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Dense genotyping-by-sequencing 
linkage maps of two Synthetic 
W7984×Opata reference 
populations provide insights into 
wheat structural diversity
Juan J. Gutierrez-Gonzalez   1, Martin Mascher2,3, Jesse Poland   4 & Gary J. Muehlbauer1,5

Wheat (Triticum aestivum) genetic maps are a key enabling tool for genetic studies. We used 
genotyping-by-sequencing-(GBS) derived markers to map recombinant inbred line (RIL) and 
doubled haploid (DH) populations from crosses of W7984 by Opata, and used the maps to explore 
features of recombination control. The RIL and DH populations, SynOpRIL and SynOpDH, were 
composed of 906 and 92 individuals, respectively. Two high-density genetic linkage framework maps 
were constructed of 2,842 and 2,961 cM, harboring 3,634 and 6,580 markers, respectively. Using 
imputation, we added 43,013 and 86,042 markers to the SynOpRIL and SynOpDH maps. We observed 
preferential recombination in telomeric regions and reduced recombination in pericentromeric regions. 
Recombination rates varied between subgenomes, with the D genomes of the two populations 
exhibiting the highest recombination rates of 0.26–0.27 cM/Mb. QTL mapping identified two 
additive and three epistatic loci associated with crossover number. Additionally, we used published 
POPSEQ data from SynOpDH to explore the structural variation in W7984 and Opata. We found that 
chromosome 5AS is missing from W7984. We also found 2,332 variations larger than 100 kb. Structural 
variants were more abundant in distal regions, and overlapped 9,196 genes. The two maps provide a 
resource for trait mapping and genomic-assisted breeding.

Modern cultivated wheat is an allohexaploid (2n = 6×  = 42) that derives from two hybridizations of three ances-
tral diploid genomes (A, B, and D). The first hybridization occurred around 0.5 MYA to form the allotetraploid 
emmer wheat (T. turgidum L., AABB)1. The second, a more recent hybridization, took place around 8,000 years 
ago between emmer wheat and goat grass (Aegilops tauschii Coss.), the progenitor of the wheat D genome, and led 
to the formation of hexaploid wheat2. Because of the recent hybridization and the reduced number of hybridiza-
tion events between T. turgidum and Ae. taushii, the wheat D genome has a narrow genetic base3. Yet, Ae. tauschii 
is a source of economically important traits such as yield, disease resistance, bread-making quality, and suppres-
sion of pre-harvest sprouting4. Present-day relatives of ancient emmer wheat and goat grass are recognized as 
important sources of variation that merit exploring3,5. For instance, tetraploid emmer relatives carry beneficial 
alleles for grain quality traits, abiotic factors (drought, heat, salinity, and waterlogging), and resistance to several 
rusts, viruses, fungi and nematodes6. Nevertheless, despite the potential, genetic diversity derived from T. tur-
gidum and Ae. tauschii is not well represented in modern bread wheat germplasm. The observation that both Ae. 
tauschii and T. turgidum retain a higher genetic diversity compared to wheat cultivars and landraces has inspired 
the modern recreation of synthetic hexaploid wheat by mimicking the process that spontaneously arose in nature.
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Genetic studies and breeding benefit from the availability of mapping populations. Two of the most widely 
used wheat populations were developed from the cross of a synthetic wheat (Synthetic W7984, herein abbreviated 
‘W7984’) and Opata M85 (‘Opata’). The original recombinant inbred line (RIL) population W7984 × Opata was 
developed in the early 90 s as a cross between a synthetic hexaploid wheat, generated by crossing a Ae. tauschii 
(DD) accession with the durum wheat ‘Altar 84’ (AABB), and the spring wheat cultivar Opata 857. This reference 
population is known as ‘SynOpRIL’, and was later reconstructed and the number of individuals increased to 
2,0398. In parallel, a doubled haploid (DH) population of 215 individuals was developed using the same parental 
accessions and designated the ‘SynOpDH’ population. With the availability of a reference genome sequence, 
high-density anchored genetic maps will greatly enhance the utility of the SynOpRIL and SynOPDH populations.

Recent advances in sequencing technologies, assembly pipelines and algorithms have allowed tackling highly 
repetitive polyploid genomes5,9–11. The recent publication of an almost complete, fully annotated, anchored and 
ordered reference genome assembly of wheat, the Chinese Spring RefSeq v1.0 (hereafter RefSeq v1.0) has boosted 
wheat genomic studies in an unprecedented manner10. Integration of this reference genome with genetic map 
resources will enable greater utility for studies needing genetic positions such as genomic evaluation of in silico 
breeding progeny.

Marker-assisted selection and genomic selection necessitate a set of high-density markers for accuracy. 
Moreover, a prerequisite to build an accurate and comprehensive genetic map suitable for QTL positioning is a set 
of reliable markers evenly distributed across the genome12. Genotyping-by-sequencing (GBS) is a high-density 
genotyping approach extensively used in breeding and genetics because of its low cost, high number and uni-
form distribution of markers, and the capacity to simultaneously perform polymorphism discovery and genotyp-
ing13,14. However, to reduce costs, a large number of samples are pooled and sequenced together. Thus, although 
GBS is able to produce a substantial number of markers, keeping per-sample cost down requires multiplexing of 
the samples, which in turn lowers the sequencing depth and creates a substantial rate of missing observations14. 
Imputation of genotypes frequently follows GBS to estimate missing observations and thus to reduce the propor-
tion of missing data contained across samples.

Here, we used a subset of both SynOpRIL and SynOpDH populations to (i) construct two highly-dense frame-
work genetic maps and populate them with imputed markers; (ii) study recombination rates and segregation 
distorted regions; (iii) identify loci that affect the number of recombination events; and (iv) examine the genomes 
of W7984 and Opata for structural variations. Altogether, our findings provide a rich resource for marker-assisted 
selection, QTL mapping and genomic-assisted breeding.

Results
High-density linkage map construction.  We aimed to develop a new set of GBS-SNP markers under 
strict quality controls and extensive manual curation. The high-quality GBS markers were used as the foundation 
for constructing two accurate framework maps using the two reference populations SynOpRIL and SynOpDH. 
In the SynOpRIL population, we genotyped 1,100 individuals plus the parental lines. After removing lines based 
on high rate of missing or heterozygous observations (161), high similarity (27), and a high number of double 
crossovers (6), 906 met the threshold and were used to create the genetic map (Supplementary Data S1). Stringent 
filtering removed low-quality markers and left 5,931 markers as input for linkage analysis. A genetic linkage 
map, termed SynOpRIL906, was constructed using 3,634 of those high quality GBS-SNPs giving an average rate 
of missing allele calls of the mapped framework markers at 3.2%. We built a complete framework map distrib-
uted into 1,956 unique genetic bins (Fig. 1A and Supplementary Data S2) that covered 2,842 cM. Individual 
chromosomes averaged 135 cM long, ranging from 89 cM (chromosome 4B) to 194 cM (chromosome 7D), and 
the number of SNPs per chromosome was significantly correlated with the physical size of the chromosome 
(Pearson’s correlation ρp = 0.72, p = 0.0002). The average bin interval size (cM/num. of bins) of the map was 
1.45 cM, ranging from 1.07 cM (2B) to 2.65 cM (4D) (Table 1). The B genome had the largest number of markers, 
1,489 (40.97%), followed by A with 1,177 (32.39%) and D (968, 26.64%). The largest gap was located on chromo-
some 1A with 29.3 cM. There were only two more gaps larger than 20 cM.

For the SynOpDH reference population, a total of 177 double haploids plus the parents were genotyped, 
of which 92 passed quality controls and were used. DHs that fail to pass quality controls were due to very low 
sequencing depth (39), high rate of missing or heterozygous observations (43), or excess of double recombinants 
(3) (Supplementary Data S1). A total of 18,822 GBS-SNP markers passed the initial quality filters. After removing 
markers with excess heterozygosity and missing observations, and testing for linkage, a final number of 6,580 GBS 
markers were grouped into 21 linkage groups and incorporated in the genetic map (Fig. 1B and Supplementary 
Data S3). The rate of missing allele observations of the mapped markers was 3.3%. The Pearson’s correlation 
between number of SNPs per chromosome and the chromosome size was ρp = 0.63, p = 0.0021. This map, which 
was termed SynOpDH92, was 2,961 cM and had 973 recombination bins (Table 1). Individual chromosomes 
averaged 141 cM in size ranging from 98 (chromosome 2D) to 204 (chromosome 7D). The average bin interval 
size was 3.04 cM, ranging from 2.89 cM (B genome) to 3.36 cM (A genome), and a marker density of 2.22 markers 
per cM. As in the SynOpRIL906, the B genome had the largest number of markers, 2,752 (41.82%), followed by 
A with 2,127 (32.33%) and D with 1,701 (25.85%). Overall, the map exhibited good contiguity, with only one gap 
larger than 20 cM, located on chromosome 4D, of 33.8 cM long.

The SynOpRIL906 and SynOpDH92 framework maps were subjected to several steps of quality control. First, 
SynOpRIL906 and the SynOpDH92 shared a total of 2,113 markers in common. Alignment of these shared posi-
tions in both maps showed that there was a linear relationship between the two (Fig. 2). The correlation between 
marker order was found to be very high (Spearman’s rank correlation coefficient ρs = 0.969, p < 2.2E-16). It is 
important to note that both maps lack markers on the short arm of chromosome 5A. Second, genetic positions in 
the SynOpRIL906 and SynOpDH92 maps were also checked for correlations with physical positions in the RefSeq 
v1.0 assembly (Supplementary Fig. S1). Spearman’s correlation between both SynOpRIL906 and SynOpDH92 
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linkage map positions and the RefSeq v1.0 positions was ρs = 0.999 p < 2.2E-16. Third, pair-wise recombina-
tion fractions were estimated and used to plot heatmaps. Recombination fraction heatmaps show strong link-
age between adjacent markers and no abrupt transitions that could indicate presence of misplaced markers 
(Supplementary Figs S2 and S3).

Marker Imputation.  The purpose of marker imputation is to estimate unobserved genotype calls from 
marker datasets. To increase the number of markers on the framework maps of both populations, we imputed 
markers that originally did not pass quality filters for framework markers (see Materials & Methods). A hid-
den Markov model15 that has shown high accuracy in low-coverage biallelic populations generated a total of 
49,096 and 99,888 imputed markers for the SynOpRIL and SynOpDH populations, respectively (Supplementary 
Data S4 and S5). Following imputation, the new imputed markers were added to the framework maps. Pair-wise 
Hamming distances were computed between imputed and framework markers and used to assign imputed mark-
ers to bins. A total number of 43,013 (87.6%) and 86,042 (86.1%) imputed markers were successfully incorpo-
rated to the SynOpRIL906 and SynOpDH92 maps, respectively (Supplementary Data S6 and S7). The correlation 
between the total number of SNPs (imputed plus framework) per chromosome and chromosome physical size 
was moderately high (Pearson’s ρp = 0.64 p = 0.0017; and ρp = 0.58 p = 0.0063, respectively). The statistics of the 
maps including added imputed markers is summarized in Supplementary Table S2.

Allele frequencies and segregation distortion.  Segregation distortion, the deviation of the segregation 
ratio of a locus from the expected Mendelian ratio, is often observed in mapping populations and is known to 
impact genetic map construction. Parental allele frequencies for all framework markers in both populations were 
computed (Supplementary Fig. S4), and used to assess the presence of segregation distorted markers. Overall, 
markers in the SynOpRIL906 map had a higher frequency of the Opata alleles (52.2% vs. 47.8%) (Supplementary 
Fig. S4A). Out of the 3,634 mapped markers in the SynOpRIL906 framework map, 572 (15.7%) showed significant 
distortion after Bonferroni correction for multiple testing (p < 0.01, single test), with marker alleles biased toward 

Figure 1.  Genetic linkage maps constructed for the (A) SynOpRIL and (B) SynOpDH reference populations 
derived from the cross W7984 × Opata. Linkage groups corresponding to the 21 wheat chromosomes are shown 
in x-axis. The y-axis shows genomic distances in cM.
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Chr

SynOpRIL906 SynOpDH92

no. of 
markers Markers (%) Bins

Length 
(cM)

ABIa 
(cM)

Marker/
cMb

cM/
Mb

no. of 
markers Markers (%) Bins

Length 
(cM)

ABIa 
(cM)

Marker/
cMb

cM/
Mb

1A 154 4.24 81 126.2 1.56 1.22 0.21 263 4.00 41 132.8 3.24 1.98 0.23

1B 215 5.92 113 123.6 1.09 1.74 0.18 416 6.32 46 128.4 2.79 3.24 0.19

1D 90 2.48 63 131.7 2.09 0.68 0.27 188 2.86 52 140.1 2.69 1.34 0.28

2A 162 4.46 74 106.2 1.44 1.53 0.14 186 2.83 30 119.3 3.98 1.56 0.16

2B 250 6.88 134 143.8 1.07 1.74 0.18 418 6.35 42 117.6 2.80 3.55 0.15

2D 181 4.98 113 127.7 1.13 1.42 0.20 176 2.67 36 98.6 2.74 1.78 0.15

3A 184 5.06 99 160.1 1.62 1.15 0.21 357 5.43 52 183.6 3.53 1.94 0.24

3B 242 6.66 125 138.3 1.11 1.75 0.17 460 6.99 56 144.4 2.58 3.19 0.17

3D 196 5.39 108 152.6 1.41 1.28 0.25 334 5.08 58 155.2 2.68 2.15 0.25

4A 118 3.25 63 130.9 2.08 0.90 0.18 312 4.74 43 158.6 3.69 1.97 0.21

4B 152 4.18 67 88.8 1.33 1.71 0.13 273 4.15 29 112.7 3.89 2.42 0.17

4D 67 1.84 44 116.8 2.65 0.57 0.23 109 1.66 24 114.4 4.77 0.95 0.23

5A 159 4.38 87 114.9 1.32 1.38 0.29 244 3.71 43 125.8 2.93 1.94 0.28

5B 201 5.53 121 162.1 1.34 1.24 0.23 351 5.33 63 176.6 2.80 1.99 0.25

5D 154 4.24 89 186.2 2.09 0.83 0.33 278 4.22 62 177.8 2.87 1.56 0.31

6A 145 3.99 79 107.5 1.36 1.35 0.17 263 4.00 32 128.8 4.02 2.04 0.21

6B 164 4.51 81 109.5 1.35 1.50 0.15 356 5.41 46 111.7 2.43 3.19 0.16

6D 119 3.27 82 147.4 1.80 0.81 0.31 218 3.31 48 135.4 2.82 1.61 0.29

7A 255 7.02 115 149.5 1.30 1.71 0.20 502 7.63 60 162.0 2.70 3.10 0.22

7B 265 7.29 113 124.4 1.10 2.13 0.17 478 7.26 38 132.5 3.49 3.61 0.18

7D 161 4.43 105 194.0 1.85 0.83 0.31 398 6.05 72 204.6 2.84 1.95 0.32

A genome 1177 32.39 598 895.3 1.50 1.31 0.19 2127 32.33 301 1011.0 3.36 2.10 0.22

B genome 1489 40.97 754 890.4 1.18 1.67 0.17 2752 41.82 320 923.8 2.89 2.98 0.18

D genome 968 26.64 604 1056.3 1.75 0.92 0.27 1701 25.85 352 1026.1 2.92 1.66 0.26

Total 3634 1956 2842.1 1.45 1.28 0.21 6580 973 2961.0 3.04 2.22 0.22

Table 1.  Summary statistics of genetic maps of SynOpRIL906 and SynOpDH92. aABI: Average bin interval size. 
bMarker density: number of markers per cM.

Figure 2.  Marker order correlation between SynOpRIL906 and SynOpDH92. Graph shows alignment of the 
2,113 shared markers for all 21 linkage groups. Axis distances in cM.
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either parent (Fig. 3A). Among the 572 segregation distorted markers, 95 showed deviation towards W7984 
alleles and 477 towards Opata alleles, with 188 (32.9%) present in the A genome, 303 (53.0%) in the B genome, 
and 81 (14.1%) in the D genome. All chromosomes except 2A had at least one marker displaying segregation dis-
tortion. Rather than randomly distributed, markers exhibiting segregation distortion tend to be clustered in the 
linkage maps (Fig. 3A). Clusters of 10 or more adjacent distorted markers were defined as segregation distorted 
regions (SDRs), most of which occurred in long ( > 20 cM) blocks. There were 12 SDRs across all chromosomes, 
four in the A genome, five in B, and three in D. Five of those SDRs had more than 40 markers. The cluster in chro-
mosome 4B has the largest number of distorted markers (108).

Considerably less segregation distortion was observed in the SynOpDH92 map (Fig. 3B), where there was 
slightly more presence of W7984 alleles (50.2%) than Opata alleles (49.8%) (Supplementary Fig. S4B). Just one 
SDR was highlighted as significant, in chromosome 4D. This region comprised a total of 29 (0.44%) markers 
exhibiting segregation distortion, all W7984 alleles.

Recombination frequencies and recombination QTL.  The recombination rate (cM/Mb) tends to vary 
widely across the genome. We computed recombination rates for all chromosomes using the two framework 
maps (Supplementary Table S3). On average, the D genome had the highest values, 0.27 and 0.26 cM/Mb for 

Figure 3.  Segregation distorted regions for the SynOpRIL906 (A) and SynOpDH92 maps (B). The x-axis shows 
map distances in cM and the y-axis the −log10 p-values from tests of 1:1 segregation at each marker. Dashed 
horizontal lines indicate the level of significance after Bonferroni correction. Colored bars indicate that a 
particular marker is significantly distorted, either towards the W7984 allele (blue) or Opata allele (red).
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SynOpRIL906 and SynOpDH92, respectively. The A genome exhibited 0.19 and 0.22, and B genome had 0.17 
and 0.18 cM/Mb. The average recombination rates for all three genomes were 0.21 cM/Mb for SynOpRIL906 and 
0.22 cM/Mb for SynOpDH92. There was a strong negative correlation between recombination rates and the sizes 
of physical chromosomes (ρp = −0.62, p = 0.0025 for SynOpRIL906, and ρp = −0.59, p = 0.0046 for SynOpDH92). 
Recombination rates were plotted onto the RefSeq v1.0 sequence for each individual chromosome (Fig. 4) and 
trends in recombination along the wheat genome were examined in the SynOpRIL906 and SynOpDH92 maps. 

Figure 4.  Estimates of recombination rates (cM/Mb). Distribution of recombination rates for the SynOpRIL906 
(blue) and SynOpDH92 (red) maps across the 21 wheat chromosomes. The x-axis represents the chromosomal 
positions (Mb), and the y-axis recombination rates in cM/Mb. Vertical dashed lines correspond to the regions 
outlined in10, which divided each chromosome according to gene content and recombination rates into distal 
regions (orange), centromeric regions (white), and intermediate (yellow).
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Chromosome physical distances were normalized either by the relative length of each chromosome (Fig. 5A and 
Supplementary Fig. S5A), or by the relative distance from the centromere (Fig. 5B and Supplementary Fig. S5B). 
Recombination rates showed a clear trend, with the highest rates towards the end of chromosomes and rates near 
zero around the centromere region.

In a number of populations, recombination rates have been found to be influenced by loci distributed 
throughout the genome16,17. We took advantage of the high number of individuals and the increased number of 
recombination events in SynOpRIL to ascertain whether there are loci that have an effect on recombination in 
this population. The number of crossovers (CO) per inbred line followed a normal distribution of mean 54.2, with 
values ranging from 26 to 101 (Supplementary Fig. S6). We used a multiple interval mapping (MIM) approach 
to detect QTLs. MIM fits several markers and their epistatic interactions simultaneously in a mixed model (see 
Materials & Methods). The observed phenotypic variation was initially fitted into a MIM model with 10 QTLs 
(LOD ≥ 2) and four epistatic interactions. Synthetic W7984 carried the positive alleles for eight out of 10 QTL 
in the model. After several iterative rounds, a stable model was found with two significant (LOD > 5.5) additive 
QTLs, located in chromosomes 6A (LOD = 15.1, R2 = 6.45) and 6D (LOD = 7.1, R2 = 2.97), and three significant 
(LOD > 12.8) epistatic interactions (Supplementary Tables S4 and S5). The QTLs in 6A and 6D were not in syn-
tenous locations.

Genome-wide read depth variation (RDV).  We benefited from the recent low depth shotgun sequencing 
(1.37 × genome coverage) of a subset of 90 individuals of the SynOpDH population18 and explored the genomes 
of W7984 and Opata for structural variations. Sequenced reads were aligned to RefSeq v1.0, and the mapped 
reads were counted in 100 kb windows and normalized (counts per 100 million reads mapped) (Fig. 6). We again 
noted that the whole short arm of chromosome 5A appears to be missing in the W7984 parent. To assess which of 
the 90 segregating DH lines also lack 5AS, first, the median normalized read counts in 100 kb bins was computed 

Figure 5.  Recombination trend (cM/Mb) along wheat genome was calculated using the SynOpRIL906 map. 
(A) Physical distances were normalized either by the relative length of each chromosome (A) or by the relative 
distance from the centromere (B). Dots in (A) represent the relative frequency of GBS-SNP markers across 
normalized chromosomes; while in (B) represent each recombination rate datapoint, with the curve and the 
equation that best fits the data. Centromere positions were obtained from10.
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for the missing 5AS interval (Supplementary Data S8). Second, the read depth was plotted along chromosome 5A 
for all DH lines (Supplementary Data S9). The 5AS appears to be absent in 40 (45%) of the DHs, while it is present 
in 49 (55%). There is a line (SynOpDH0030) that displays intermediate values, which suggests that it could be 
hemizygous (5AS present in single copy).

To identify additional structural variants, we then computed non-overlapping 100 kb bins with at least 
two-fold differences in the counts of mapped reads between the parents (Supplementary Data S10). After remov-
ing the bins corresponding to chromosome 5AS, a total of 9,259 bins 100 kb long were identified. Adjacent bins 
were merged into a single region if they were within 200 kb apart. These structural variations are not simple 
presence/absence variation because in some cases the parent with the lower read count does have mapped reads. 
We consider that a better term would be read depth variation (RDV). After merging contiguous bins, 2,332 
RDVs equal or larger than 100 kb were identified (Supplementary Data S11). Nearly double the number of RDVs 
showed a bias towards Opata counts (1,534 vs 798), which suggests a higher similarity between Opata and CS 
than between W7984 and CS.

There were nearly double the presence of RDVs in the B genome (1,103) than in the A (633) or D (596) 
genomes. Chromosome 3B had the largest number of RDVs (185), and chromosome 4D the smallest (33). Some 
examples of RDVs are shown in Fig. 7. Additionally, Supplementary Data S12 plots show read counts in the par-
ents and the DH segregating lines for the 50 largest RDVs. The largest RDV, after disregarding the missing chro-
mosome 5AS arm, was another region in chromosome 5A between 461.9–473.6 Mb of 11.7 Mb long (Fig. 7D). 
The most frequent RDV size was 100 kb, with 1,055 occurrences across the genome, followed by 200 kb (355) 
and 300 kb (211). Supplementary Fig. S7 shows the RDV frequency distribution across normalized chromosome 
lengths. Although RDVs are widespread, they appear to be more frequent in the distal regions of chromosomes. 
In fact, the number of 100-kb long RDVs was moderately correlated (ρs = 0.29 p = 0.036) with the distance to the 
centromere. To assess the extent of genes that are present in the regions delimited by RDVs, genes that have at 
least 85% of their length within a RDV were counted. Without considering the chromosome 5AS arm, the 2,332 
RDV regions contained a total of 9,196 genes.

To validate the RDVs found, reads were also counted in the same non-overlapping 100 kb genomic windows 
for the 90 segregating DH lines (Fig. 7, bottom panels). A true RDV must, in addition to having two-fold differ-
ences in the counts between the parents, show segregation among the DH lines for the read counts in the approx-
imate expected ratio of 1:1 for high and low counts. We then genetically mapped 100 kb bins of RDV onto the 
POPSEQ map constructed be Chapman et al.18. The segregating DHs were assigned to parental haplotypes based 
on similarity of their normalized read counts to the respective parent. The haplotype vectors of the bins here 
placed into the POPSEQ map18. Bins with a Hamming distance larger than 3 to the nearest POPSEQ marker were 
considered unmapped. A total of 96.7% of RDV bins could be mapped genetically (Supplementary Data S13). For 
those that are mapped, the concordance between physical and genetic chromosome assignment is 99.2% with 
very high colinearity (Supplementary Fig. S8).

Figure 6.  Normalized read count coverage in the W7984 and Opata along the genome. Sequenced reads were 
aligned to RefSeq v1.0. Mapped reads were counted in 100 kb windows and normalized (counts per 100 million 
reads mapped). Red line shows Loess regression, a non-parametric approach that fits multiple regressions in 
local neighborhood. Of note is the lack of reads in the short arm of chromosome 5A in W7884. The background 
is likely off-target mapping. The y-axis in log scale.
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Discussion
The reduced diversity in the elite wheat breeding material, and particularly in the D genome, has hampered 
marker discovery, linkage map construction, QTL detection, and marker-assisted breeding. Although available 
since the 1940s, synthetic wheats were not incorporated into breeding programs until the 1980s19. Since then, 
synthetic wheats have introduced novel genetic diversity for important traits. In this study, we mapped two ref-
erence populations created by crossing the synthetic wheat W7984 and the variety Opata, and used the maps to 
study segregation distortion, recombination rates, recombination QTLs, and large structural variations (RDVs). 
In addition, these high-density maps will be a rich resource for future genetics studies.

SynOpRIL and SynOpDH high quality genetic maps.  The SynOpRIL906 and SynOpDH92 maps have 
21 linkage groups, corresponding to the bread wheat haploid set chromosome number, with the B genome having 
the largest number of markers, followed by the A and D genomes. Strict filtering criteria during marker selection, 
grouping and ordering, resulted in generating two reliable maps that were validated in the comparisons with the 
reference genome. The two maps were similar in genetic length, but differed in other features. The SynOpDH92 
map had more framework and imputed markers than SynOpRIL906, likely reflecting an increased sequencing 
depth (three times higher for the SynOpDH population). However, the RIL population design and larger num-
ber of individuals in the RIL population increased the overall number of recombination events. In both SynOp 
maps, chromosome 7B had the highest number of markers and chromosome 4D the least. In other published 
genetic maps, the B genome has been consistently found to be the most polymorphic20–25. Other studies have 

Figure 7.  (A–D) Examples of RDVs. The upper plot of each panel shows the normalized read counts in 100 kb 
bins for the parental lines W7984 (blue) and Opata (red). Bottom panels show the normalized read counts for 
the 90 segregating DH lines in the same genomic window. (A–C) highlights putative PAVs, (D) likely underlies 
a region of sequence divergence between W7984 and CS/Opata. The x-axis shows genomic position according 
to RefSeq v1.0 in Mb. Titles on each plot indicate the chromosome name, exact genomic positions and size of 
the particular RDV.
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also found the lowest number of markers in the D-genome, compared to the A and B genomes20–23. Although 
the B genome is physically larger than the A and D genomes (518.0 vs 493.4 and 395.1 Mb)10, these differences 
alone cannot account for the differences in polymorphism levels, and suggest that there was a more extensive 
gene flow from tetraploid (AB) than diploid (D) ancestors to hexaploid wheat, as previously proposed24,26, most 
likely as a result of the more ancient formation of tetraploid wheat. Because of its recent formation and little time 
for diploidization, a majority of polymorphisms in hexaploid wheat are expected to have arisen from the more 
ancient AB hybridization event. Nevertheless, the percentage of total markers in the D-genome in our study, 
ranging from 25.8 to 26.6%, is considerably higher than the 10.8–18% previously found in non-synthetic wheat 
crosses10,21,23–25,27 due to the wild D genome introduced through W7984. In fact, the percentage of markers in the 
D-genome in other studies that also used W7984 × Opata crosses8,18,22,25,28,29 were consistent with the values we 
obtained (17.8–28.4%).

The density of GBS-SNPs was found to vary greatly among homoelogous groups. Whereas for most groups, 
the number of SNPs represented about 15% of the total number, the homoelogous group 4 (4A, 4B and 4D) had 
only 9.3% and 10.5% for SynOpRIL and SynOpDH, respectively. This trend is maintained (4–13.6%) in other 
hexaploid wheat maps8,18,20–23,25,29. Again, these differences cannot be accounted for by the differences in genome 
size alone since, for instance, the accumulated size of homeologous groups 1 and 6 is smaller than group 4, 
demonstrating that homeologous group 4 is recombination-poor.

Recombination rates vary between and within chromosomes.  Recombination is necessary to intro-
duce new combinations of genetic variants. We found recombination rates vary within and between wheat chro-
mosomes, and to be negatively correlated with chromosome size. A negative correlation between genome size 
and recombination rate is common in plants and is likely to be related to the presence of LTR retrotransposons30. 
The negative correlation between recombination rate and LTR retrotransposon content, together with the positive 
correlation between recombination rate and gene density10 supports this hypothesis. The D genome exhibited the 
largest values (0.26–0.27 cM/Mb), and B the lowest (0.17–0.18 cM/Mb), and confirms previous observations that 
the D genome recombines more than the other two10. Using a cross between CS and Renan, higher recombination 
rates were found in the A, B and D genomes (0.23, 0.20 and 0.36 cM/Mb, respectively)10. Large variation in recom-
bination rates have been observed across populations and individuals16,31. The level of polymorphisms is higher 
in the B genome, followed by the A and D genomes, suggesting that in wheat the recombination rate is negatively 
correlated with polymorphism level.

Recombination rates also fluctuate considerably among regions within chromosomes, with the lowest values 
around the centromere region, and the largest towards the end of chromosomes. Correlations between chromo-
some structure and CO events have been extensively described30,31. Although their frequency and magnitude vary 
greatly from one species to another, there is a common trend for reduced recombination in peri-centric regions. 
We found that in wheat, COs are mostly limited to subtelomeric regions of chromosomes, thus COs are positively 
correlated with gene density (ρs = 0.723 and ρs = 0.698, p < 2.2E-16, for SynOpRIL and SynOpDH, respectively), 
in agreement with other whole genome surveys10,32,33. Other correlations have been found between recombina-
tion rates and physical structure and genome features of chromosomes. Variables related to physical structure are 
chromosome size, arm size, and distance from the centromere or telomere10,34. Genomic features that correlate 
with recombination events include GC content, CpG, simple repeats and transposable elements10. The lack of 
recombination in the centromeric region results in a significant loss of breeding efficacy for genes located in these 
regions. Yet, centromeric regions contain 7% of the predicted genes in wheat10. Genes within the centromeric 
and pericentromeric regions will thus reduce the long-term prospects for effective molecular assisted breeding.

The SynOpRIL906 and SynOpDH92 maps exhibited a relatively low number of unique recombination break-
points (bins) (Table 1). Previous studies on single biparental wheat crosses have shown similar results, even when 
large populations were used18,21,27,28,35,36. Two possible factors can contribute to this. First, only high-quality mark-
ers with low-missing data were used to construct the framework maps. This reduced the likelihood of tagging 
all CO events in a large genome. In fact, a positive correlation between the number of markers and bins, which 
only becomes saturated at numbers in the order of tens of thousands, has been observed in wheat25. Wingen et 
al.16 found a significant effect of marker number, map size and population size on the detected COs and were able 
to explain 98% of the variance in the number of COs using a linear model that included those three covariates. 
Second, we used the RefSeq v1.0 as the anchor genome to identify SNPs. It is estimated that a total of 1.3–1.7 Gb 
is either missing or assembled in unanchored scaffolds. Most of this non-assembled sequence is expected to be 
located in the centromeric regions of chromosomes10, which avoids detection of GBS-SNPs in these regions when 
the RefSeq v1.0 is used as the reference genome. This is consistent with the observed bias of GBS-SNP markers 
towards the distal parts of chromosomes (Fig. 5A and Supplemental Fig. S5A).

Additive QTLs and epistatic interactions control the number of crossovers.  The number of COs 
accumulated in a single line followed the typical distribution of a quantitative trait. However, despite the large 
population size, only 2 QTLs passed the test for significance, suggesting that COs are largely influenced by numer-
ous loci with a small individual effect and reduced power from mapping in RILs rather than F2 lines. Nonetheless, 
two QTLs were detected, which accounted for 6.4% (6A) and 3.0% (6D) of the observed variance. The QTL in 
chromosome 6A was previously reported16, while the locus in 6D is a novel QTL. In a given cross, to increase sta-
tistical power to detect minor-effect QTLs requires including as many sources of variance as possible37. Because 
effective epistasis detection requires a large sample size, it is not commonly addressed in QTL studies. Our multi-
ple interval mapping models incorporated two-locus interactions, and successfully detected significant epistatic 
loci in the large SynOpRIL population. Altogether, our results suggest that CO events are largely influenced by 
minor effect QTLs and epistatic interactions, in agreement with other previous findings16,17. Mapping QTL for 
recombination is notoriously difficult due to the majority of crossovers occurring in heterozygous backgrounds 
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in the early generations of population development, resulting in alleles that restrict crossovers becoming fixed in 
high-crossover lines or, alternatively, alleles that promote crossing over becoming fixed in low-crossover lines.

Segregation distortion is a widely distributed phenomenon.  Deviation of locus segregation 
from the expected 1:1 ratio was observed in both SynOpDH and SynOpRIL populations. However, while in 
the SynOpDH92 map only 0.44% of markers exhibited significant (p < 0.01) segregation distortion, in the 
SynOpRIL906 map the number increased to 15.7%. There were 5 long (>20 cM) SDR blocks with more than 
40 markers, all in the SynOpRIL. The fewer significant distorted markers and SDRs in SynOpDH compared to 
SynOpRIL is likely due to the increased generations of inbreeding and opportunity for inadvertent selection of 
individuals with higher fitness. The only segregating distorted region found in SynOpDH, in chromosome 4D, 
was also present in SynOpRIL, both showing deviation towards W7984 alleles. This region was previously shown 
to have a bias towards W7984 alleles18, and suggests that a general mechanism, not linked to the development of 
DH or RIL populations, is affecting segregation patterns.

A larger number of SDRs were found in SynOpRIL. Most of the SDRs and markers that exhibited segregation 
distortion in SynOpRIL906 were located in the B genome. The distorted regions on the short arm of 2B and long 
arm of 5B are collocated with the hybrid necrosis genes Ne2 and Ne1, respectively. Certain epistatic combinations 
of Ne2 and Ne1 alleles are known to result in segregation distortion on those two regions, and to cause necrotic 
cell death at the seedling stage in intraspecific crosses in wheat38. In fact, markers near to the Ne2 and Ne1 loci are 
in linkage disequilibrium in the SynOpRIL population (χ2, p = 5.32E-12). Hybrid progenies from synthetic wheat 
and common wheat crosses carrying deleterious allele combinations of these two loci have been shown often to 
be affected and die at the early seedling stage19.

Cytoplasmic male sterility is characterized by the inability to produce viable pollen and results from incom-
patibility between nuclear and cytoplasmic genomes. The restoration of pollen fertility is under the control of 
restorers of fertility (Rf) genes. Restorer of fertility-like genes (RfL) tend to cluster in regions in the genome. RfL 
clusters have been found on the short arm of chromosomes 1A, 2D, 6A and 6B10,39, which co-localize with seg-
regating distorted areas in the SynOpRIL906 map. Other mechanisms like preferential pollination, abortion of 
male/female gametes, variation in seed dormancy, and lethal epistatic interactions are causes of unbalanced allele 
frequencies40, and may be also involved in the segregation distortion of the other SDR.

Genome-wide RDVs are numerous and correlate with distance to the centromere.  The most 
noticeable finding of the genome-wide RDV analysis is that the whole short arm of chromosome 5A is missing 
in the W7984 parent. In support of this assertion, first, there is a lack of markers in the initial distal region on 
both maps. The first marker in the SynOpRIL906 and SynOpDH92 maps corresponds to the genomic position 
258,789,917 and 316,659,742 bp, respectively. Thus, there is a large gap of at least 258.7 Mb in both maps where 
no GBS markers were found. Second, a sharp drop of read counts that spans 258.3 Mb was identified when the 
W7984 sequenced reads were mapped to the RefSeqv1.0. Despite that the W7984 × Opata reference population 
has been used extensively, to our knowledge this deletion has not been reported before, probably because of the 
previous lack of an anchoring reference genome. Because of this whole arm deletion, the W7984 × Opata popu-
lation could be useful to study genes present in the short arm of chromosome 5A.

The fact that a considerably higher number of RDVs showed a bias towards Opata counts implies that Opata is 
more similar to CS than what W7984 is, as expected by the synthetic origin of W7984. Our method can reveal the 
following structural variations: (i) deletions present in one of the parents (W7984 or Opata), and not in the other, 
as long as the same deletion is not present in the CS reference; (ii) insertions in one parent and not in the other, 
as long as the CS reference shares the same insertion; (iii) copy number variations (CNVs) between W7984 and 
Opata, regardless of the copy number in the reference; and (iv) lastly, sequence divergence between the parents 
and CS. For some of the putative large CNV/PAV, there are a considerable number of reads mapped per bin in 
both parents, but still a large log2 ratio, suggesting sequence differences from CS so that reads cannot be mapped. 
Our 2-way validation suggests that most RDVs reflect true genomic structural differences. However, in some 
instances, the underlying particular structural element might be difficult to assess (ex. Figure 7D). In general, 
insertions/deletions will be less problematic to identify than CNV or sequence divergence.

Despite that our approach detected a limited number of structural variants, the elevated number of RDVs 
found suggests that underlying structural variation is very common in wheat. Structural genomic variation such 
as PAVs and CNVs have been recognized to have the potential to generate phenotypic variation in maize41, and 
barley42. The presence of 9,196 high confidence genes within RDVs suggests that they can also be a significant 
source of diversity between wheat accessions, consistent with other studies43. There were nearly twice as many 
RDVs of at least 100 kb long in the B genome than in the A and D genomes, which confirms the findings on 
GBS-SNP marker distribution pointing at the B genome as the most polymorphic. This is also in agreement with 
the lower synteny observed between the B genome chromosomes and the A and D homeologues as compared to 
the synteny between the A and D genome homeologues44.

We found RDVs to be more frequent in the distal parts of chromosomes. This is in agreement with a higher 
occurrence of SNPs and other polymorphisms in these areas, and with the decreased level of synteny observed 
between homeologous chromosomes as the distance of a chromosome region to the centromere increases43,44. 
In fact, the higher recombination rates in subtelomeric regions indicates that they are fast-evolving and thus 
more prone to changes. Rimbert et al.23 also found high presence of PAVs in the distal regions of wheat chro-
mosomes. Akhunov et al.34 found that duplicated loci were most often located in these distal regions, and their 
distribution was positively correlated with the recombination rate. Alternatively, as mentioned earlier, the part of 
the reference sequence that is still not assembled is likely located in the centromeric regions, and could also be a 
contributing factor explaining the less abundant PAVs in these regions. Nevertheless, there is also an important 
number of RDVs in the proximal regions. Retrotransposons constitute a substantial part of the wheat genome 
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and contributes to structural variation10. It has been suggested that the reduction in recombination in regions 
with a high density of retroelements can be due to structural variations created by retrotransposon insertions or 
deletions33.

In summary, because of its recent formation, hexaploid wheat suffers from a narrow genetic diversity, further 
aggravated by the process of domestication. We have constructed two reliable linkage maps using the synthetic 
W7984 × Opata RIL and DH populations. Synthetic crosses have the potential to increase wheat genetic diversity, 
thus the maps will have major value not only in breeding programs but also in genetic and genomic studies. The 
maps, together with the previously reported low-depth sequencing coverage of the DH population18, allowed us 
to examine recombination rates and segregation distorted regions and QTLs associated with genetic control of 
recombination, as well as investigate the genomes of W7984 and Opata for the presence large genomic variants.

Materials and Methods
Plant material and DNA extraction.  Two bi-parental mapping populations from crosses between the 
parental lines Synthetic W7984 (also known as M6) and Opata M85 (abbreviated W7984 × Opata) are described 
in detail in Sorrells et al.8. W7984 is a synthetic line derived from a cross between the durum (T. turgidum L.) 
genotype Altar 84 and Ae. tauschii Coss., the progenitor of the bread wheat D genome. We used a random subset 
of the larger populations initially created. These populations are: 1) an F1-derived population of double haploids 
(DH) of 92 individuals, a subset of the original SynOpDH population of 215 lines, and 2) a recombinant inbred 
population (RIL) of 1,100 F6 lines derived by single seed descent, a subset of the original SynOpRIL population 
of 2,039 lines8. Plants were grown in a greenhouse and genomic DNA was extracted from seedlings of each line.

Genotype-by-sequencing and SNP calling.  For the SynOpDH population, we followed a two-enzyme 
restriction digestion GBS protocol first described in Poland et al.22. It uses one rare-cutter and one common-cutter 
to generate a uniform complexity reduction of the genome. Briefly, the GBS libraries were constructed in 48-plex 
and genomic DNA was digested with the restriction enzymes PstI (CTGCAG) and MspI (CCGG). Barcoded 
adapters were ligated to individual samples and pooled. For the SynOpRIL population, the DArTseq library con-
struction was used22, which involves only PstI fragments (e.g. PstI on both ends) followed by further complexity 
reduction with HpaI (GTTAAC). Libraries were constructed in 96-plex. This DArT approach produces much 
more complexity reduction than the two enzyme GBS and is also expected to produce fewer markers, though 
with better coverage. Because PstI was used as the primary restriction site for libraries in both populations, the 
sequencing sites have significant overlap.

Libraries were single-read ultra-light sequenced on the Illumina GAII or HiSeq2000 platforms, at a sequence 
depth of 0.03× and 0.01× , respectively. From the raw sequence data, reads were demultiplexed according to 
their barcodes using a script for demultiplexing45. Reads were assigned to samples based on their initial barcode 
followed by the TGCA overhang sequence. Only exact matches were considered. The barcode + TGCA were 
trimmed off the reads. Reads from different libraries that belonged to the same individual were combined in the 
same file. Only reads above 30 bp long were kept (tags).

Sequence tags were aligned to the RefSeq v1.0 CS reference genome using the Burrows-Wheeler Aligner 
(BWA)46 with the bwa-mem algorithm v0.7.15, the –T parameter set to 40 to output alignments with a quality 
score equal or above 40, and otherwise default parameters. The alignment output files in ‘sam’ format were con-
verted to binary versions ‘bam’ with the view algorithm and sorted with sort algorithm within samtools v1.647. 
A bcf file was generated with samtools mpileup with –uv –t INFO/AD,DP,AD parameters to output number of 
high-quality bases and allelic depth. SNP calling was done using bcftools v1.6 call48 with the parameters –c –v -f 
GQ. The output vcf file was filtered with the following constraints: a homozygous genotype call was retained if 
at least one read supported it; two reads were needed to support a heterozygous call. The SNP calls with quality 
scores below 40, more than 25% missing data, more that 10% heterozygous calls, or a minor allele frequency 
below 20% were discarded. Only high quality biallelic SNP positions with successful genotype calls in both par-
ents and homozygous for opposite alleles were retained for the SynOpDH population. Heterozygote calls were 
allowed in the SynOpRIL population, other than in the parents, and used to compute statistics. Individual’s het-
erozygous calls were set to missing previous to linkage grouping. GBS-SNP markers were given the following 
format: “chr1A_13829065”. The first part corresponded to the CS chromosome, and the second, after “_”, corre-
sponded to the physical position on the RefSeq v1.0 assembly. In house bash and perl scripts were developed to 
perform the preceding tasks.

Linkage map construction and genetic analyses.  MSTMap49 on the R/ASMap50, and the R/qtl51 
packages for R were used for linkage group construction, genetic mapping and computing of linkage statistics. 
During map construction, lines that were sequenced at insufficient depth, had a high rate of missing or heterozy-
gous observations, a high number of double crossovers, or shared a proportion of their alleles greater than 0.95 
were removed. GBS-SNP markers that aligned to the RefSeq v1.0 “Unanchored” scaffolds pseudochromosome 
(ChrUn) were removed for subsequent analysis. Initial group assignment was established using a p-value of 1E-30 
and 1E-6 for the SynOpRIL and SynOpDH population, respectively, and the maximum likelihood (ML) objective 
function. Population types were set to RIL6 and DH, respectively. Recombination frequencies were converted to 
centiMorgans (cM) using the Kosambi function. Markers with minor allele frequencies of 0.20 or less for either 
parental allele were removed prior to map construction. For the framework map construction, the maximum 
rate of missing observations was set to 0.08. Default settings were allowed for other parameters. Stringent filter-
ing removed low-quality markers, with excess of missing or heterozygous sites, prior to map construction (see 
previous section). Markers with excess of double recombination or suspected to be wrongly positioned were also 
removed during each iteration of linkage map construction. Recombination rates (cM/Mb) were computed by 
dividing genetic into physical distances in 25 Mb windows using a sliding window of 2.5 Mb. Recombination plots 
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were drawn using R and standard functions. Tests for segregation distortion were performed by checking depar-
ture of allele proportions from the expected 1:1 ratio, after Bonferroni correction for multiple testing.

QTL mapping was achieved with the R/qtl package. The functions cim and scantwo were first used to highlight 
candidate loci (LOD > 2.0) and interactions genome-wide. The cim function performs a composite interval map-
ping with a forward selection at the markers to a fixed number, followed by interval mapping with the selected 
markers as covariates, dropping marker covariates if they are within a fixed window size of the location under test. 
Tests for significant locus-trait associations were performed by means of a Haley-Knott regression with a window 
of 20 cM, 1 cM steps, and 7 marker covariates to account for variance genome-wide. The function scantwo tests 
for epistatic interactions, also using a Haley-Knott regression. Highlighted candidate loci and interactions were 
fitted in a multiple interval mapping (MIM) model and tested iteratively using the fitqtl function. A stable model 
was reached with 10 loci and 3 interactions: y ~ Q1 + Q2 + Q3 + Q4 + Q5 + Q6 + Q7 + Q8 + Q9 + Q10 + Q3:Q
11 + Q3:Q9 + Q5:Q6 (Tables S2 and S3). Permutation tests with 1,000 replicates were used to test for significance 
(p = 0.05), and established thresholds of LOD 5.5 and 12.8 for additive and epistatic QTLs, respectively.

Marker imputation.  Error correction and imputation of missing genotypes were completed with the R 
package LaByRInth (https://github.com/Dordt-Statistics-Research/LaByRInth), a version for R of the original 
LB-Impute algorithm15 using default settings. LB-Impute uses a hidden Markov model to impute the missing sites 
in a low-coverage biallelic population where the parental genotypes are known, even when per-marker coverage 
is extremely low, as for GBS datasets. LB-Impute also minimizes false homozygous calls at heterozygous sites by 
incorporating depth-of-sequencing read coverage into the imputation algorithm. The GBS-SNP markers were 
considered candidates for imputation if they had no more than 25% missing rate, no more than 10% heterozygous 
calls and a minimum of 20% minor allele frequency. Imputed markers were subsequently filtered to eliminate 
markers whose maximum fraction of heterozygous calls was higher than 0.05, minimum allele frequency lower 
than 0.20 and maximum missing rate of 0.10, using in house scripts. Heterozygous calls were set to missing before 
incorporation to the framework map. Imputed markers were assigned to bins based on their Hamming distances, 
the number of different, non-missing, genotypes. Hamming distances were computed as in Mascher et al.52 to find 
the imputed markers with the least distance to any framework marker. An imputed marker was incorporated to 
its most likely position in the map if all the markers in the framework map with the least Hamming distance to the 
imputed marker were located in the same bin. A perl script was developed for this step (Supplementary Data S14).

Read depth variation analysis.  For the RDV analysis, we downloaded the low-depth (1.37 ± 0.20×, 
mean ± SD) sequencing data for the 90 individuals of the SynOpDH population18 sequenced with 2 × 150 paired 
end Illumina reads on the HiSeq2000. Parental lines W7984 and Opata were sequenced at higher depth, approx. 
34×and 19× coverage, respectively (see Chapman et al.18 for more details). Here, downloaded sequenced reads 
were mapped against the RefSeqv1.0 using bwa-mem v0.7.15 –T parameter set to 20. The ‘sam’ files were con-
verted to ‘bam’ with the view algorithm, and sorted with the sort algorithm within samtools v1.647. Duplicates 
were removed using Picard tool’s Markduplicates (http://broadinstitute.github.io/picard). Mapped reads were 
counted with samtools view in 100 kb windows with the parameters -c -F260 -q 10 to exclude non-uniquely 
mapped reads. Read counts were imported to R for further processing. Regression curves were drawn with 
the Lowess function in R, a non-parametric regression method that combines multiple regression models in a 
k-nearest-neighbor-based meta-model53.

Data Availability
Raw reads have been deposited at SRA (accession number SRP134280).
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