table
S10). In both the diversity and elite panel, relative concentration
of AVNs (present in outer seed layers) increased with seed size,
despite the decreased surface area to volume ratio. There was no
relationship between avenacins and seed size except as mea-
sured in the elite panel in WI. Finally, relative concentration of
AOSs (concentrated in the inner endosperm) decreased with seed
size in the diversity panel but had no relationship to seed size in
the elite panel. This relationship was further confirmed by exam-
ining the genetic correlation between seed traits and the special-
ized metabolites. In the diversity panel, there was strong positive
genetic correlation between seed volume, seed surface area and
HKW and AVNs (>0.70), negative correlation with AOSs (< �0.23)
and essentially no correlation with AECs (between 0 and �0.12).
This relationship was less consistent when examined in the elite
panel. There were also not consistent patterns between percent
groat and metabolite traits in any panel or location
(Supplementary Table S11).

Effect of breeding intensity on metabolites and
seed traits
Using year of variety release as a proxy for plant breeding inten-
sity (where later years indicate more intensive breeding efforts),
we tested if breeding intensity affected seed size or metabolites in
the individuals in the diversity panel for which these data are
available (phenotypes and year information is available for
138–146 individuals per trait; Supplementary Table S12). Seed
volume increased over time and, correspondingly, seed surface
area increased and the surface area to volume ratio decreased
(Figure 3, A–C). Both HKW and HHW also increased over time,
but percent groat (kernel) remained constant (Figure 3, D–F). Of
the specialized metabolites, the relative concentration of AOSs
decreased over time, but AVNs and AECs were unaffected
(Figure 3, G–I). Using multiple regression with year and seed vol-
ume as predictors for groat percentage and the specialized
metabolites, the regression coefficient for year was not signifi-
cantly different from zero for any metabolite (Supplementary
Table S13). These results indicate that while seed size was likely
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a target of selection as a yield component that had indirect
effects on the seed metabolome composition, factors indepen-
dent of size and breeding intensity also contributed to the
observed metabolome variation.

Genome-wide association study
Single-trait GWAS was conducted for each of the specialized
metabolites and seed traits in the diversity panel and each envi-
ronment of the elite panel. Few metabolite traits had SNPs below
a significance threshold of PBonferroni < 0.05 (Table 1;
Supplementary Figure S3). No seed size traits had a significant
GWAS result, except percent groat in one environment of the
elite panel (Table 1; Supplementary Figure S3). None of these
eleven significant SNPs were within genes (all genes within
6100 kb of the SNPs are presented in Supplementary Table S14).

The significant GWAS results for AVN_A in the diversity panel on
chromosome 3A did not colocalize with known QTL for resistance
to crown rust (Lin et al. 2014; Babiker et al. 2015; McNish et al.
2020; Zhao et al. 2020) (Supplementary Table S2), despite the pre-
viously reported relationships between AVN concentration and
crown rust resistance.

To visualize genomic regions relevant for metabolite and seed
traits and determine if there is shared genetic control between
traits, populations or environments, we examined all SNPs that
met a reduced significance threshold of PFDR < 0.20 and plotted
them in 10 Mb bins (Figure 4). Within population and environ-
ment (e.g., elite panel in Minnesota), there were no shared SNPs
between any two or more traits (e.g., between AVNs and seed
size), indicating that the metabolite and seed traits do not have
common large effect loci. Within AVNs, only results from the

Figure 1 Phenotypic and genetic correlation of specialized metabolites in oat seed (avenanthramides, “AVN”; avenacins, “AEC”; avenacosides, “AOS”) in
(A) diverse panel evaluated only in New York, and elite panel evaluated in (B) Minnesota (“MN”), (C) South Dakota (“SD”), (D) Wisconsin (“WI”), United
States. The specific type of metabolite is described in Supplementary Table S1. The values in the top diagonal are Pearson’s phenotypic correlations,
where bold indicates significance at the Bonferroni cutoff, the values in the bottom diagonal are genetic correlations with no associated statistical
values, and h2 is the genomic heritability.
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diversity panel met this threshold (Figure 4A). There were mul-
tiple points of overlap between environments and panels for
AECs, with the highest count of shared SNPs on 5A (elite
Minnesota, diversity panel) and 5C (elite Minnesota, elite
Wisconsin, diversity panel) (Figure 4B), and there were consis-
tent SNPs identified for AOSs between the elite panel evaluated
in Minnesota and South Dakota on chromosomes 1C and 4A
(Figure 4C). However, the regions identified for seed size traits
in the elite panel and the diversity panel were not shared
(Figure 4D). As different genomic regions were implicated be-
tween panels and environments for the same trait, these results
indicate genetic heterogeneity between panels and genotype-by-
environment interactions.

Transcriptome analyses
A TWAS was conducted for each of the specialized metabolites in
the diversity panel to assess the relationship between gene expres-
sion and metabolite relative concentration. Of these, both AVNs
had significant (PFDR < 0.05) TWAS results (72 for each AVN_A and
AVN_B), with 51 shared and expression of most of these shared
transcripts (50) positively correlated with increased AVNs (Table 2;
Supplementary Table S15). Of these, phenylalanine ammonia-lyase
(“PAL,” TRINITY_DN26560_c0_g2_i1), the first committed enzyme of

phenylpropanoid biosynthesis and phosphoenolpyruvate/phos-
phate translocator 1 (TRINITY_DN1581_c0_g1_i3), an enzyme in the
pentose-phosphate pathway, a pathway that precedes the shiki-
mate pathway, could be connected to biosynthesis. The other
specialized metabolites had few significant TWAS results (Table 3):
the two AECs shared four significant transcripts and only AOS_B
had a significant result. No significant transcripts were detected for
any seed traits, even at a less stringent cutoff (PFDR < 0.25).

To better understand the biological relevance of the rest of the
transcripts, GO enrichment analysis was conducted on the false-
discovery rate adjusted P-values. While only AVN_B had a signifi-
cantly enriched term after multiple test correction (pentose-
phosphate shunt, GO: 0006098), GO terms related to the shiki-
mate biosynthesis (chorismate biosynthetic process, GO:
0009423) and L-phenylalanine catabolic processes (GO: 0006559)
were top GO terms for both AVNs (Table 4). There was no signifi-
cant enrichment of GO terms for either the AECs (Supplementary
Table S16) or AOSs (Supplementary Table S17).

We also examined how expression of the significant AVN
TWAS transcripts we identified here at 23 DAA changed over
seed development. Developing oat seed transcripts were previ-
ously categorized into temporally covarying groups (Hu et al.
2020) and we found that significant transcripts from AVN TWAS

Figure 2 Relationship between specialized metabolites and seed size in the diversity panel (evaluated only in New York) and elite panel evaluated in
Minnesota (“MN”) and Wisconsin (“WI”). Data are not available for the elite panel evaluated in South Dakota. For each metabolite class, an example was
chosen where “Avenanthramide” refers to avenanthramide B, “Avenacin” refers to avenacin A1.1, and “Avenacoside” refers to avenacoside A (Supplementary
Table S1). Model results for all metabolites are presented in Supplementary Table S9. The ***P<1E�6, **P< 1E�3, and “ns” indicates P > 0.05.
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were enriched for transcripts that had a trajectory of increased
expression beginning at 8 days after anthesis (DAA) when com-
pared with all transcripts (hypergeometric test, AVN_A:
P¼ 2.39E�13, AVN_B: P¼ 2.82E�10). In contrast, there was only
weak evidence for enrichment of any transcript class in known
avenanthramide biosynthetic enzymes (hypergeometric test, de-
crease in expression at 8DAA, P¼ 0.049) or Shikimate pathway
enzymes (hypergeometric test, decrease in expression at 13DAA,
P¼ 0.062) at any time point (Figure 5).

Finally, we tested if seed volume corresponded to expression
of AVN TWAS results to determine if there was expression varia-
tion independent of seed volume that could be a target of selec-
tion. Seed size was less predictive of TWAS gene expression than
the phenotype (AVN_B) as measured by coefficient of determina-
tion (Supplementary Table S18). For instance, PAL and phospho-
enolpyruvate/phosphate translocator 1 were not strongly
associated with seed volume (Figure 6). These results indicate
that while relative concentration of AVN tracks with seed volume

Figure 3 Relationship between year of variety release and deregressed BLUPs of (A) seed volume, (B) seed surface area, (C) seed surface area to volume ratio,
(D) HKW, (E) HHW, (F) groat percent, (G) avenanthramide, (H) an avenacin, and (I) an avenacoside in the diversity panel. For each metabolite class, an
example was chosen where “Avenanthramide” refers to avenanthramide B, “Avenacin” refers to avenacin A1.1, and “Avenacoside” refers to avenacoside A
(Supplementary Table S1). Model results for all traits are presented in Supplementary Table S12. ***P< 1E�6, **P< 1E�3, *P< 0.05, and “ns” indicates P > 0.05.

Table 1 Significant SNPs from GWAS of metabolites and seed traits by panel and environment

Trait,a panel, environment SNP Chr, position P-value Effect

AVN_A, diversity, NY avgbs_cluster_30159.1.28 3A, 406909563 0.035 0.34
AEC_A1.1, diversity, NY avgbs_32431.1.14 5A, 456500997 0.031 �0.36
AEC_A1.2, elite, SD avgbs_cluster_3322.1.38 6C, 2212093 0.005 �0.20
AEC_A1.1, elite, WI avgbs_21467.1.45 5D, 387376916 0.033 0.29
AOS_dA, diversity, NY avgbs_1891.1.28 4D, 266095186 0.038 �0.25
HKW, diversity, NY avgbs_cluster_39333.1.13 2D, 518487763 0.002 �0.41
GP, elite, SD avgbs_cluster_42433.1.28 3C, 3654644 0.007 �3.24
GP, elite, SD avgbs_96083.1.13 3C, 3657557 0.015 3.36
GP, elite, SD avgbs_221727.1.25 3C, 6201470 0.008 3.23
GP, elite, SD avgbs_cluster_11404.1.64 3C, 7293210 0.013 �3.18
GP, elite SD avgbs_cluster_11404.1.57 3C, 7293217 0.015 �2.99

The diversity panel was evaluated in only one environment (NY, United States). The P-value is adjusted with a Bonferroni correction.
a Trait names are defined as follows: avenanthramide A, “AVN_A”; avenacin A1, “AEC_A1.1” and 26-Desglucoavenacoside A, “AOS_dA”; hundred kernel weight,

“HKW”; groat percentage “GP.”
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and gene expression, gene expression is not strongly linked to
seed volume, and thus gene expression is an independent con-
tributor to patterns of variation in AVN abundance.

eQTL analysis
Because we predicted that expression variation is important for
oat specialized metabolites, especially AVNs, we conducted eQTL
analysis on genes detected in TWAS and on known pathway
genes and examined if those eQTL colocalized with our GWAS
results. Two AVN TWAS results had eQTL at a PFDR <0.05 thresh-
old, TRINITY_DN1008_c0_g2_i2 a serine hydroxymethyltransfer-
ase 4, and TRINITY_DN13684_c0_g1_i1 a mitochondrial aconitate
hydratase 3. These two genes neither colocalized with the AVN
GWAS result nor were definitively annotated to a single position
in the oat genome. Relaxing the significance threshold to PFDR <

0.2 revealed eQTL of four additional genes (Supplementary Figure
S4), but the eQTLs detected on chromosome 3A were not in LD
with the GWAS result (r2 < 0.02 for all).

Of the pathway genes (Supplementary Table S6), only
TRINITY_DN2726_c0_g1_i2, a bifunctional 3-dehydroquinate

dehydratase/shikimate dehydrogenase, had a significant eQTL
(PFDR ¼ 0.002; chromosome 3A, position 15737366, avgbs_clus-
ter_12707.1.49). We also examined eQTL from pathway genes at a
PFDR < 0.2 threshold and identified eQTL of five additional genes
(Supplementary Figure S4). We found that eQTL of
TRINITY_DN1661_c0_g1_i1, an anthranilate synthase (avenan-
thramides are a condensation between phenolic acids and an-
thranilic acid), was in LD with the AVN GWAS result on
chromosome 3A with the strongest association being the SNP
avgbs_cluster_34200.1.64 (PFDR ¼ 0.16, r2 ¼ 0.44).

Discussion
Oat (Avena sativa L.) is a cereal crop with known health benefits
from consuming the grain or through topical skincare applica-
tion. These benefits are derived from a diverse suite of metabo-
lites, including unsaturated fatty acids and b-glucans as well as
the specialized avenanthramides, avenacins and avenacosides.
We characterized the genomic and transcriptomic bases of spe-
cialized metabolite variation in diverse and elite oat germplasm

Figure 4 Number of SNPs from within 10 Mb bins meeting a PFDR < 0.20 significance threshold from GWAS analysis by germplasm panel and
environment. The plot panels show specific trait types (avenanthramides, avenacins, avenacosides, and seed traits) where color indicates environment
and specific trait.
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in the context of seed size and selection over a century of oat

breeding. We found that heritable genetic variation is diminished

in elite germplasm, but selection for larger seeds only accounts

for part of that reduction. For avenanthramides in particular, we

found in addition to increased abundance in larger seeds, there

was also variation in biosynthetic enzymes upstream of the com-

mitted pathway enzymes that contributed to phenotypic varia-

tion. Broadly, this work contributes to our understanding of how

crop breeding has shaped specialized metabolome profiles, and

prospects for continued plant breeding.

Historical dimensions of oat specialized
metabolism and change in seed size
Specialized metabolites serve multiple purposes in plants, with

one prominent use being plant defense against biotic stresses

(Mithöfer and Boland 2012; Kessler and Kalske 2018; Jacobowitz

and Weng 2020). The relationship between plant domestication

and breeding, resistance to biotic stress, and specialized metabo-

lites has been widely examined to understand how plant selec-

tion has shaped agro-ecological interactions. Most work has been

conducted comparing wild and domesticated plants, and has

found that cultivated plants are more susceptible to biotic stress

than their wild progenitors (Turcotte et al. 2014; Whitehead et al.

2017; Fernandez et al. 2021). A concomitant decrease in secondary

metabolites, however, has not been consistently observed

(Whitehead et al. 2017). Instead, tradeoffs between plant growth

and defense (Whitehead and Poveda 2019) or plant nutrition

(Fernandez et al. 2021) may be important factors. The studies that

interrogate a spectrum of plant breeding intensity from domesti-

cation to landraces to modern varieties have used less than 25

accessions each, and have produced mixed results where some

find a decrease in resistance with breeding intensity (Rosenthal

and Dirzo 1997; Lindig-Cisneros et al. 2002) but others do not

(Ferrero et al. 2020). Intriguingly, Lindig-Cisneros et al. (2002)

Table 2 Significant transcripts (PFDR < 0.05) from TWAS of avenanthramides (AVNs) that have gene annotations where rank refers to
overall transcript significance in TWAS analysis, and effect refers to the direction of correlation between expression and relative
metabolite concentration. A list of all significant transcripts is provided in Supplementary Table 15.

Transcript id AVN_A rank AVN_A PFDR AVN_B rank AVN_B PFDR Effect Annotation

TRINITY_DN1008_c0_g2_i2 AB 15 0.002 19 0.004 Positive Serine hydroxymethyltransferase 4
TRINITY_DN15878_c0_g1_i6 AB 17 0.002 34 0.008 Positive Germacrene A hydroxylase
TRINITY_DN14541_c0_g1_i1 AB 18 0.002 31 0.008 Positive Berberine bridge enzyme-like 18
TRINITY_DN26560_c0_g2_i1 AB 21 0.003 21 0.005 Positive Phenylalanine ammonia-lyase
TRINITY_DN1103_c0_g1_i1 AB 22 0.003 32 0.008 Positive Succinate-semialdehyde

dehydrogenase, mitochondrial
TRINITY_DN2744_c0_g1_i4 AB 23 0.004 53 0.020 Positive Fructose-bisphosphate aldolase 3,

chloroplastic
TRINITY_DN29096_c0_g1_i9 AB 26 0.006 26 0.006 Positive Probable purine permease 11
TRINITY_DN2577_c0_g1_i1 AB 31 0.008 33 0.008 Positive Putative 12-oxophytodienoate

reductase 11
TRINITY_DN3411_c0_g1_i4 AB 38 0.015 57 0.024 Positive Transketolase, chloroplastic
TRINITY_DN16295_c0_g1_i1 AB 41 0.015 30 0.007 Positive Mixed-linked glucan synthase 2
TRINITY_DN3916_c0_g1_i1 AB 47 0.023 36 0.010 Positive ALA-interacting subunit 1
TRINITY_DN1581_c0_g1_i3 AB 48 0.023 22 0.005 Positive Phosphoenolpyruvate/phosphate

translocator 1, chloroplastic
TRINITY_DN784_c0_g1_i3 AB 55 0.027 13 0.002 Positive Probable methylenetetrahydrofolate

reductase
TRINITY_DN2924_c0_g1_i2 AB 66 0.039 15 0.004 Positive Glucose-6-phosphate 1-dehydroge-

nase, cytoplasmic isoform
TRINITY_DN13684_c0_g1_i1 AB 70 0.047 56 0.023 Positive Aconitate hydratase 3,

mitochondrial
TRINITY_DN512_c0_g2_i1 A 30 0.008 160 0.171 Positive Phosphoenolpyruvate carboxylase 2
TRINITY_DN13998_c0_g1_i1 A 39 0.015 122 0.123 Positive Xylanase inhibitor protein 1
TRINITY_DN1272_c0_g1_i3 A 45 0.021 217 0.218 Positive Sucrose transport protein

SUT1; N
TRINITY_DN3267_c0_g1_i1 A 53 0.027 NS NS Negative Pentatricopeptide

repeat-containing protein
At2g15690, mitochondrial

TRINITY_DN14356_c1_g1_i10 A 54 0.027 151 0.169 Positive Isoflavone 2’-hydroxylase
TRINITY_DN11233_c0_g1_i7 A 58 0.030 260 0.231 Positive Cytochrome P450 81D11
TRINITY_DN20857_c0_g1_i4 A 62 0.035 99 0.090 Positive S-adenosylmethionine

decarboxylase proenzyme
TRINITY_DN9961_c0_g1_i7 A 71 0.047 74 0.053 Positive Endo-1,4-beta-xylanase5
TRINITY_DN7337_c0_g3_i1 A 72 0.050 172 0.180 Positive Probable metal-nicotianamine trans-

porter YSL12
TRINITY_DN19061_c0_g1_i1 B 86 0.073 38 0.010 Positive Aldehyde dehydrogenase family 2

member C4
TRINITY_DN2385_c0_g1_i1 B 115 0.103 61 0.031 Positive Transketolase, chloroplastic
TRINITY_DN2667_c0_g1_i1 B 155 0.150 66 0.041 Positive Probable nitronate monooxygenase
TRINITY_DN1363_c0_g1_i2 B 163 0.169 67 0.044 Negative Serine/threonine-protein kinase rio2
TRINITY_DN4266_c0_g1_i6 B 211 0.233 43 0.013 Positive Probable inositol oxygenase
TRINITY_DN28530_c0_g1_i4 B NS NS 35 0.008 Positive Threonine synthase 1, chloroplastic
TRINITY_DN2212_c0_g1_i2 B NS NS 68 0.044 Negative Eukaryotic translation initiation fac-

tor 2 subunit 3

A full list of all significant transcripts is in Supplementary Table S15. Rank refers to overall transcript significance in TWAS analysis, and effect refers to the
direction of correlation between expression and relative concentration of avenanthramide.
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associated reduced biotic stress resistance with reduced metabo-
lite diversity, but not absolute metabolite concentrations.
Overall, these findings indicate that there are nuanced crop-
specific patterns in how breeding has shaped specialized metabo-
lites (and plant defense), but there is a need for work that
includes a greater number of plant accessions and a finer-scale
gradient of plant breeding intensity.

In our work, we surveyed oats spanning almost a century of
plant breeding—beginning with the rediscovery of Mendel in the
early 20th century to genomics-enabled breeding in the 21st cen-
tury. Yield has consistently been a trait of plant breeding interest,
where yield gains were observed throughout the 20th century
(Rodgers et al. 1983) and yield is still a focus of current breeding
programs (Haikka et al. 2020; González-Barrios et al. 2021). We ex-
amined the relationship between breeding intensity (by year of
variety release), seed size, and defensive metabolites in more
than 138 individuals. We found that more intensive breeding led
to larger oat seeds, but not a greater proportion of edible tissue
(groat) and, while relative concentrations of specialized metabo-
lites were tied to seed size, they were not a direct target of plant
breeding. We found that larger seeds had high avenanthramide
abundance, despite decreased surface area to volume ratio inher-
ent to larger seeds, but there was no relationship with breeding
intensity. In contrast, avenacoside abundance decreased with in-
creasing seed size associated with breeding intensity, despite
larger endosperm volume. These results indicate that there are
not consistent tradeoffs between growth (seed size) and defense
(avenanthramides, avenacosides). Further, we found that ongo-
ing plant breeding did not uniformly reduce or increase plant spe-
cialized metabolites but may have affected size of and
concentration of metabolites in specific seed tissues (like the al-
eurone layer).

Breeding for oat avenanthramides
Of the oat seed specialized metabolites, avenanthramides have

garnered the most research interest. Avenanthramides are anti-

oxidants (Bratt et al. 2003) and have been implicated in resistance

to the oat crown rust (Wise et al. 2008; Wise 2014). The avenan-
thramide biosynthetic pathway has been defined (Collins 2011;

Wise 2014; Li et al. 2019), yet this work has not been translated

into tools for oat breeders, like molecular markers. Critically, it

remains unknown whether functional or regulatory mutations in
the committed biosynthetic pathway enzymes (enzymes specific

to avenanthramide biosynthesis) or upstream biosynthetic path-

way enzymes (not specific to avenanthramide biosynthesis) are

the most significant contributors to heritable variation in culti-
vated oats. Neither our GWAS nor TWAS results implicated com-

mitted pathway genes. Instead, TWAS revealed that

biosynthetically upstream enzymes expressed early in seed de-

velopment contributed to avenanthramide abundance. In addi-
tion, we found that an eQTL of a biosynthetically upstream

enzyme colocalized with our avenanthramide GWAS result.

While our interpretation and enrichment analyses were limited

by availability of transcript annotations (which, likely, are more
complete for highly conserved, rather than oat-specific, genes)

these results nonetheless suggest that regulation of or flux

through the pathway may be a promising avenue for plant

breeding.
Dimberg and Peterson (2009) examined the relationship be-

tween avenanthramides and compounds that are precursors or
derived from other branches of related biosynthetic pathways.

Their results did not offer a straightforward indication of which

biosynthetic step moderates pathway flux; instead, PAL expres-

sion neither depended upon the amount of its substrate (phenyl-
alanine) nor affected expression of HHT (the terminal enzyme in

avenanthramide biosynthesis). Our results implicate PAL expres-

sion as important for avenanthramide abundance, as well as a

phosphoenolpyruvate translocator in the pentose phosphate
pathway, and other transcripts of unknown function. These

results add to the widely recognized importance of PAL expres-

sion as a regulator of flux in phenylpropanoid biosynthesis

(Huang et al. 2010; Kim and Hwang 2014; Barros and Dixon 2020).
In addition, a broader examination of precursor metabolites, in-

cluding those in the pentose phosphate pathway may produce in-

teresting results as diversification of enzymes from primary

metabolism is important for contributing to specialized metabo-
lism diversity (Moghe and Last 2015; Maeda 2019). Overall, our

results should prompt future work on avenanthramides to focus

on upstream biosynthetic processes, as most variation affecting

avenanthramides appears to be in enzymes preceding committed
biosynthetic steps.

Table 3 Significant transcripts (PFDR < 0.05) from TWAS of avenacins (AEC) and avenacosides (AOS) where rank refers to overall
transcript significance in TWAS analysis, and effect refers to the direction of correlation between expression and relative metabolite
concentration

Transcript name AEC_A1.1 AEC_A1.2 AOS_B Direction Annotation

Rank PFDR Rank PFDR Rank PFDR

TRINITY_DN36363_c0_g2_i1 1 4.1E�05 1 8.E�05 – – Positive
TRINITY_DN6771_c0_g1_i1 2 2.4E�04 2 0.006 – – Positive Phosphoethanolamine N-methyltransferase 1
TRINITY_DN97809_c0_g1_i1 3 0.03 4 0.04 – – Positive
TRINITY_DN7675_c0_g1_i7 5 0.09 3 0.02 – – Positive
TRINITY_DN1526_c0_g1_i12 – – – – 1 0.050 Negative

Annotations are provided for all available.

Table 4 GO enrichment of biological process terms for
avenanthramide (AVN) TWAS results where the top three GO
terms from each AVN are presented

GO ID Term AVN_A AVN_B

Rank P Rank P

GO:0006098 Pentose-phosphate
shunt

1 6.1E�05 1 7.7E�06*

GO:0006559 L-Phenylalanine
catabolic process

2 2.8E�04 – –

GO:0009423 Chorismate
biosynthetic
process

3 7.1E�04 2 1.7E�03

GO:0090630 Activation of GTPase
activity

– – 3 2.5E�03

The P-values are unadjusted and the * indicates that it is significant when
adjusted for a false discovery rate.
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Figure 5 Oat seed transcripts classified by temporal variant category (day after anthesis at which expression of a particular gene substantially changes
during seed development) and direction (increase or decrease) as described in Hu et al. (2020), and shown by color here. The percent of transcripts in
each category is shown for all transcripts in the dataset (“all”), transcripts annotated to be part of the preceding shikimate pathway (“Shik_Pwy”),
transcripts annotated in avenanthramide biosynthesis (“Avn_Pwy”), and both avenanthramides (AVN_A and AVN_B). The numbers at the top indicate
the number of transcripts that were annotated by temporal group.

Figure 6 The relationship and coefficient of determination between expression of (A) phenylalanine ammonia-lyase, “PAL” and (C)
phosphoenolpyruvate/phosphate translocator 1, “PEPT” and avenanthramide B (“AvnB”) concentration and the relationship between seed volume and
(B) PAL and (D) PEPT expression. The relationship between avenanthramide B and all significant TWAS results are given in Supplementary Table S18.
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Our results also contribute to an understanding of when ave-

nanthramide biosynthesis occurs in oat seeds. Avenanthramides

are detected as early as 8 DAA, and while Hu et al. (2020) found

that HHT is expressed at 8 DAA, Peterson and Dimberg (2008) did

not observe expression until 20 DAA. By sampling gene expres-

sion at only 23 DAA, we likely sampled at a time where it would

be possible to detect differences in HHT expression, but we may

have missed peak differential expression of upstream enzymes

that contributed pathway flux. Our avenanthramide TWAS

results were enriched for genes that were expressed early in seed

development (8 DAA), and Hu et al. (2020) found that two other

pathway enzymes, 4-coumaroyl-CoA3-hydroxylase (CCoA3H),

caffeoyl-CoA3-O-methyltransferase (CCoAOMT) increase in ex-

pression early in development before dropping beginning at 18

DAA. Together, these results indicate that the precursors of ave-

nanthramides may be biosynthesized early in seed development.

Our understanding will improve with further use of oat genomic

resources, as well as transcriptomic analysis paired with metabo-

lomic profiling over seed development.
Finally, despite the connection between avenanthramides and

the disease, crown rust, no results from our GWAS or TWAS

results colocalized with previously reported crown rust QTL (Lin

et al. 2014; Babiker et al. 2015; McNish et al. 2020; Zhao et al. 2020).

One explanation for this finding is that we did not inoculate oats

with crown rust, nor trigger SAR. Both crown rust infection and

treating oats with analogs of hormones that activate SAR in-

crease avenanthramide concentration (Wise et al. 2008, 2016;

Wise 2011, 2017). We predict that, if SAR was activated, there

would be more extreme variation in avenanthramide concentra-

tions and we would implicate more genetic loci, some of which

would colocalize with crown rust QTL due to shared regulation.

Overall, these results suggest that genetic variation in regulation

exists, but regulatory elements may need to be activated to effec-

tively map or select upon this variation. Broadly, independent of

crown rust infection, the role of upstream regulation during seed

development in avenanthramide abundance may relate to the

high degree of environmental variability noted for avenanthra-

mide concentrations (Emmons and Peterson 2001; Peterson et al.

2005; Redaelli et al. 2016; Michels et al. 2020).

Prospects for oat saponins—avenacins and
avenacosides
Oat saponins are of interest from a human health perspective as

they are associated with reduction of cholesterol (Sang and Chu

2017). Our results did not implicate promising candidate genes by

GWAS or TWAS that could be applied to develop tools for plant

breeders. Like avenanthramides, our TWAS results are limited by

only sampling at one time point. We also found that the saponins,

especially the avenacosides, were more sporadically detected in the

elite germplasm and within compound class correlations were

weaker, potentially indicating a decrease in abundance in moving

from diverse to elite germplasm. This may be due to taste: high con-

centrations of avenacosides in oat seed can contribute to an unde-

sirable bitter off taste (Günther-Jordanland et al. 2016, 2020).

Selection for organoleptic quality has been implicated in reducing

saponin concentration in cultivated legumes (Ku et al. 2020), and

our results indicate there has been a similar historical trajectory in

oat. However, to the best of our knowledge, current oat breeding

efforts do not regularly incorporate sensory evaluations.

Selection for an optimized oat seed specialized
metabolome
In breeding for nutrition, flavor, or esthetics (color), plant

breeders have changed crop metabolomic profiles. However,

working with specialized metabolites compared to major nutri-

tional metabolites presents different challenges and thus may re-

quire different plant breeding approaches. As an example, fatty

acid methyl esters (FAMEs) are healthful fats in oat seed that

comprise 3–11% of oat seed composition, compared with 0.2% for

avenanthramides. Also, while fatty acid biosynthetic enzymes

have some degree of cross-species conservation, this is not true

for avenanthramides that are only present in a few (nonmodel)

plant species (Ponchet et al. 1988; Wise 2014) and a caterpillar

(Blaakmeer et al. 1994). In addition, the specialized metabolites

we measured in oats are negatively correlated and do not have

shared genetic control, presenting a challenge for selecting for

both traits simultaneously but promising for efforts to select for

a single trait. Finally, and perhaps most importantly, the special-

ized metabolite heritability (AVNs: h2 < 0.26; AECs: h2 < 0.61;

AOSs: h2 < 0.52) we report here is lower than that of FAMEs (h2 >

0.61) (Carlson et al. 2019). Overall, these results suggest that work

to increase specialized metabolite concentrations will benefit

from strategies that reduce environmental variation to improve

trait heritability, or increase replication in plant breeding trials,

and incorporate seed size into phenotyping efforts.

Conclusions
An understanding of patterns of variation in the plant specialized

metabolome is relevant for developing health-promoting functional

food crops that may also withstand biotic stress. Due to the low

concentrations and lineage specificity of specialized metabolites,

they are infrequent direct targets of plant breeding, but may have

been inadvertently shaped through processes like selection on other

traits or genetic drift. In a diverse panel of cultivated oats, we mea-

sured seed size and specialized metabolites and conducted genomic

and transcriptomic analyses to characterize existing variation and

the processes that contributed to it. Overall, we show that the in-

creased seed size associated with modern plant breeding has un-

even effects on the oat seed metabolome, and variation also exists

independently of seed size. Broadly, despite the multitudes of phe-

notypic changes in crops from plant breeding, variation for some

specialized metabolites persists in cultivated plants and could be

targeted by future plant breeding efforts.
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