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Purpose: Prostatectomy is one of the main therapeutic options for prostate cancer

(PCa). Studies proved the benefit of adjuvant radiotherapy (aRT) on clinical outcomes,

with more toxicities when compared to salvage radiotherapy. A better assessment of the

likelihood of biochemical recurrence (BCR) would rationalize performing aRT. Our goal

was to assess the prognostic value of MRI-derived radiomics on BCR for PCa with high

recurrence risk.

Methods: We retrospectively selected patients with a high recurrence risk (T3a/b or T4

and/or R1 and/or Gleason score>7) and excluded patients with a post-operative PSA >

0.04 ng/mL or a lymph-node involvement. We extracted IBSI-compliant radiomic features

(shape and first order intensity metrics, as well as second and third order textural features)

from tumors delineated in T2 and ADC sequences. After random division (training and

testing sets) and machine learning based feature reduction, a univariate and multivariate

Cox regression analysis was performed to identify independent factors. The correlation

with BCR was assessed using AUC and prediction of biochemical relapse free survival

(bRFS) with a Kaplan-Meier analysis.

Results: One hundred seven patients were included. With a median follow-up of 52.0

months, 17 experienced BCR. In the training set, no clinical feature was correlated with

BCR. One feature from ADC (SZEGLSZM) outperformed with an AUC of 0.79 and a HR

17.9 (p = 0.0001). Lower values of SZEGLSZM are associated with more heterogeneous

tumors. In the testing set, this feature remained predictive of BCR and bRFS (AUC 0.76,

p = 0.0236).

Conclusion: One radiomic feature was predictive of BCR and bRFS after prostatectomy

helping to guide post-operative management.
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KEYPOINTS

– Texture analysis, based on prostatic MRI, provides an
informative assessment of tumoral heterogeneity which could
help to predict biochemical failure risk.

– Management of patients could be performed with a
greater confidence.

INTRODUCTION

Prostate cancer (PCa) is the most common cancer among men
with∼165.000 patients diagnosed with the disease in 2017 in the
United States, and more than 29.400 annual deaths (1). Radical
prostatectomy (RP) is one of the treatments of choice for patients
with PCa and is associated with excellent long-term outcomes.
Nevertheless, biochemical recurrence (BCR) after RP occurs in
50% of patients, particularly in those who harbor high risk
features like locally advanced disease (T3-4), positive margins
(R1) or high Gleason score, and is predictive of metastatic
relapse and cancer specific death (2). Adjuvant radiotherapy
(aRT) of the prostatic bed has been proposed and proven to
be effective in 3 randomized controlled trials (EORTC 22911,
SWOG 8794, ARO 96-02) comparing aRT versus observation
(3–6). All three studies showed a significant benefit for aRT
in biochemical relapse-free survival (bRFS), but results were
conflicting in terms of metastases-free and overall survival (6).
In addition, patients receiving aRT experienced higher rates of
grade 2 or higher gastrointestinal and genitourinary toxicities (5).
Moreover, based on clinical and histopathological features alone,
patient selection remains insufficient. In a multi-institutional
study and after a 5-years follow-up (7), ∼50% of the high–risk,
operated on patients were still BCR-free and were without the
certainty of the benefits from aRT. Therefore, radiation therapy
(RT) is often delivered only at the time of BCR as it would then be
limited solely to relapsing patients, and would reduce treatment-
related side effects. Indeed, some data suggest that early salvage
RT (sRT) is as efficient as aRT in this context (8). However, a
low pretreatment serum prostate-specific antigen (PSA) level is
known to be the strongest predictor of response after sRT, and the
question remains as to whether sRT at the first time of recurrence
compromises cancer control compared to aRT (9).

The natural history of relapse after radical prostatectomy (RP)
is heterogeneous even in patients with high risk features and may
reflect a broad range of underlying tumor pathophysiological
processes. Recently, in addition to conventional parameters
on magnetic resonance imaging (MRI) used to diagnose and
stage cancer, there has been a growing interest in the high-
throughput extraction of quantitative features from medical
images, denoted radiomics. Radiomic features are statistical,
geometrical, or textural metrics designed to quantify tumor

Abbreviations: aRT, Adjuvant radiotherapy; PCa, Prostate cancer; RP, Radical

prostatectomy; BCR, Biochemical recurrence; R1, Positive margins; RT, Radiation

therapy; sRT, Salvage radiation therapy; PSA, Prostate-specific antigen; bRFS,

Biochemical relapse-free survival; MRI, Magnetic resonance imaging; IBSI, Image

Biomarker Standardization Initiative; ROC, Receiver operating characteristic; PC,

mean absolute Pearson’s coefficient; AUC, Area under curve.

intensity, shape and heterogeneity, which have been shown to
reflect intratumorally histopathological properties and to provide
prognostic information in several pathologies including PCa
(10–12). For example, the GLSZM is a matrix focusing on the
size of areas (or zones) of similar gray-level values. The more
heterogeneous the intensities of the voxels in the tumor image
are, the smaller the areas (or zones) of similar gray-level become,
resulting in lower values of the GLSZM-based features.

An MRI-derived radiomics signature predictive of the
outcome of patients after RP has not yet been described. We
aimed to develop and validate such a signature with prognostic
value in patients with high risk PCa, in order to guide the patients’
selection and therapeutic management, especially regarding the
use of aRT.

METHODS

Patients Selection
All patients with histologically proven PCa patients treated with
RP, with or without a lymphadenectomy from 2010 to 2016 at
Brest, were retrospectively considered. Among them, those with
high-risk features on the pathologic specimen, namely pT3a-b or
pT4, and/or R1, and/or Gleason 8-10, and available preoperative
pelvic MRI were retrospectively included.

All patients with lymph node involvement after extensive
lymphadenectomy were excluded, as were those whose PCa
diagnosis was obtained after cystoprostatectomy for bladder
carcinoma. Patients who received adjuvant treatment (aRT
and/or adjuvant androgen deprivation therapy) or those with
post-operative PSA (PSA > 0.04 ng/mL at 3 months following
RP) were also excluded.

All patients for which the MRI were not retrievable
were excluded.

A follow-up of 24 months was mandatory, except in case
of BCR.

Outcome
The primary endpoint was the prediction of BCR, which was
defined as a PSA increase above 0.2 ng/mL confirmed on two
successive blood samples. The secondary endpoint was the
prediction of bRFS.

MRI
The MRI were performed on two different MRI scanners:
a Phillips 3T (Philips Healthcare, The Netherlands) and a
Siemens 1.5T (SiemensHealthcare,Malvern PA). Both scans were
performed using a 6-channel phased-array surface coil. Patients
were scanned in supine position. MRI sequences included axial
turbo spin echo T2-weighted and axial diffusion sequences
using multiple b-values (maximal b-value: 1,000 s/mm2), along
with a perfusion sequence for Philips 3T and a T1 sequence
with gadolinium injection for Siemens 1.5T. ADC maps were
calculated using each corresponding manufacturer’s software.
MRI scans were performed according to ESUR guidelines. Full
details about acquisition parameters are provided in the Table 1.
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TABLE 1 | Summary of MRI scan acquisition parameters.

Acquisition parameters Siemens 1.5T

(n = 75)

Philips Achieva 3T

(n = 32)

Magnetic field strength (Tesla) 1.5T 3T

T2-Weighted

Matrix (pixels) 192 × 192 268 × 268

Field of view (mm) 250 × 250 320 × 320

ET (ms) 110 90

RT (ms) 2,500 4,500

Slice Thickness (mm) 1.5 1.5

ADC map

Matrix (pixels) 128 × 128 144 × 144

Field of view (mm) 200 × 200 240 × 240

ET (ms) 80 80

RT (ms) 2,300 2,300

Slice Thickness (mm) 3.5 3.5

Diffusion gradient B50-400-1000 B100-600-1000

RT, repetition time; ET, echo time.

Clinical Features
The following clinical variables were collected from medical
records: size of the delineated tumor, T stage (extra-capsular
extension, seminal vesicle invasion), Gleason score, pre- and
post-operative PSA, margins status, age at surgery and the
CAPRA-S Score (13). All categorical clinical features were
remapped to ordinal values.

Tumor Delineation
Prostatic tumors were semi-automatically delineated on all
slices using the Fast GrowCut Effect extension available in
3D Slicer R© v4.8.0, on both the ADC and T2-sequences using
all sequences available on the pre-operative MRI (ADC, T2-
weighted, diffusion, perfusion, T1 with gadolinium injection). An
example is illustrated in Supplementary Figure 1.

Radiomic Features
Prior to extraction of features, wavelet filters were applied to
each MRI sequence. The high-pass and low-pass versions of
the wavelet (14) basis function coiflet 1 were consecutively
applied in the three directions of space, thereby creating eight
filtered images: LLL, LLH, LHL, LHH, HLL, HLH, HHL,
and HHH. Including the original image, nine images per
MRI sequence were thus available for radiomics analysis. One
hundred seventy-two radiomic features were extracted, using
MathLab R©, following the implementation guidelines defined
by the Image Biomarker Standardization Initiative (IBSI) (15)
workflow (Supplementary Figure 2). The textural radiomic
features were implemented with different parametrization
settings (see Supplementary Figure 2). As a result, the total
available radiomic variables per MRI sequence per patient
was 27,376.

Statistical Analysis
The cohort was first randomly split into two sets, 2/3 for
training (n = 70) and 1/3 for testing (n = 37). A machine

learning workflowwas subsequently employed to reduce this very
large initial number of radiomic features to a relevant subset
more suitable for robust statistical analysis. This selection was
performed in the training set using an aggressive false discovery
reduction procedure relying on stability checks, robustness score,
and Pearson’s correlation (PC) checks (16). More details about
this procedure is provided below: The training set was sub-
divided 100 times into different subsets with a 2:1 size ratio using
stratified random sub-sampling. The PC of each radiomic feature
with BCR was calculated for each of the 100 subsets. A given
feature was considered stable if 95% of the absolute PC value
were above 0.3. Following stability checks, the optimal extracted
parameter was identified for each remaining feature in the set by
maximizing the mean absolute PC, such that only one variant per
feature was retained. Finally, intra-correlation between features
still present in the set was analyzed and features with a coefficient
>0.7 were discarded by prioritizing those with the highest PC.

Imbalanced distribution of the clinical outcome (BCR) was
adjusted using the SMOTE technique (17) which was applied to
the whole teaching set prior to the start of feature set reduction.

The reduced subset of radiomic features identified through
the process described above, as well as all clinical variables, were
then assessed for their predictive ability with univariate (ROC
curves) and multivariate (Cox regression) analyses. Optimal
cut-off values for each feature were defined via the Youden
Index in the ROC curves. Based on additive combinations
between each radiomic and clinical variable, three models were
built and evaluated: radiomics-only, clinical-only, and radiomics
combined with clinical. The performance of these models was
evaluated using Kaplan-Meier curves and the log-rank test in the
testing set.

To minimize the effects of variability between different types
of scanners (1.5T vs. 3T), radiomics features were separately
normalized (using z-score standardization, i.e., mean 0 and
standard deviation 1) per scanner type and per training and
testing set (16).

Finally, the predictive power of each model was then assessed
on the overall population depending on the type of scan (1.5T
vs. 3T).

Statistical analysis was performed using MedCalc v13.1.0.

Ethical Considerations
This study was approved by the hospital ethical committee
(PREBOP 29DRC18.0108) and all patients gave their consent for
the use of their clinical and imaging data.

RESULTS

Patients Characteristics
Between January 2010 and December 2016, 505 patients
underwent RP ± extensive pelvic lymphadenectomy. According
to pathological analysis, 272 patients (54%) presented high-risk
features (T3a/T3b or T4, and/or R1, and/or Gleason 8-10).

Overall, 107 patients were excluded because of positive lymph
nodes (n= 58), follow up<24 months (n= 37) or post-operative
PSA >0.04 ng/mL (n = 40). Among the remaining patients
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FIGURE 1 | Flowchart of the patients selection.

TABLE 2 | Patients and tumors characteristics in training and testing sets.

Patients characteristics Training

N = 70

Testing

N = 37

p-value

Age at diagnosis (mean, y) 65 65 0.81

PSA (mean, ng/mL) 9 9 0.81

MRI characteristics

Siemens 1.5T (%) 67 73 0.69

Philips 3T (%) 33 27

Surgical characteristics

Pathological tumor stage

pT1-pT2 (%) 33 41 0.57

pT3 (%) 67 60

pT4 (%) 0 0

Nodal status

pN0 (%) 85 78 0.56

cN0 (%) 15 22

Surgical margins

R0 (%) 41 41 0.91

R1 (%) 57 60 0.97

Rx (%) 2 0 0.78

Gleason score

Gleason ≤7 (%) 84 89 0.69

Gleason >7 (%) 16 11

Capra-S Score (median) 15.7 4 1,00

Post-operative PSA (mean, ng/mL) 0.01 0.01 1,00

bRFS (median, months) 46.3 38.4 0.11

Biochemical recurrence (%) 16 16 0.83

Follow-up (median, months) 56.5 53.6 0.56

PSA, prostate specific antigen, MRI, magnetic resonance imaging; bRFS, biochemical

relapse free-survival.

(n= 137), preoperative MRI was available for 107 (78%). The
flowchart of patients’ selection is available as Figure 1.

Clinical and histopathological characteristics did not
significantly differ between the training and testing sets
(Table 2). A majority of patients had pT3 disease (65%) and
microscopic involved margins (67%). No pT4 (0%) patients
were finally included. Seventy percent of scans (n = 75) were
acquired on the Siemens scanner and 30% (n= 32) on the Philips
scanner (Table 1).

Outcome
Median follow-up was 49.9 months (range, 24–100.3). Among
the selected 107 patients, BCR occurred in 17 patients (16%) after
a median duration of 24 months (4.14–83.1 months). Median
bRFS was 42.6 months (4.14–100.3 months).

Within the relapsing population and at last follow-up, 7 (41%)
patients experienced a clinical and/or radiological relapse with
3 (18%) having lymph node metastasis and 4 (24%) distant
metastasis. All other patients accounted for BCR alone.

Training Set
Using univariate analysis, no clinical feature was significantly
correlated with BCR. The most predictive model of survival
without BCRwas obtained with the combination of pre-operative
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PSA and age at surgery. The association between clinical and
histopathological features and BCR are shown in the Table 3.
This clinical model (age >65 y and pre-operative PSA >5.6)
resulted in an AUC of 0.76 (sensitivity 82%, specificity 70%,
p = 0.0002) and was also significantly associated with bRFS
with a hazard ratio (HR) of 12.2 (p = 0.0005; Figure 2A). All
individual ROC curves for clinical features are provided in the
Supplementary Figure 3.

Of note, tumor volume was not associated with
BCR (AUC 0.57).

The feature set reduction technique reduced the number of
radiomic features to 10 non-redundant, uncorrelated features
(Supplementary Table 1), which on univariate analysis were all
significantly associated with BCR (Table 4). On multivariate
analysis, three of these 10 radiomic features remained strongly
correlated with BCR: SZEGLSZM, SZLGEGLSZM, HGREGLRLM
(feature description in Supplementary Table 1) with respective
Odds-ratio of 16.6 (p = 0.0266), 8.8 (p = 0.0255), and 15.2
(p= 0.0111).

When the selected cut-off was applied (i.e., ≤0.528 for the
SZEGLSZM feature), no additive combination of radiomic features
outperformed the ADC-based SZEGLSZM feature alone with
an AUC of 0.799 (sensitivity 91%, specificity 69%) and was
therefore chosen for further evaluation. The model relying on
this SZEGLSZM feature alone resulted in strong stratification of
patients for bRFS, with a HR of 17.9 (p= 0.0001) (Figure 3A).

TABLE 3 | Correlation between clinical features and biochemical recurrence.

Clinical variable Univariate

analysis

Best

cut-off

p-value Odds-

ratio

AUC Se Sp

Age at surgery (y) 0.60 91 51 >65.35 0.2262 10.16

Pre-operative PSA (ng/mL) 0.60 91 39 >5.6 0.2676 6.23

Gleason score 0.65 36 90 >7 0.154

T stage 0.62 82 34 >T2c 0.1486

Surgical Margins 0.61 60 61 >0 0.2308

Post-operative PSA (ng/mL) 0.64 55 71 >0.01 0.1304

Capra-S Score 0.55 64 53 >3 0.6522

All individual ROC curves for radiomic features are available
in the Supplementary Figure 4.

The model combining clinical (pre-operative PSA and age
at surgery) and radiomic feature (SZEGLSZM) resulted in a high
prediction of BCR with an AUC of 0.849, p < 0.0001 and a
prediction of bRFS with a HR of 23.1, p < 0.0001) as shown
in Figure 4.

Testing Set
When applied to the testing set the clinical model did not hold,
with an AUC of 0.57 (sensitivity 67%, specificity 47%), therefore
unable to predict bRFS (p = 0.7) (Figure 2B). On the contrary,
the radiomics-only model held well, reaching an AUC of 0.76
(sensitivity 83%, specificity 68%) and predicting rBFS with an HR
of 5.1 (p= 0.0236) (Figure 3B). The combined radiomics-clinical
model underperformed with an AUC of 0.52 only.

Analysis According to the Type of MRI
Scanner
No demographic differences were found between the two cohorts
when focusing on types of MRI (Supplementary Table 2).

In the patients acquired with the Siemens 1.5T, the radiomics-
only model reached an AUC of 0.76 (sensitivity 87%, specificity
66%, p< 0.0001), whereas in these acquired on the Philips 3T, the
model had better performance with an AUC of 0.87 (sensitivity
100.00%, specificity 73%, p < 0.0001).

DISCUSSION

To our knowledge, this work is the first study investigating
radiomics as a provider of potential image biomarkers to guide
adjuvant treatment decision after RP.

Although none of the clinical variables were significantly
predictive of BCR in the training set, combining the pre-operative
PSA and age at surgery nonetheless allowed to predict BCR to
an extent (AUC of 0.76). These two factors have already been
reported to be prognostic for late BCR with 10 years of follow-
up (18, 19). However, this clinical-only model demonstrated very
low performance in the testing set (AUC 0.57). This could be
partly explained by the small cohort, but also emphasizes the need

FIGURE 2 | Kaplan-Meier estimates of biochemical relapse free survival using the clinical model for (A) training and (B) testing set.
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TABLE 4 | Correlation between radiomic features and biochemical recurrence.

Radiomic feature Univariate Analysis Multivariate Analysis

AUC Se Sp Best cut-off p-value Odds-ratio p-value

ADC3 0.84 91 69 ≤0.528 <0.0001 16.6 0.0266

ADC6 0.79 73 81 ≤0.014 0.0001 8.8 0.0255

ADC10 0.72 64 79 >93.042 0.0155 15.2 0.0111

ADC14 0.75 73 71 ≤0.116 0.0005

ADC18 0.74 82 69 ≤0.067 0.0012

ADC20 0.75 73 78 ≤0.058 0.0036

T1 0.78 91 66 ≤324.593 0.0008

T7 0.76 73 78 ≤20.291 0.0009

T10 0.80 100 59 >348.199 <0.0001

T17 0.76 55 97 >94.004 0.0066

ADC, ADC MRI-scan Sequence; T, T2 MRI-scan Sequence; AUC, Area Under the Curve; Se, sensitivity; Sp, specificity.

Each feature description can be found in Supplementary Table 1.

FIGURE 3 | Kaplan-Meier estimates of biochemical relapse free survival using the radiomics model in (A) training and (B) testing set.

FIGURE 4 | Kaplan-Meier estimates of biochemical relapse free survival using the radiomics + clinical model in (A) training and (B) testing set.

for more robust predictive markers of BCR to adapt the adjuvant
therapeutic strategy.

Radiomic features extracted from pre-therapeutic scans were
found to have high predictive ability regarding BCR in PCa. One
radiomic feature in particular, small zone emphasis (SZEGLSZM),
remained strongly correlated to the risk of BCR, independently
from the clinical variables and other radiomic features. SZE
is calculated on the Gray-Level Small Zone Matrix (GLSZM).
GLSZM quantifies gray level zones, defined as the number

of connected voxels sharing the same gray level intensity: a
homogeneous tissue will thus have large zones of same gray-level
values. On the contrary, a more heterogeneous tissue will exhibit
more limited zones with small distances. SZE allows focusing on
areas of small zones, particularly adapted to PCa. The lower SZE’s
value is, the more heterogeneous the intensity distribution in the
image is (15).

Recently published EAU guidelines (20) recommend to
systematically discuss adjuvant radiotherapy in case of high-risk
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prostate cancer. If taken to an extreme, this could result in
unnecessary treatment for more than 80% of patients (84% in
our cohort), whereas the radiomics-based model, thanks to a
predictive negative value of 96%, could allow a reduction of
unnecessary treatment to 14/107 (13%) patients. This model
could therefore be useful for a better selection of men eligible
for aRT.

These findings are in line with several recent studies that
investigated radiomics in PCa for diagnosis, prognosis and
therapy. Very few studies have been published exploring the
possibilities of texture analysis regarding Pca. To our knowledge,
most of these studies (21, 22) implied radiomic features extracted
from ADC and T2 sequences alone, these sequences being the
most useful and robust sequences. Wibmer et al. evaluated MRI-
derived radiomics for the detection of PCa in 146 patients (21).
Four Gray level co-occurrence matrix (GLCM)-derived textural
features (energy, entropy, correlation, and homogeneity) were
significantly associated with the presence of PCa. Cameron et al.
developed a quantitative radiomics approach for PCa detection
combining all imaging sequences and aiming to improve MRI
sensitivity and specificity (23). First, tumoral tissues were
automatically delineated on a multiparametric MRI. The MAPS
(Morphology, Asymmetry, Physiology, and Size) feature model
was then used to score the candidate regions. The MAPS model
outperformed all other feature sets with a sensitivity of 86%, a
specificity of 88% and an accuracy of 87%.

These studies emphasize the recent development of computer-
aided diagnosis solutions, waiting for larger datasets and better
feature selection to be implemented on a daily basis. Exploring
these new developments, a couple of studies were recently
published. Based on two institutions (70 and 50 patients) and
two different MRI scans, Shiradkar et al. developed a classifier
based on radiomics and clinical variables with an AUC of
0.74 in the testing set (24). The main limitation of this work
was that the model was trained using a cohort of patients
who underwent heterogeneous treatment strategies (surgery,
RT or androgen deprivation therapy), but it was then tested
only on patients treated with surgery, who underwent a third
type of MRI. Focusing on outcomes after RT, Gnep et al.
showed the prognostic value of texture analysis after RT with
androgen deprivation therapy (25). In their study, Haralick
textural features derived from T2-w MRI were able to predict
BCR following treatment in 74 patients after a median follow-
up of 47 months, with a c-index of 0.90. However, no external
validation was performed.

Interestingly, when we evaluated our radiomics model on
the entire cohort, its prediction performance was higher on the
subset of patients acquired with the 3T scan than the 1.5T scan
(AUCs of 0.87 and 0.76, respectively). Numerous retrospective
studies support the superiority of 3T over 1.5T scans when using
the same type of body phased-array coil. In 2018, Ryznarova et al.
showed that the best accuracy for tumor staging was obtained
with a 3T MRI with DCE when compared to 3T MRI without
DCE and 1.5T MRI with respective accuracy prediction scores of
90, 72, and 66% in a cohort of 103 patients (26).

Furthermore, acquisition parameters differed between the two
scans especially the echo-time on T2 acquisitions and B-values on

the ADC sequence, differences that we took into account when
evenly dispatching patients into the training and testing cohorts.

The type of MRI scan being well-balanced in each cohort, we
did not apply any a posteriori harmonization such as the Combat
method (27), which could however be considered in future works
to explore more in depth machine learning methodologies (e.g.,
10-fold cross validation and alternate feature selection strategies)

Whether patients at high risk of BCR should receive adjuvant
or sRT also remains a matter of debate. At present the choice
between postoperative RT and early sRT should be based on
a stratified risk approach in the context of a multidisciplinary
meeting and according to individual patient preferences. The
results of the meta-analysis of the RAVES, GETUG, and
RADICALS randomized trials are expected in 2019 and will
hopefully answer some of these questions. The availability of
highly sensitive imagingmodalities such as 68Ga-PSMA-PETwill
also probably change the therapeutic management of patients
with a low PSA ranging between 0.2 and 0.5 ng/mL (28).

The radiomics approach applied to routinely acquired images
for diagnosis has the great advantage of being cost-effective and
non-invasive. Lately, recent advances in the field of genomics
have led to the distribution of several genomic tests such as
the Decipher Prostate Cancer test R© (29). Among 256 high-risk
PCa patients, the c-index of the genomic test was 0.79 (CI 95%
0.68–0.87) (30). Radiogenomics, the integration of quantitative
imaging data with genomic signatures could be of interest in the
field of PCa, but very few studies are available to this date.

We have to emphasize the short follow-up of our study as
a potential limitation, especially in PCa. Selecting a minimal
follow-up of 3 years would have resulted in a small cohort
prohibiting the data analysis. However, time from RP to BCR
is, on average, 3.5 years (31). Furthermore, the BCR rate is low
with a rate of 16% after a median follow-up of 48.6 months. This
is consistent with previous studies. For example in a cohort of
1997 men who underwent RP, and among which 25.8% had stage
≥T2b, and 40% a Gleason score ≥7, BCR occurred in 15% of
patients (31).

A further analysis with a longer follow-up will definitely be
needed to confirm our findings.

Moreover, the addition of other MRI sequences (such as
perfusion providing with a dynamic assessment of PCa and
diffusion) are currently at work in our center.

CONCLUSION

A radiomics based model was trained and internally validated. It
appears to be predictive of BCR and a prognostic factor of bRFS
after RP in patients with high risk PCa.With a negative predictive
value of 96%, this model could help identifying patients at
very low risk of recurrence, allowing for a better guidance of
patients eligible for aRT or those who would undergo careful
watching, thus reducing the number of unnecessary treatments
and associated toxicity. Exploring the correlation between these
features and clinical outcome with a longer follow-up is needed
and is currently under investigation in our center. In addition, we
intend to validate the model in external cohorts.
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