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Abstract

Vascular remodeling defines cancer growth and aggressiveness. Although cancer cells produce 

pro-angiogenic signals, the fate of angiogenesis critically depends on the cancer 

microenvironment. Composition of the extracellular matrix (ECM) and tumor inflammation 

determine whether a cancer will remain dormant, will be recognized by the immune system and 

eliminated, or whether the tumor will develop and lead to the spread and metastasis of cancer 

cells. Thrombospondins (TSPs), a family of ECM proteins that has long been associated with the 

regulation of angiogenesis and cancer, regulate multiple physiological processes that determine 

cancer growth and spreading, from angiogenesis to inflammation, metabolic changes, and 

properties of ECM. Here, we sought to review publications that describe various functions of TSPs 

that link these proteins to regulation of cancer growth by modulating multiple physiological and 

pathological events that prevent or support tumor development. In addition to its direct effects on 

angiogenesis, TSPs have important roles in regulation of inflammation, immunity, ECM properties 

and composition, and glucose and insulin metabolism. Furthermore, TSPs have distinct roles as 

regulators of remodeling in tissues and tumors, such that the pathways activated by a single TSP 

can interact and influence each other. The complex nature of TSP interactions and functions, 

including their different cell- and tissue-specific effects, may lead to confusing results and 

controversial conclusions when taken out of the context of interdisciplinary and holistic 

approaches. However, studies of TSP functions and roles in different systems of the organism offer 
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an integrative view of tumor remodeling and a potential for finding therapeutic targets that would 

modulate multiple complementary processes associated with cancer growth.
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INTRODUCTION

The studies of cancer initiation and progression have focused on the molecular and cellular 

signalling events that lead to changes in cancer cell differentiation, proliferation, and 

apoptosis, all of which initiate uncontrolled growth and spreading. The roles of immunity 

and of the response of the whole organism to cancer cells have been historically appreciated, 

but the role of the microenvironment in the initiation, progression, and spreading of cancer 

has become a more active field of study only recently. It has been accepted that cancer cells 

are constantly forming in a healthy body[1,2] but they do not survive. They may remain 

dormant for years due to the healthy microenvironment, which does not support the tumor 

growth. The tumor microenvironment, which prevents or promotes cancer growth, consists 

of stromal and vascular cells, immune and inflammatory cells. Additionally, the extracellular 

matrix (ECM) and secreted signals that these cells generate promote or restrict cancer cell 

division and migration[3,4]. The progression of cancer depends on the complex interplay 

between the tumor cells and the tumor microenvironment. Targeting the components of the 

tumor microenvironment is now a recognized powerful tool of cancer therapy and prevention 

of spreading and recurrence.

The development of tumor vasculature depends on angiogenesis, accompanied by 

inflammation, which is an important factor in predicting tumor vascularization, growth, and 

spreading. Targeting the tumor vasculature has been an active approach in finding new 

therapeutic targets for many years[5] but, unfortunately, has not fulfilled the expectations of 

cancer therapies due to significant side effects and adverse events in tumors in response to 

hypoxia [6]. It has become clear that we have a limited appreciation of pathological 

processes associated with the tumor microenvironment and, as a result, inadequate 

understanding of potential therapies that may improve the microenvironment and restrict 

tumor growth.

Tumor angiogenesis and the recruitment of immune and inflammatory cells into the tumor 

rely on the composition of ECM [7]. One important event that occurs during tumor 

progression is the stiffening of the ECM, caused by the deposition of collagen and 

fibronectin, leading to increased proliferation and tumor advancement[8]. Cancer-associated 

fibroblasts are important contributors of ECM stiffening[9]. Tumor ECM is also modified by 

vascular and blood cells that release proteases and chemoattractants and deposit ECM to 

promote angiogenesis, additional recruitment of vascular and inflammatory cells, and 

inflammation[10].

Tumor inflammation is closely associated with the tumor aggressiveness and metastasis[11]. 

Activated cancer and vascular cells produce chemoattractants and pro-inflammatory signals 
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to recruit inflammatory cells from blood. The accumulation of inflammatory cells in a tumor 

is an important prognostic index that has been successfully used to evaluate the 

aggressiveness of cancer in conjunction with other indexes that describe the proliferation 

rate of cancer cells and their migratory potential. CD68, a marker of macrophages is one of 

the 16 markers evaluated in Oncotype DX, a clinical test that is used to make therapeutic 

decisions and predict the aggressiveness of breast cancer[12,13]. The recruitment and 

retention of inflammatory cells in tumors depends on the ECM composition[14].

This article reviews the contribution of thrombospondins (TSPs), a family of secreted ECM 

proteins, in regulation of the cancer microenvironment and the initiation and progression of 

tumor growth that is defined by the vascular and ECM remodeling and inflammatory 

response. It is becoming clear that TSPs affect every pathological process associated with 

cancer advancement and are key protein regulators of the tissue remodeling that occurs with 

cancer growth.

TSPS AND CANCER

The ECM is complex and ever-changing. All the cells in a tumor constantly remodel the 

ECM and deposit growth factors, proteases, pro-inflammatory and chemoattractant proteins 

into ECM. The composition of ECM defines whether it will support cancer growth, 

angiogenesis, and inflammation by providing specific growth- and migration-promoting 

signals and changing the physical properties of the tissue. ECM contains structural 

components, e.g., collagens, and secreted proteins that define the interactions of the cells 

with the structural elements of the ECM. One of the influential groups of proteins that 

regulates the interactions between structural proteins and cells are TSPs. This family of 

proteins consists of five members in humans (TSP-1 - TSP-5). The five members of the 

family share a high level of homology and a number of properties[15]. However, they have 

unique domains and protein sequences that render each of the five TSPs distinct in their 

interactions with the ligands in ECM and with cell surface receptors. As a result, TSPs have 

distinct functions in tissue remodeling and regulation of cancer growth[16]. Furthermore, a 

strong and repeated association of TSP expression or suppression in various cancers 

highlights their role in cancer regulation[17].

TSP-3, TSP-4, AND TSP-5

TSPs of group B (TSP-3, TSP-4, and TSP-5) are evolutionarily older proteins with fewer 

domains than in the group A TSP proteins[18]. Group B TSPs are important in embryonic 

development[16,19] and participate in the activation of embryonic tissue remodeling 

programs[20]. TSP-3 and TSP-5 are involved in the regulation of growth plate organization 

and limb length[21]. Complete deletion of TSP-3 and TSP-5 leads to reduced limb length, 

which signifies their prominent role in skeletal growth [21]. Not surprisingly, TSP-3 is also 

linked to cancer angiogenesis, metastasis and invasion in osteosarcoma patients[22].

TSP-4 is one of the highly upregulated genes (in the top 1%) in several types of cancer, e.g., 

gastric cancer [23–25] and breast cancer[26–28]. Its expression is upregulated in stromal tissue 

of invasive breast and gastric adenoma cancers[20,29]. A recent study suggests that the loss of 
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miR-142, resulting in high expression of TSP-4, enhances hepatocellular carcinoma (HCC) 

invasion and progression. Therefore, targeting TSP-4 may be an important strategy to treat 

HCC[30]. Increased expression of TSP-4 in ECM promotes invasion of the breast cancer 

cells[20]. Another study stated that TSP-4 mRNA expression in fibroblasts was stimulated by 

cancer cells, suggesting that TSP-4 is an important novel marker in the detection of diffuse-

type gastric adenocarcinomas[29]. Flexible heteroarotinoid compounds coordinate growth, 

apoptosis and differentiation of cancer cells. One of the compounds of this group, SHetA2, 

inhibits angiogenic effects by decreasing the secretion of TSP-4, along with vascular 

endothelial growth factor A and fibroblast growth factor, in ovarian and renal cancers[31].

TSP-4 promotes cancer angiogenesis and growth in mouse models of breast cancer[32]. 

Knocking out TSP-4 in mice resulted in smaller tumors with decreased numbers of 

endothelial cells and lower levels of angiogenesis markers. Conversely, a P387 variant of 

TSP-4 that is a more active variant of TSP-4 in cellular effects and interactions with 

ligands[32], had increased cancer angiogenesis and tumor growth[32]. Although the vascular 

cells appear to be the main source of TSP-4 in breast cancers[32,33], in vivo, the cancer cells 

themselves also produce small amounts of TSP-4 that appear to be sufficient to support 

angiogenesis and cancer growth even in TSP-4 deficient animals [32,33]. Complete deletion 

of TSP-4, in both the host and the cancer cells, is required in order to document effects on 

tumor growth[33]. In addition to these effects in tumors, TSP-4 promotes adhesion and 

migration of leukocytes[34]. Thus, TSP-4 is a pro-angiogenic[32] and a pro-inflammatory 

protein[35] that supports tumor growth by activating multiple complementary pathways.

TSP-4 mediates the effects of transforming growth factor beta (TGF-β), a master regulator 

of ECM and inflammation, on angiogenesis[33]. The direct roles of TSP-4 in ECM 

regulation remain poorly understood. However, it is clear that TSP-4 regulates collagen 

production and can prevent fibrosis in tissues[36].

On the other hand, TSP-4 serves as a tumor suppressor in colorectal cancer and suppresses 

in vitro tumor colony formation[37]. Epigenetic profiling studies revealed that 

hypermethylation of the TSP-4 promoter leads to its inactivation and loss of TSP-4 tumor 

suppressor function in cutaneous T cell lymphoma[38]. The opposite effects of TSPs on 

cancer cells and on the cancer microenvironment are a recurrent theme when studying the 

roles of TSPs in cancer regulation, leading to controversial findings that are difficult to 

explain. Ultimately, the results from in vivo studies, where TSPs levels have been 

manipulated, should be considered to help define physiological roles for individual TSPs in 

cancer regulation.

TSP-1 AND TSP-2

The more recently developed group of TSPs, which includes TSP-1 and TSP-2 and is termed 

“group A”, appeared in evolution along with the development of the cardiovascular 

system[19,39]. These two proteins have several C-terminal domains homologous to group B 

proteins but differ from group B TSPs in their N-terminal protein parts[40]. The newly 

acquired in evolution domains of TSP have important roles in regulating vascular tissue 

remodeling: they harbor sequences associated with the anti-angiogenic action of these two 
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proteins[41,42] and with the inhibition of metalloproteinases (MMP)[43,44]. One of the N-

terminal domains in TSP-1 contains a sequence that binds TGF-β: TSP-1 is a major activator 

of latent TGF-β[45–47].

The anti-angiogenic properties of TSP-1 and TSP-2 have been studied for over 30 years[48]. 

TSP-1 and TSP-2 inhibit endothelial cell proliferation, migration, and apoptosis[49–52]. The 

decreased expression of TSP-1 and TSP-2 in tumors and surrounding tissues has been 

reported[53–55], and animal studies confirmed their anti-angiogenic and tumor-preventing 

action[56]. Furthermore, TSP-1 expression has been associated with cancer dormancy[57,58]; 

merely suppressing or overexpressing TSP-1 is enough to reverse the patterns of tumor 

growth in specific anatomical areas with differential expression of TSP-1[59–63].

In addition to the direct effects of TSP-1 and TSP-2 on endothelial cells, the regulation of 

angiogenesis may be an indirect consequence of regulation of MMP activity[44], binding of 

growth factors and regulation of their availability and activity[64], and regulation of functions 

of the immune and inflammatory cells[65,66].

The effects of TSP-1 on cancer cells are sometimes inconsistent with its anti-angiogenic and 

anti-cancer effects observed in in vivo studies. TSP-1 has adhesive properties that support 

cancer cell growth[67–69], promote metastatic properties of breast cancer cells[70], facilitate 

the invasion of squamous cell carcinoma[71], breast cancer cells[72] and melanoma[73], may 

increase proliferation of cancer cells[74], and decrease cancer cell apoptosis[75].

INTEGRATIVE APPROACH TO UNDERSTANDING TSP ROLES IN CANCER

These contradictory effects of TSPs on cultured cancer cells and on the fate of a tumor in 
vivo have not been explained. To better understand their significance, these contradictory 

effects should be considered in a context of complex relationships between the cancer cells 

and the entire organism: prevention of a tumor growth not only relies on the cancer cell 

properties alone but also requires a concerted response of the body that involves the 

activation of immune responses, the recognition of cancer cells, and clearance of these cells. 

Tumor development occurs only when multiple body systems fail to eliminate cancer cells 

from the system. Cancer cells are constantly forming in different tissues and also circulate in 

blood[76] but fail to attach and initiate a tumor growth when the microenvironment 

(including ECM of tissues), regulation of angiogenesis, and responses of the immune system 

are normal[77,78]. Dysregulation of metabolic, immune, and tissue remodeling processes is 

what leads a single cancer cell to progress to a tumor rather than being recognized, killed 

and eliminated. The physiological balance of cancer cell attachment, proliferation and 

mobility versus their recognition, apoptosis, and elimination define the fate of each cancer 

cell that forms in the body.

The in vivo effects of TSP-1 and TSP-2, suggest that these proteins activate a whole -

organism anti-angiogenic and anti-cancer program that ultimately leads to a decrease in 

cancer growth or to cancer cell dormancy[58]. Thus, the positive effects of TSP-1 and TSP-2 

on cancer cell proliferation could be considered as a part of this program, which initiates 

anti-cancer defense in multiple body systems. For example, increased proliferation of cancer 
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cells due to TSP-1 signaling may render the cancer cells more susceptible to the elimination 

by natural killer cells[79]. Furthermore, TSP-1 signaling may facilitate activation of p53, a 

regulator of apoptosis[80,81]. Promoting cancer cell proliferation and invasion may result in 

better responses from T-cells due to expression of cancer-specific antigens and their 

circulation in blood. Similar to the therapeutic approaches designed by humans, e.g., 

chemotherapy and radiation treatment of cancers, the natural body responses may be the 

most efficient when the cancer cells are rapidly growing. Understanding why TSPs have 

cell-specific responses and seemingly contradictory effects would explain how they protect 

from cancers in the case of TSP-1 or promote cancer growth in the case of TSP-4. Better 

understanding these complex and sometimes contradictory properties of TSPs will only be 

possible by developing an integrative approach and more holistic view of the pathological 

and physiological processes regulated by these proteins, considering the fact that they affect 

multiple organ systems.

Newly developed integrative approaches to cancer therapies have pushed the field to better 

understand the causes of cancer and the mechanisms, by which tumors grow and spread. As 

a result, inflammation and the metabolic changes have become the focus of many studies 

that investigate how the cancer microenvironment is regulated[82,83]. A growing body of 

evidence connects increased levels of blood glucose and insulin and chronic inflammation 

with cancer initiation and progression[84,85]. While the association of diabetes and cancer 

has been known for many years[86–89], recent studies suggested that even post-prandial 

elevations in blood glucose and/or insulin increases the risk of cancer. The glycemic load 

(GL, a measure of the increase in post-prandial blood glucose caused by food) and/or the 

high dietary glycemic index (GI, another index that estimates the effect of foods on post-

prandial blood glucose) were associated with a risk of breast cancer[90–94]; with lung 

cancer[95]; prostate cancer[93,96], especially with its aggressive form[97]; endometrial cancer 
[93,98]; ovarian cancer[93]; and digestive tract cancers (esophageal, stomach, colorectal, liver, 

gallbladder, and pancreatic)[93,96,99–103]. The emerging evidence stresses the importance of 

diets low in GI and GL and reduction of carbohydrates in diets as a part of healthy nutrition 

and lifestyle to prevent cancer development and recurrence[104–106]. The connection between 

chronic inflammation and cancer has been known for a long time: e.g., an association 

between the hepatitis and the liver cancer has been well recognized and studied[107,108], the 

existence of cancers caused by pancreatitis and Crohn’s disease has been known and 

accepted[109,110], and the connection between the infection with italicize and stomach cancer 

has been confirmed[111,112]. Diabetes, pre-diabetes, and metabolic syndrome are associated 

with chronic inflammation[113–116] and can be induced by the chronic inflammation in 

growing adipose tissue[117–119] and pancreas[120–122]. Thus, metabolic dysfunction appears 

to increase the risk of cancer directly (due to an increased blood glucose and insulin) and by 

increasing the inflammation. TSP-1, that normally restrains angiogenesis and prevents the 

growth of a tumor, is downregulated by high blood glucose levels in many tissues[123,124], 

thus, providing a link between the elevated blood glucose and cancer. TSP-1 has been shown 

to be downregulated by a microRNA, miR-467, in response to hyperglycemia[124]. Inhibition 

of miR-467 using an antagonist effectively inhibited hyperglycemia-induced breast cancer 

growth in mice[125]. Furthermore, decreased levels of TSP-1 are associated with higher 

inflammation in tissues, probably due to its ability to stimulate phagocytosis in macrophages 
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and to promote the resolution of inflammation[66,126]. Therefore, increasing the levels of 

TSP-1 may stop or prevent the growth of tumors in multiple complementary ways by 

decreasing cancer angiogenesis and promoting the resolution of cancer inflammation.

ANTI-CANCER TSP-BASED APPROACHES

The functions of TSP-2, TSP-3, and TSP-4 in regulation of cancer growth are not well 

enough understood to identify potential therapeutic approaches based on the regulation of 

expression of these proteins or on their specific ligands and cell surface receptors. However, 

TSP-1, a TSP family member discovered and purified from platelets[127] 40 years ago, has 

been a target for developing strategies to modulate its levels or to take advantage of its 

interactions with ligands in ECM and on the cell surface.

Multiple attempts to use TSP-1 fragments to inhibit cancer growth have been described in 

the literature. Adenovirus-mediated gene therapy containing an antiangiogenic fragment of 

TSP-1 inhibited the growth of the human leukemia xenograft in mice[128]. Gene therapy 

with a fragment of TSP-1 inhibited the growth of human breast carcinoma, MDA-MB-435, 

in vivo in mice[129]. The delivery of the fragment together with p53 resulted in a synergistic 

effect and decreased the cancer growth more than the TSP-1 fragment or p53 administered 

separately. Linear and cyclic peptide TSP-1 mimetics have been tested in anti-angiogenesis 

therapies[130–135].

The interaction of TSP-1 with CD47 was shown to mediate multiple effects of TSP-1[136]. 

Targeting this interaction, with the goal of increasing angiogenesis, led to an unexpected 

outcome - angiogenesis inhibition[137]. The peptide, designed to block the interaction of 

TSP-1 with CD47, named TAX2, increased the binding of TSP-1 to CD36 and disrupted 

vascular endothelial growth factor receptor 2 activation and subsequent downstream NO 

signaling. This peptide was also tested in experimental animal cancer models and inhibited 

angiogenesis and growth of melanoma[137], pancreatic carcinoma[137] and 

neuroblastoma[138]. It was also effective in preventing the spread of melanoma[139]. The 4N1 

peptide, based on the sequence of TSP-1 domain that binds CD47, was successfully used in 

a mouse model as an anti-leukemia agent[140]. The interaction of TSP-1 with CD47 was 

found to be important in multiple processes related to tumor growth. For example, blocking 

the signaling through CD47 conferred protection of normal tissue to irradiation through 

activation of autophagy pathways[141,142]. Modulation of the anti-tumor immunity by CD47 

in T cells by this pathway has been described[143]. Thus, this TSP-1-CD47 interaction 

appears to be a valuable therapeutic target.

One of the cell-specific effects of TSP-1, mediated by its interaction with CD47, limits cell 

survival in response to radiation[144], suggesting that antagonizing this interaction would 

provide a selective radioprotection for normal cells and tissues. Another tissue- and cell-

specific approach targeted a miRNA regulating TSP-1 production: miR-467 increases in a 

cell- and tissue-specific manner in response to hyperglycemia and silences the production of 

TSP-1[124]. Thus, antagonizing this miRNA slows down the growth of certain cancers 

without affecting TSP-1 production in response to high glucose in other tissues[125].
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Some unexpected outcomes from using anti-TSP-1 strategies highlight the complexity of 

TSP-1 interactions and its functions. The domains involved in regulating angiogenesis, TGF-

β activation, and MMP inhibition are localized in N-terminal part of TSP-1, while 

interaction with CD47 depends on the C-terminal domain of the protein. However, based on 

the results of peptide studies, the domains are functionally associated, such that blocking the 

interaction with one receptor also changes the interactions of distant domains with other 

receptors and ligands[64,145]. Due to the multiple cell-specific functions, the effects of TSPs 

on various cells types that are involved in tumor progression should be also taken in the 

account when considering pharmacological interventions that target the expressions of TSPs 

or block their interactions with their ligands.

ECM proteins appear to be good targets for therapy because of their extracellular 

localization and relatively easy availability for drugs. However, very few ECM proteins have 

become successful therapeutic targets. Most ECM proteins, including TSPs, have a complex 

multi-domain structure with a number of ligands on the ECM and cell surface. The 

combined effect of TSP interactions with other ligands and receptors may not only depend 

on their protein levels in tissues but also on the availability of ligands and receptors on the 

cell surface. Ultimately, the systemic effects caused by inhibiting TSPs or regulating their 

production should be considered. Successful strategies need to be based on tissue- and cell-

specific evidence such that interactions do not alter the functions or expression of TSPs 

elsewhere.

Interactions between TSP pathways further complicate the final outcomes. For example, 

studies of the effects of hyperglycemia on breast cancer suggest that TSP-1-dependent 

pathways may synergize with TSP-4-dependent pathways. Higher expression of miR-467 in 

response to high glucose was associated with inhibition of TSP-1 production[123,124,146] 

[Figure 1]. In addition to its anti-angiogenic effects, TSP-1 is a regulator of inflammation 

and functions of macrophages[147]. TSP-1 is known to regulate the production of cytokines 

by macrophages[148–150], to stimulate micropinocytosis[151], motility[152], to activate toll-

like receptor 4 pathway in macrophages[153], and to promote the resolution of 

inflammation[150,154]. Hyperglycemia changes the levels of multiple ECM proteins, 

including the master ECM regulator TGF-β[155,156]. Higher levels of TGF-β have been 

detected in the cancers of diabetic patients[157,158], and blocking TGF-β signaling leads to 

better outcomes in animal models[159–161]. It was reported recently that increased levels of 

TGF-β led to increased production of TSP-4. Unlike TSP-1, TSP-4 is pro-

angiogenic[162,163] and increases accumulation of macrophages and other leukocytes in 

tissues via increased recruitment into tissues[34,35]. Increased levels of TSP-4 combined with 

decreased levels of TSP-1 would promote a pro-angiogenic and inflammatory 

microenvironment leading to tumor growth [Figure 1].

In addition to functional interaction, TSP pathways interact at the mechanistic level. For 

example, TSP-1 activates TGF-β[45,47,164] and is downregulated by TGF-β[163] but TSP-4 is 

a mediator of the TGF-β effects[163] and, in turn, modulates the expression of one of the 

TGF-β receptors, beta-glycan[165], thus, controlling TGF-β signaling [Figure 2].
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CONCLUSION

TSPs become available to many cell types after they are secreted and incorporated into 

ECM. They have multiple interactions and functions, which depend on the availability of 

specific cell surface receptors on each cell type at any given moment. The final outcome of 

modulating TSP levels is determined by a combined effect from their actions in multiple cell 

types and organs, from the tumor itself to the immune system and vasculature.

While multiple targets may potentiate the effects of modulation of TSP expression and 

functions, the complexity of TSP interactions requires an unbiased testing of the effects of 

potential anti-cancer therapies in in vivo models. When the interactions and mechanisms are 

dissected and understood, TSPs may become desirable targets for the integrative anti-cancer 

approaches.
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Figure 1. 
Hyperglycemia promotes cancer growth by regulating thrombospondin (TSP)-1- and TSP-4-

dependent pathways. Upregulation of TGF-β in response to hyperglycemia leads to 

upregulation of TSP-4. TSP-4 is a pro-angiogenic protein that also promotes recruitment of 

macrophages and other leukocytes into tissues and increases local inflammation. 

Upregulation of miR-467 in a tissue-specific manner blocks TSP-1 production. In the 

absence of the anti-angiogenic pressure of TSP-1, cancer angiogenesis is increased. In the 

absence of TSP-1, the resolution of inflammation is impaired. Increased inflammation and 

angiogenesis promote cancer growth in the absence of TSP-1. TSP-1 and TSP-4 pathways 

converge and complement each other to promote the tumor growth
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Figure 2. 
Interaction of hyperglycemia-regulated thrombospondin (TSP) pathways. TSP-4 increases 

recruitment of macrophages, while TSP-1 is needed for the resolution of inflammation. In 

response to hyperglycemia, TSP-1 levels are downregulated by increased levels of miR-467. 

TSP-4 is upregulated as a result of upregulation of TGF-β and activation of SMAD3. 

Upregulation of TSP-4 result in increased recruitment of macrophages into the tumor. In the 

absence of TSP-1 and resolution of inflammation, the accumulation of macrophages 

increases. In a feedback loop, TSP-4 increases the levels of an inhibitory TGF-β receptor 

beta-glycan. TGF-β further decreases the production of TSP-1. In a feedback loop, TSP-1 is 

an activator of TGF-β. Green arrow and text = upregulation in response to hyperglycemia; 

red arrow and text = downregulation in response to hyperglycemia. TGF-β: transforming 

growth factor beta
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