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Abstract 

Osteopetrosis is a genetically heterogenous, fatal bone disorder characterized by increased bone density. Globally, 
various genetic causes are reported for osteopetrosis with all forms of inheritance patterns. A precise molecular diag-
nosis is necessary for prognosis and for prescribing treatment paradigms in osteopetrosis. Here we report on thirteen 
individuals diagnosed with infantile malignant osteopetrosis coming from ten unrelated Pakistani families; nine of 
whom are consanguineous. We performed whole exome sequencing and Sanger sequencing in all families and 
identified homozygous variants in genes previously reported for autosomal recessive inheritance of osteopetrosis. 
All the identified variants are expected to affect the stability or length of gene products except one nonsynonymous 
missense variant. TCIRG1 was found as a candidate causal gene in majority of the families. We report six novel variants; 
four in TCIRG1 and one each in CLCN7 and OSTM1. Our combined findings will be helpful in molecular diagnosis and 
genetic counselling of patients with osteopetrosis particularly in populations with high consanguinity.
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Introduction
Osteopetrosis is a group of clinically and genetically het-
erogeneous disorders of increased bone density caused 
by defective osteoclast function and decreased bone 
resorption, making bones fragile and prone to fractures 
[1]. Several types of osteopetrosis have been described 
in literature, mainly distinguished on the basis of pattern 
of inheritance; autosomal dominant, autosomal recessive 

and X-linked or intermediate autosomal type [2]. Auto-
somal recessive osteopetrosis (ARO), also known as 
infantile malignant osteopetrosis is a rare phenotype 
with an estimated incidence of 1 in 250,000 live births [3] 
although as in the case with other autosomal recessive 
genetic disorders, the incidence of ARO is expected to be 
higher in highly consanguineous populations. The symp-
toms of ARO start appearing soon after birth and often 
proves to be fatal if not treated early. Symptoms arising 
from a reduced marrow compartment include anemia, 
thrombocytopenia and infections along with hepatos-
plenomegaly. An increased density of skull bone results 
in neurodegeneration and compression of optic nerve 
resulting in blindness and deafness [4].

ARO is caused by biallelic mutations in one of the at 
least seven genes namely TCIRG1, CLCN7, OSTM1, 
SNX10, PLEKHM1, TNFSF11, TNFRSF11A [5]. 
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Mutations in genes TCIRG1, CLCN7, OSTM1, SNX10 
and PLEKHM1 lead to osteoclast rich osteopetrosis, 
which has abundant but nonfunctional osteoclasts [6]. 
These genes encode proteins that are involved in acidi-
fication of the resorption lacunae and/or vascular trans-
port. Mutations in TNFSF11 and TNFRSF11A result in 
blockage of osteoclastogenesis which is osteoclast poor 
ARO [7].

Approximately half of the ARO cases are caused by 
mutations in TCIRG1 followed by CLCN7 mutations 
which are associated with 17.5% of ARO cases [8]. More 
than hundred candidate disease causal variants have 
been reported in TCIRG1 (The Human Gene Mutation 
Database), majority in Western populations. The muta-
tional spectrum of ARO is underreported in a highly con-
sanguineous Pakistani population. In current study, we 
report genetic analysis of ARO in ten unrelated families 
originating from Pakistan.

Methods
Human research participants
This study includes total of 13 affected individuals from 
ten unrelated families afflicted with osteopetrosis. Nine 
of these families are consanguineous while for one fam-
ily the consanguinity is not known. Study participants 
originate from different regions of Pakistan. Studies 
and procedures related to clinical examination, human 
sample collection and genetic analysis were approved 
by Institutional Review Boards and Ethical committees 
of the Armed Forces Bone Marrow Transplant Centre, 
Rawalpindi, Pakistan (families OP1, OP2, OP3, OP4) 
and Institute of Biomedical and Genetic Engineering, 
Islamabad, Pakistan (families OP5, OP6, OP7, OP8, OP9, 
OP10). Signed informed consent was obtained from all 
participants or their legal representatives for study pro-
cedures and publication of clinical and genetic findings. 
Subsequent to informed consent, we obtained peripheral 
blood samples from affected individuals and their healthy 
family members by standard venipuncture. We extracted 
DNA using a phenol–chloroform extraction method or 
QIAamp DNA Maxi Kit (Qiagen).

Genetic analysis
We performed whole exome sequencing (WES) in eight 
families, on genomic DNA obtained from an affected 
individual from each family except family OP4 where 
we performed WES in both affected individuals in the 
family. Genomic DNA was target enriched by the Agi-
lent  SureSelectXT Human All Exon Kit. Next-generation 
sequencing was conducted with the Illumina HiSeq 
X-TEN platform at Cloud Health Genomics. Reads 
were aligned to the human genome reference assem-
bly (UCSC Genome Browser hg19) with BWA. Picard 

software was employed to remove PCR duplicates and 
evaluate the quality of variants to attaining effective 
reads, quality bases, average coverage depth and cover-
age ratio. Single-nucleotide variants (SNVs) and indels 
were called and analyzed with GATK using an in-house 
variant filtration pipeline. We then used ANNOVAR 
for functional annotation with OMIM, Gene Ontology, 
KEGG Pathway, SIFT, PolyPhen-2 and MutationTaster.

In WES-analyzed families, variants generated by 
WES were assessed and filtered for rare variants with 
a minor allele frequency (MAF) of < 0.01 in relevant 
ethnicity-matched populations in control databases 
(including the Genome Aggregation Database; gno-
mAD, the Exome Aggregation Consortium; ExAC, and 
the 1000 Genomes Project). Non-synonymous, exonic 
or splice variants, conforming to recessive pattern of 
inheritance of disease in each family were prioritized 
as candidates. We performed bidirectional Sanger 
sequencing with BigDye terminator v3.1 cycle sequenc-
ing chemistry to confirm candidate variants and segre-
gation in all available family members.

In two additional families (OP5 and OP9), we per-
formed bidirectional Sanger sequencing of previously 
published genes associated with autosomal recessive 
osteopetrosis starting from sequencing of the most fre-
quently associated genes such as TCIRG1 and CLCN7. 
For this purpose, primers were designed covering all 
the exons and exon–intron boundaries of candidate 
genes. PCR amplified, purified samples were run on 
ABI 3500 Genetic Analyzer (Applied Biosystems) and 
sequence chromatogram was analyzed using Sequenc-
ing Analysis Software v6.0 (Applied Biosystems).

Results
Clinical features of the osteopetrosis patients (Table 1)

OP1
The affected child (OP1-2), deceased now, was born to 
consanguineous parents. He was the youngest of the 
three siblings. He was deaf and mute since birth and 
was diagnosed with osteopetrosis at the age of nine 
months, when he presented with progressive pallor, 
bicytopenia, hepatosplenomegaly, delayed develop-
mental milestones and failure to thrive. Skeletal survey 
revealed generalized increase in bone density sugges-
tive of marble bone disease. Due to severe anemia and 
thrombocytopenia, allogeneic stem cell transplanta-
tion was planned after HLA-matching with elder sister 
(OP1-1). However, the patient succumbed to infections 
and died before hematopoietic stem cell transplanta-
tion (HSCT).
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OP2
The parents in OP2 family are first-cousins. Their two 
male children (OP2-4 and OP2-5) are affected with 
infantile malignant osteopetrosis, whereas the eld-
est female sibling (OP2-3) is healthy. The elder of the 
two siblings (OP2-4) presented with severe anemia 
and bruises in the first month after birth. Bone mar-
row aspirate from OP2-4 revealed hypocellularity 
with depressed erythropoiesis. Skeletal survey showed 
increased bone density and was provisionally labelled 
as marble bone disease. Due to severe anemia and 
thrombocytopenia, he was receiving regular blood 
transfusion since then. He underwent splenectomy at 
the age of 5 years. He got HLA matched with the father. 
However, he died at the age of six and a half years 
before HSCT due to transfusion-associated sepsis.

Considering family history, when the youngest sib-
ling (OP2-5) was born, his chest X-ray and X-ray of long 
bones were performed at age one month, which showed 
increased bone density and reduced medullary cavity, 
suggestive of osteopetrosis. His growth milestones are 
delayed for his age. He has poor vision, but has some 
perception of light, whereas hearing is intact. Though 
his blood parameters are on the lower side but he never 
received any transfusion. He got HLA-matched with the 
sister and underwent HSCT at the age of nine months. 
He is currently one year post-HSCT and off medication.

OP3
The parents in this family are first-cousins and they have 
two children affected with osteopetrosis. One of the 
affected child died at the age of three years due to com-
plications of osteopetrosis. The details of clinical his-
tory are not available for the deceased child. In other 
affected child (OP3-3), skeletal scan confirmed marble 
bone disease. She has enlarged skull and delayed growth 
milestones. She suffers from poor dentition and have dif-
ficulty in chewing food. Her vision is markedly impaired, 
though she is able to follow light. Her blood counts are 
stable at slightly below normal limits and she has no 
blood transfusion history.

OP4
This consanguineously married couple has two children 
(OP4-3 and OP4-4) affected with osteopetrosis, currently 
aged four and two and a half years, respectively. Both 
children have delayed growth landmarks, frontal bossing 
of skull, proptosis, hepatosplenomegaly and bicytopenia. 
The elder sibling has bilateral blindness with intact hear-
ing. Bone scan in both children revealed marble bone 
disease.

OP5
Family OP5 had two affected children, both of them 
deceased now. One male child died at an early age having 
severe symptoms of osteopetrosis. At the time of birth, 
he had macrocephaly, hepatosplenomegaly, blindness 
with exophthalmoses and deafness. He also presented 
with severe anemia due to bone marrow failure along 
with other respiratory problems, which possibly led to 
his demise. Genetic screening was not performed in this 
patient.

The second patient (OP5-2) in this family was a female 
baby who survived till the age of one year. She manifested 
feeding problems since her birth. Other clinical features 
of the osteopetrosis were also obvious from the time of 
birth. These included prominent macrocephaly, skel-
etal deformities including thick and dense skull bones, 
neurological abnormalities, frontal bossing and hyper-
telorism, nystagmus with complete visual loss, deafness, 
hepatosplenomegaly, bone marrow suppression result-
ing in severe cytopenia. The serum calcium level was 
markedly low. She eventually died due to hematological 
complications.

OP6
The family has two affected children born to non-con-
sanguineous couple. Individual OP6-5, deceased now, 
initially presented with mild splenomegaly. Computed 
tomography scan of orbit and brain showed increased 
bone density in OP6-5 which was further confirmed by 
X-ray scan showing generalized increase in bone density 
of all bones. Other clinical features include bone within 
bone appearance and vertebra within vertebra appear-
ance in spine and dense skull bones with sclerotic base. 
His sample was collected for genetic screening, before he 
died at the age of 5 years.

Clinical assessment of second affected child (OP6-3) 
in this family reported occipitofrontal circumference of 
43 cm, proptosis, pallor, and no evidence of cranial nerve 
involvement. Massive hepatosplenomegaly was also 
observed; dentition was found to be normal for age. Her 
X-ray scans confirmed increased bone density; indicative 
of osteopetrosis.

OP7
The parents in this family are first cousins. Their only 
child (OP7-3) deceased now, was diagnosed with osteo-
petrosis at the age of three months. She presented with 
pallor, bicytopenia and hepatosplenomegaly. She was 
initially screened for beta-thalassemia and was found 
heterozygous for Cd 15 (G > A) mutation in HBB inher-
ited from her healthy mother. Bone marrow biopsy 
revealed 2% blast cells and fragmented red blood cells. 
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Radiological evidence was inconclusive for establish-
ing diagnosis of osteopetrosis, therefore whole exome 
sequencing was performed in affected child to help diag-
nose the disease at molecular level.

OP8
The proband (OP8-3) in this family, deceased now, was 
born to consanguineous parents. Hematological investi-
gations of OP8-3 showed lymphocytes with atypical mor-
phology and nucleated red blood cells, decreased platelet 
count and increased reticulocyte count. This was accom-
panied by moderate hepatosplenomegaly. Radiological 
scan revealed increase bone density with metaphyseal 
lucent bands and increased skull size for age indicative of 
marble bone disease. No visual and hearing impairments 
were observed at the time of diagnosis.

OP9
The parents in this family are related to each other. Pre-
viously they had two children (both deceased) affected 
with osteopetrosis, but we could not gather detailed clin-
ical history for them. The family came to us with a chori-
onic villus sample (CVS) from fetus for prenatal genetic 
screening of osteopetrosis. No clinical details were pos-
sible for OP9-3, as it was a fetal sample. We screened all 
three DNA samples (both parents and fetal sample) for 
variation in osteopetrosis candidate genes through bidi-
rectional Sanger sequencing to identify the disease caus-
ing mutation in the family. Sanger sequencing identified 
a homozygous mutation (c.2416T > A) in CLCN7 in the 
DNA from CVS while both parents were found heterozy-
gous for the said mutation. The fetus was later aborted 
due to findings consistent with osteopetrosis.

OP10
The proband (OP10-3) born to consanguineous par-
ents is a seven month old baby boy, a diagnosed patient 
of osteopetrosis with congenital heart disease and atrial 
septal defect. X-ray scan of proband showed bone-in-
bone appearance with prominent dense bones and fron-
tal bossing. Other findings included hepatosplenomegaly, 
progressive vision and hearing loss and bilateral nystag-
mus. Patient has history of anemia and blood transfusion.

Genomic studies identify recessive variants in known 
osteopetrosis genes
To identify the genetic cause(s) of osteopetrosis, we per-
formed WES in one affected individual from families 
OP1, OP2, OP3, OP6, OP7, OP8, OP10 and two affected 
individuals in family OP4. We obtained a mean target 
coverage of 124.61–155.93 with a mean of 93.2% of bases 
covered > 20X for all affected individuals (Additional 
file 1: Table 1).

We filtered rare variants that were homozygous and 
compound heterozygous in affected individuals using a 
MAF < 1%. None of the compound heterozygous changes 
fulfilled our filtration criteria. However, we identified 
homozygous changes in each family in at least one gene 
known to cause osteopetrosis in multiple studies. Addi-
tionally, disease candidate gene sequencing via Sanger 
sequencing in further two families (OP5 and OP9) with 
osteopetrosis identified two homozygous variants, one 
each in TCIRG1 and CLCN7.

In total, seven families were identified with six different 
homozygous variants in TCIRG1, two families with the 
same homozygous variant in CLCN7 and a family with 
homozygous variant in OSTM1 (Fig.  1). Parents of the 
affected cases were asymptomatic and where available for 
genetic analysis, were found to be heterozygous for iden-
tified variants. Based on the relevance of identified gene 
variants to phenotype, segregation with disease, popula-
tion frequencies and absence of homozygous changes 
in the general population, we considered these variants 
as likely cause of osteopetrosis in our families. Variants 
identified in this study were further characterized based 
on the variant interpretation guidelines of The American 
College of Medical Genetics and Genomics [9] (Table 2).

Discussion
Here, we describe ten unrelated families with 13 affected 
individuals who exhibit clinical features of infantile 
malignant osteopetrosis and harbor likely pathogenic 
recessive variants in genes previously associated with 
osteopetrosis. In seven out of ten families (70%), we 
identified TCIRG1 variants as the likely causal gene for 
ARO, consistent with the findings implicating TCIRG1 as 
the pathogenic gene in more than 50% of ARO cases [10, 
11]. The loss of function variants identified in families 
OP2, OP4, OP8, OP10 and splice site variants in fami-
lies OP5, OP6, OP7 are predicted to result in frameshift 
and premature stop codons. We were not able to study 
the functional consequences of these variants due to una-
vailability of patient derived mRNA and cells. We expect 
the resulting products to be targeted for degradation 
through nonsense mediated decay or, less likely, to lead 
to the generation of truncated proteins that lack essential 
functional domains. The protein disruptive consequences 
of these variants implicate a loss of function as the plau-
sible disease causal mechanism. Characteristically, these 
rare disruptive variants received an increase likelihood of 
pathogenicity in our cases (Table 2). A missense variant 
(TCIRG1:p.Gly172Asp) of uncertain significance identi-
fied in family OP1 affects a highly conserved amino acid 
residue (Additional file 1: Fig. 1) and is located in func-
tionally crucial V ATPase I domain of TCIRG1. This 
variant is absent in public databases (gnomAD, 1000 
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Genomes Project) and predicted to be functionally dam-
aging (SIFT; damaging, PolyPhen-2; probably damaging). 
However, one should be cautious in interpreting this var-
iant until confirmed in additional ARO cases. A nonsyn-
onymous variant in CLCN7 (p.*806Argext*58) identified 
in families OP3 and OP9 abolishes protein termina-
tion and expected to result in an elongated protein. We 
do not know the fate of this elongated protein however, 
CLCN7 functions as a membrane bound ion exchanger 
in a homodimer form [12, 13] and each abnormally 
elongated monomer may not adhere to conformational 

rearrangements required to form a membrane bound 
functional dimer for regulation of ion exchange. Addi-
tionally, CLCN7 forms a molecular complex with 
OSTM1 [14] and an elongated CLCN7 may lose the 
ability to form a functional complex. Further assays will 
be required to precisely delineate the functional conse-
quences of CLCN7:p.*806Argext*58 variant.

According to The Human Gene Mutation Database, 
more than 150 ARO causing mutations are reported 
in TCIRG1, distributed along the entire gene and com-
prising all mutation types such as, missense mutations, 

Family OP1

1 2

Family OP2 Family OP4Family OP3 Family OP5
M1:TCIRG1:c.515G>A

:p.Gly172Asp
M2: TCIRG1:c.854_855del
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:p.*806Argext*58
M4: TCIRG1:c.971dup
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M6: TCIRG1:c.1554+2T>A M7: TCIRG1:c.1555-2A>G M8: OSTM1:c.124del
:p.Val42Serfs*57

M3: CLCN7:c.2416T>A
:p.*806Argext*58

3 4 5

1 2 1 2

3

1 2

3

1 2

3

WT/M6 WT/M6

M6/M6M6/M6 WT/WT

WT/M7 WT/M7

M7/M7

WT/M8 WT/M8

M8/M8

WT/M3 WT/M3

M3/M3

Family OP10
M4: TCIRG1:c.971dupG
:p.Cys324Trpfs*166

1 2

3 4 5

WT/M4 WT/M4

WT/M4 WT/M4M4/M4
C C T G T G A G T C

C C T G A G A G T C A C C C T G G A T T

A C C C T A G A T T

A A G A C C T G T G

A A G A C C C T G T

T G G T G G C T C T

T G G T G C T C T G

M6

WT

M7

WT

M8

WT

M3

WT

M4

WT

A G A C G T G A G G

A G A C G A G A G G

Fig. 1 Pedigrees and genetic findings in families with osteopetrosis. Pedigrees of ten Pakistani families (OP1–OP10) with osteopetrosis that 
segregate as an autosomal recessive trait. Top bold text represent the name of each family and their corresponding sequence variants in 
osteopetrosis genes shown below. Filled circles or squares indicate affected females and males, respectively. Double lines indicate consanguinity. 
Individuals with DNA available are indicated with digits and their genotype for corresponding sequence variant is shown below. WT, Wild type; M1–
M8, mutation 1- mutation 8. Representative chromatograms showing the pedigree specific sequence variant from a healthy/control wild type (top) 
and affected homozygous individual (bottom). Position of the sequence variant is indicated with red arrow or red rectangle
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synonymous mutations, nonsense mutations, splice 
defects, deep intronic variants, small insertions and dele-
tions and large deletions [8]. Given such a high muta-
tional heterogeneity of TCIRG1 and absence of detailed 
phenotype description in some cohorts, it is difficult to 
establish a precise genotype–phenotype correlation in 
TCIRG1 deficient ARO. Notably, TCIRG1 mutations 
cause overall severe form of osteopetrosis indicated by 
severe hematological manifestations requiring HCST 
treatment. Mild to severe form of growth retardation and 
visual impairment are also frequently reported clinical 
features in TCIRG1 deficient ARO cohorts [2]. Consist-
ent with the reported data, the patients carrying TCIRG1 
mutations in our cohort manifest severe hematological 
complications and mild to severe visual impairment or 
normal vision at the time of diagnosis (Table 1). Similar 
clinical features of macrocephaly, hepatosplenomegaly 
and vision loss are reported in TCIRG1 deficient ARO 
cases from Pakistan [15].

Two families (OP3 and OP9) in our cohort are 
found to carry same stoploss variant in CLCN7 
(c.2416  T > A:p.*806Arg). Both families originate from 
two different geographic regions although belonging 
to same ethnic background (Punjabi). Both families are 
unknown to each other and are likely unrelated. The 
recurrence of stoploss variant in both families could be 
due to either a mutational hotspot or a founder effect. 
The latter possibility is supported by the observation that 
both families originate from same ethnic background. 
However, with only two affected families, we have lim-
ited data to establish the possibility of founder effect for 
this particular locus. Genetic investigations in additional 
ARO cases will be required to test this possibility. Previ-
ously, two homozygous missense mutations of CLCN7 
segregating in cis in a Pakistani family with ARO was 
reported to exhibit dysmorphic facies, mild anemia, brain 
atrophy and bilateral optic atrophy [16]. Family OP3 has 
similar clinical features of delayed growth milestones, 
macrocephaly, visual impairment and mild anemia with 
no transfusion history. No clinical data is available for 
family OP9 since the tested DNA was obtained from CVS 
(Table 1).

Mutations in OSTM1 are relatively less frequently 
(~ 5%) reported in ARO cases [8]. OSTM1 mutations 
cause an osteoclast-rich, severe form of osteopetrosis 
with mild to severe hematological, ocular and growth 
defects [2]. In our cohort, only one family (OP8) carries 
a likely pathogenic variant in OSTM1 and presents with 
clinical features of severe hematological complications, 
mild hepatosplenomegaly and normal vision and hearing 
(Table 1).

In total, we report six novel sequence variants in auto-
somal recessive osteopetrosis; four in TCIRG1 and one 
each in CLCN7 and OSTM1. Our findings suggest that 
TCIRG1 is a major candidate for genetic screening of 
osteopetrosis in Pakistani population. Additionally, the 
variants identified in this study expand the mutational 
spectrum of autosomal recessive osteopetrosis, and will 
be of importance for molecular diagnosis and genetic 
counselling, particularly in populations with a high prev-
alence of autosomal recessive genetic disorders.
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