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Abstract: The primary purposes of this study are to investigate the feasibility of electrochemical
deposition treatment (EDT) as a comprehensive rehabilitation method for corrosion-induced de-
terioration in reinforced concrete with various severity levels, and to propose a guideline for the
determination of critical factors to advance EDT. This study includes three experimental phases,
each of which simulates the initiation (de-passivation), propagation (high corrosion activity), and
acceleration (formation of a surface-breaking crack) periods of corrosion-induced deterioration. After
completion of a series of accelerated corrosion tests, damaged concrete samples with different severity
levels are rehabilitated by a series of EDT processes using a MgCl2 solution in an electrolyte. The
main variables for this experiment are the concentration levels (0, 0.3, 1.0 and 3.0 M) of a MgCl2
solution for test phase 1, charging time (0, 2, and 7 days) in EDT for test phase 2, and configuration of
pre- and post-treatment processes in EDT for test phase 3. The rehabilitation performance of EDT
is evaluated by analyzing the AC impedance properties of the steel-and-concrete interface using
electrochemical impedance spectroscopy (EIS) for the test phases 1 and 2, and microscopic alternation
in concrete cracks using optical microscopic image and SEM/EDX. It is demonstrated that EDT is
an effective method for preventing and mitigating corrosion-induced deterioration in the initiation
and rust propagation periods of corrosion and for repairing (closing and filling) a corrosion-induced
surface-breaking crack in the acceleration phase of corrosion. Corrosion-resistant performance of
concrete increases as the concentration levels of a MgCl2 solution in an electrolyte increases and as
the charging time in EDT increases. In addition, a post-treatment process (applying a NaOH solution)
after the electrochemical deposition process significantly improves crack-repairing performance
of EDT.

Keywords: corrosion; wetting-and-drying cycles; MgCl2; electrochemical deposition; electrochemical
impedance spectroscopy

1. Introduction

Corrosion is a process through which metals in manufactured states return to their
natural oxidation states. Corrosion of steel in reinforced concrete is generally described
by multiple phases, including initiation, rust propagation, and acceleration as illustrated
in Figure 1a [1–3]. Due to the high alkalinity of concrete (pH 12~13), the reinforcing steel
in sound concrete forms a thin passive layer (iron oxide film, Fe2O3) on its surface that
significantly reduces the corrosion rate. The passive film becomes unstable when the pH
of the concrete lowers below a certain level or the chloride ion concentration in concrete
exceeds a threshold level [4]. The failure of the passive film would lead to corrosion of
reinforcing steel in concrete exposed to the corrosive environment with sufficient moisture
and oxygen. Growth of the surface rust layer may cause microcracks in concrete due to
excessive internal tensile stresses caused by the expanded volume of the rust layer [5]. The
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enhanced microcracks and internal voids increase the permeability of concrete, thereby
accelerating the penetration rate of moisture and harmful substances in the concrete.
Without proper management actions, it can result in serious concrete damages (e.g., surface
cracking, delamination and/or spalling of concrete), which lead to degradation of strength
and/or rigidity of structural members.
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of the damaged infrastructure is up to 3.8% of the gross domestic product (GDP) of devel-
oped countries, and up to 5.2% in the Middle East [7–9]. In Korea, corrosion cost was cal-
culated as 2.9% of GDP [10]. From the perspective of infrastructure management agencies, 
it is of importance to find effective ways for maintenance of old and/or damaged rein-
forced concrete structures with corrosion issues, which keeps the structures in sound con-
dition and prolongs their service life, thereby reducing social cost for maintenance of in-
frastructure systems.  

There are various practical methods for rehabilitation of old and/or damaged rein-
forced concrete structures that suffer from different phases of corrosion-induced deterio-
ration (see Figure 1b). Before corrosion activity initiates (phase 1), there are several corro-
sion protection and prevention methods that can improve the corrosion-resistant proper-
ties of concrete. One example is corrosion inhibitors, which are mixed with fresh concrete 
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Figure 1. Conceptual illustration of typical deterioration types in reinforced concrete caused by steel
corrosion and various rehabilitation methods: (a) deterioration process of steel corrosion in concrete
and (b) effective rehabilitation methods for deteriorated concrete with various severity levels.

Corrosion of infrastructures causes high costs to the society of many industrialized
countries in the world. Estimated annual direct corrosion cost is about US $240 billion in
the US. Approximately 20% of the direct costs were attributed to corrosion of reinforced
concrete (highway bridges, parking garages, retaining walls, tunnels, etc.) [6]. More than
55% of structures’ repairs were caused by steel corrosion in Europe [1]. The corrosion
cost of the damaged infrastructure is up to 3.8% of the gross domestic product (GDP) of
developed countries, and up to 5.2% in the Middle East [7–9]. In Korea, corrosion cost
was calculated as 2.9% of GDP [10]. From the perspective of infrastructure management
agencies, it is of importance to find effective ways for maintenance of old and/or damaged
reinforced concrete structures with corrosion issues, which keeps the structures in sound
condition and prolongs their service life, thereby reducing social cost for maintenance of
infrastructure systems.
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There are various practical methods for rehabilitation of old and/or damaged rein-
forced concrete structures that suffer from different phases of corrosion-induced deteriora-
tion (see Figure 1b). Before corrosion activity initiates (phase 1), there are several corrosion
protection and prevention methods that can improve the corrosion-resistant properties
of concrete. One example is corrosion inhibitors, which are mixed with fresh concrete
for new construction and penetrate hardened concrete in existing structures. The risk of
steel corrosion can be controlled by using alternative reinforcing steel (corrosion resistant
steel, fiber-reinforced plastic, coated steel, etc.) and concrete coating. However, it is known
that the corrosion protection effects of these conventional methods become ineffective
once corrosion of steel in concrete initiates. In the rust propagation phase (phase 2), it has
been demonstrated that electrochemical methods (e.g., cathodic protection, electrochemical
chloride removal and electrochemical re-alkalization) are most effective for suppressing
corrosion activity and mitigating corrosion-induced deterioration in reinforced concrete.
Cathodic protection method is regarded as the only rehabilitation technique that suppresses
the corrosion activity of reinforced concrete regardless of concentration levels of chloride
ions in concrete [11]. When a fracture process of concrete initiates in the acceleration phase
of corrosion (phase 3), mechanical repairing of concrete is necessary, along with corrosion
mitigation techniques based on the electrochemical methods. There are various repairing
methods for improving durability performance of concrete: epoxy injection, routing and
sealing, grouting, patching, and jacketing and casing. Those conventional methods have
been demonstrated to be successful for improving permeability of concrete and mechanical
performance of distressed concrete. However, conventional repair methods are not always
useful for repairing early stages of corrosion-induced microcracks in concrete, and/or
they can be labor- and cost-intensive. In summary, conventional rehabilitation methods in
practice have their advantages in specific phases of corrosion levels, but still have some
limitations to be used as a comprehensive rehabilitation method for corrosion-induced
deterioration with a wide range of severity levels (see Figure 1b).

Electrochemical deposition treatment (EDT) is a kind of cathodic protection method.
After being proposed in Japan first in early 1990s [12,13], there has been numerous re-
searchers demonstrating the effectiveness of EDT for rehabilitation of corrosion-induced
deterioration in concrete with various severity levels. EDT forms precipitates in microstruc-
tures of concrete (voids in cement pastes, steel-concrete interface and aggregate-cement
paste interface), which results in corrosion-resistant concrete [14–19]. Like the conventional
cathode protection method, EDT is effective for reducing chloride ion concentration in
concrete exposed to high chloride environment [17,18,20]. For the propagation period, it
was demonstrated that EDT re-passivates corroded rebars by re-alkalizing concrete in the
vicinity of corroded steel, which suppresses corrosion rate. In addition, many researchers
demonstrated the unique advantages of EDT as a rehabilitation of distributed surface-
breaking cracks in concrete, which cannot be effectively recovered by conventional crack
repair techniques [14,15,17–19,21–26]. EDT improves mechanical properties of corroded
reinforced concrete: bonding-strength steel and concrete, flexural capacity of reinforced
concrete beams. In addition, there are various theoretical and analytical models that explain
crack repairing process using EDT [27–30]. Therefore, EDT is a high-potential rehabilitation
method that is applicable to deteriorated concrete with a wide range of severity levels.
However, there are still several research topics that have not been completely addressed in
the literature on determination of some critical factors (i.e., concentration level of cations in
an electrolyte, charging time and configuration of EDT) towards an optimum EDT process.

In this study, a series of experimental studies was performed in the laboratory to
investigate the effectiveness of EDT for rehabilitation of deteriorated reinforced concrete
with three different corrosion levels: initiation, rust-propagation, and acceleration phases
of steel corrosion. Each test phase was composed of multiple experimental processes that
include preparation of test specimens, accelerated corrosion tests, electrochemical deposi-
tion treatment (EDT), and condition assessment of solid, deteriorated, and rehabilitated
reinforced concrete specimens. The main variables of this study include the concentration
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levels (0, 0.3, 1.0 and 3.0M) of a MgCl2 solution for test phase 1, charging time of EDT (0, 2,
and 7 days) for test phase 2, and configuration of pre- and post-treatment processes in EDT
for test phase 3. As will be discussed, the experimental results in this study would provide
a fundamental basis to better understand and further improve the capability of the EDT
method as a comprehensive rehabilitation method of corrosion-induced deterioration with
various severity levels.

2. Experimental Methods
2.1. Preparation of Solid Concrete Specimens

Test phase 1 used four concrete prism samples (100 mm length × 120 mm width
× 25 mm thickness) shown in Figure 2a–c. Two reinforcing steel bars (rebars), 5 mm in
diameter and 100 mm long, were embedded at the center of the sample. The reinforcing
bars were insulated with a heat shrink tube with a diameter of 45 mm and B-coated agent
on both ends. The middle 10 mm length was directly exposed to the concrete. Therefore,
the effective area of a rebar was fixed at 3.14 cm2. The cuboidal concrete samples were
made of Type I Portland cement and ISO standard sand with a water-to-cement ratio of 0.6
and a cement-to-sand ratio of 0.5. A total of four samples were fabricated under the same
shape and rebars. The rebar spacing was kept constant at 10 mm in all samples. The clear
cover of rebars was kept constant at 10 mm.
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Figure 2. Configuration and dimensions of concrete samples used for the test phases 1, 2 and 3: (a–c) for isometric view,
sectional view A-A’ and sectional view B-B’ for the concrete prism samples used in test phase 1, and (d–f) for isometric view,
sectional view C-C’ and D-D’ for the concrete cylinder samples used in test phases 2 and 3.

In contrast, the test phases 2 and 3 used concrete cylinder samples (25 mm diameter
by 70 mm length) shown in Figure 2d–f. A total of eight identical concrete cylinders
were fabricated by the same way used for the concrete prisms. Four of the eight concrete
cylinders were used for the test phases 2 and 3, respectively. A single reinforcing bar, 5 mm
diameter and 100 mm length, was embedded at the center of the concrete cylinders. The
middle 50 mm of a rebar was directly exposed to concrete, resulting in the effective area of
7.85 cm2.

2.2. Preparation of Deteriorated Concrete Specimens

For test phase 1, the four concrete prism samples (TP1-1, TP1-2, TP1-3 and TP1-4 in
Table 1) were exposed to wetting-and-drying cyclic environment to accelerate corrosion of
rebars in concrete. A wetting-and-drying refers to the process of immersing the concrete
specimens in 0.5M NaCl solution for 8 h and dried at atmosphere under room tempera-
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ture for 16 h. The NaCl solution was prepared using analytical grade NaCl (99% purity,
Daejung, Korea). The timing of wetting-and-drying was automatically controlled by two
programmable valves (inlet and outlet, respectively) in a test setup developed at Dong-A
University (see Figure 3a,b). For the wetting process, the outlet valve was close, and the
inlet valve was opened to fill a water tank to the designed water level. An additional outlet
was installed at the designed water level to drain excessive water. For the drying process,
the outlet valve was opened to drain water, and the concrete sample surfaces were exposed
to atmosphere and air-dried. In this study, the wetting-and-drying cycles were repeated for
a total 45 cycles.

Table 1. Summary of accelerated corrosion test methods to prepare damaged concrete samples with three different target
corrosion levels (corrosion initiation, rust propagation, and damage acceleration phases) for the experimental phases 1, 2
and 3, respectively.

Test
Phase

Specimen No. Method
Impressed Current Simulated Corrosion Phase

(Target Damage)Density Duration

TP1

TP1-1 Exposing specimens to
45 cycles of

wetting-and-drying
environment

X X
Initiation phase

(de-passivation of steel and low
corrosion activity)

TP1-2
TP1-3
TP1-4

TP2

TP2-1

Using the impressed current
technique

X X Solid
TP2-2

0.5 µA/cm2 24 h
Rust propagation phase
(high corrosion activity)TP2-3

TP2-4

TP3

TP3-1

1 mA/cm2 24 h
Damage acceleration phase

(formation of a surface-breaking crack)
TP3-2
TP3-3
TP3-4
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For test phase 2, corrosion of rebars in the three of the four concrete cylinders (TP2-2,
TP2-3, TP2-4 in Table 1) was accelerated by the impressed current technique [31] to induce
high corrosion activity and simulate the expansion of rust layers in concrete. One concrete
cylinder, TP2-1, was used as control specimen, representing sound concrete in test phase 2.
Figure 3c shows the test setup for the impressed current technique. A concrete cylinder was
placed in a water tank so that the top surface of the concrete was completely submerged
in the 0.5M NaCl solution prepared using analytical grade NaCl (99% purity, Daejung,



Sensors 2021, 21, 6287 6 of 20

Korea). The concrete surface was wrapped around by titanium mesh with a height of
70 mm, which serves as a cathode in the accelerated corrosion setup. Direct current with
a density of 0.5 µA/cm2 was impressed to three cylindrical concrete specimens for 24 h
by a potentiostat (Won-A tec. ZIVE MP2, Seoul, Korea). For test setup 3, the accelerated
corrosion test setup and procedure were the same as those from test setup 2, except for
applying an enhanced current density of 1 mA/cm2 for 48 h to generate corrosion-induced
surface-breaking cracks in concrete. Table 1 summarizes the accelerated corrosion test
methods for test phases 1, 2 and 3.

2.3. Rehabiliation of the Deteriorated Concrete Samples by EDT

Figure 4a,b illustrate the test setups of the electrochemical deposition treatment (EDT)
for rehabilitation of deteriorated concrete prisms for test phase 1 and concrete cylinders
for test phases 2 and 3, respectively. The two test setups are composed of a potentiostat,
an anodic electrode (titanium mesh), a cathodic electrode (rebars in concrete), and an
electrolyte (a MgCl2 solution). A potentiostat was used to pass a constant electric current,
−2 µAcm−2, between the embedded rebar (cathodic electrode) in concrete and a titanium
anode (anodic electrode) in a MgCl2 solution. The stabilized potential levels measured in
the EDT processes was in a range of −0.8 V to −1.0 V (vs. Ag/AgCl), which prevented the
formation of hydrogen gas around rebars in concrete (cathode) during EDT [32,33]. Table 2
summarizes configuration of EDT processes used in the test phases 1, 2 and 3. The main
variables in this study include the concentration levels (0, 0.3, 1.0 and 3.0 M) of a MgCl2
solution for test phase 1, the duration of polarization (0, 2 and 7 days) during EDT for test
phase 2, and the configuration of pre- and post-treatment processes in EDT for test phase 3.
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In test phase 1, EDT was applied to the four concrete prisms after completion of the
13th cycle of the wetting-and-drying process (see Figure 4a). The timing of the EDT was
determined based on observations in the previous research [34]. It required at least 13
cycles of the wetting-and-drying process for the corrosion rate (=1/RP, RP is polarization
resistance of reinforced concrete samples) to exceed a criterion for the initiation of corrosion
(i.e., failure of a passive film on the surface of a reinforcing steel) (4 × 10−6 Ω−1cm−2) [35].
Four different concentrations of MgCl2 solutions (0M, 0.3M, 1M, and 3M) were used to
investigate the effect of concentration level of MgCl2 in an electrolyte on the corrosion
prevention capability of the EDT. After completion of EDT, all concrete samples were taken
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out of the water tank and oven-dried under 60 ◦C. The dried samples were exposed to
the wetting-and-drying cycles (from 14th to 45th cycles) again to investigate the corrosion-
resistant properties of the concrete prisms after EDT.

Table 2. Summary of electrochemical deposition treatment (EDT) processes used in test phases 1, 2 and 3.

Test
Phase

Specimen
No.

Pre-
Treatment

Deposition Post-
Treatment

Deposition Post-
Treatment

Baking
Electrolyte Current Duration

1© 2© 3© 4© 5© 6©

TP1

TP1-1

X

X X X X X X

60 ◦C
5 h

TP1-2 0.3 M
MgCl2 −2

µA/cm2 24 h X X X
TP1-3 1.0 M

MgCl2

TP1-4 3.0 M
MgCl2

TP2

TP2-1

X

X X X

X X X
TP2-2 X X X
TP2-3 2.0 M

MgCl2
−2

µA/cm2
48 h

TP2-4 168 h

TP3

TP3-1
X 2.0 M

MgCl2
−2

µA/cm2
240 h

(10 days)
NaOH (pH

13)

X X
TP3-2 O X
TP3-3 O O
TP3-4 NaOH (pH 13) X X

In test phase 2, electrochemical deposition was applied to deteriorated concrete cylin-
ders with high corrosion activity (see Figure 4b). Three deteriorated concrete specimens
were immersed in a separate water tank with a 2M MgCl2 solution. A constant current
with a density of −2 µAcm−2 was continuously applied for 0, 2, and 7 days to investigate
the effect of polarization time on the rehabilitation performance of EDT.

In addition, EDT was used to repair a surface-breaking crack in the four concrete
cylinders in test phase 3. In this study, several extra processes were added before and after
the main EDT process to improve the crack-filling capability of EDT. The multi-stage EDT is
composed of four processes, including pre-treatment, electrical deposition, post-treatment,
and baking. In the pre-treatment stage, the cracked concrete cylinders were submerged in
NaOH solution (pH 13) for 10 h. In the main EDT stage, concrete samples were immersed
in a 2M MgCl2 solution with a constant current density of −2 µAcm−2 for 240 h (10 days).
After that, treated concrete cylinders were submerged again in a 2M NaOH solution (pH 13)
for 10 h as a post-treatment. Test phase 3 included four different scenarios of EDT processes
to investigate the effect of pre- and post-treatment on the crack-filling capability of the
multi-stage EDT.

2.4. Electrochemcial Impedance Spectroscopy (EIS)

Electrochemical impedance spectroscopy (EIS) was used to investigate the effective-
ness of EDT processes on the rehabilitation of deteriorated concrete samples in the test
phases 1 and 2. Figure 5a,b illustrate the test setups of EIS using two- and three-electrodes,
respectively, each of which was applied to the concrete prism samples and cylinder samples.
In the two-electrode system, one rebar in a concrete prism sample was connected to the
working electrode (WE) terminal in a potentiostat, while the other rebar was connected
to the counter electrode (CE) and the reference electrode (RE) terminal (Figure 5a). In
contrast, the three-electrode system used a rebar as a WE, a titanium mesh as a CE, and the
silver chloride electrode (Ag/AgCl) as an RE. It was demonstrated that the two-electrode
system is effective to measure the electrochemical impedance properties of concrete in the
wet-and-dry cycling conditions [34,36]. For both the two- and three-electrode systems,
AC impedance of concrete was measured by a potentiostat (Won-A tec. ZIVE MP2, Seoul,
Korea), which passed alternating voltages of ±10 mV under a frequency range from 1 mH
to 100 kHz.
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Figure 5. Illustration of test setups for electrochemical impedance spectroscopy (EIS) using: (a) the
two-electrode system for the concrete prism samples in the test phase 1, and (b) the three-electrode
system for the concrete cylinder samples in the phase 2.

In this study, a reinforced concrete sample was modelled by an equivalent EIS circuit
shown in Figure 6, which is composed of three impedance layers [7]. Resistance compo-
nents of each layer (i.e., Rs, Rf, and Rc) are connected in series, where Rs represents the
electrical resistance associated with the electrolyte solution in concrete pores; Rf refers
to the resistance of interfacial film on a steel rebar caused by rust propagation and/or
precipitation of cement hydration and electrochemical deposition [37]; Rc corresponds to
the resistance of the charge transfer involved in the corrosion mechanism. Impedance,
(ZCPE), caused by capacitance actions in the interface of the layers, was modelled by the
constant phase element (CPE), which was connected in parallel to a resistance component
in each layer.

ZCPE,i =
1

CCPE,i(jw)αi
(1)

where CCPE,i is the electric capacitance, αi is a constant for calibrating the non-uniform
properties of steel and concrete interfaces, the subscript i represents an interface where the
capacitance action occurs (f and d stands for the interfacial film layer and the double layer,
respectively), j is complex number and w is the angular frequency (=2πf, f is frequency).
Warburg impedance element (W) was used to model the impedance due to diffusion of
corrosion product (ZW), which is composed of a resistance component RW, a capacitance
component τ and a calibration factor αW.

ZW =
RWtan h

[
(jwτ)αW

]
(jwτ)αW

(2)

Finally, the total impedance (Z) of the EIS circuit in this study is represented as follows,

Z = Rs +
R f

1 + R f /ZCPE, f
+

Rc + ZW
1 + (Rc + ZW)/ZCPE,d

(3)
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The critical parameters were determined by fitting experimental data to equivalent
model by using commercially available program ZView®. Corrosion rate is defined as a
reciprocal of the polarization resistance, RP [38]. In this study, corrosion rate was defined
as a reciprocal of Rc, which is equivalent to RP, as follows,

corrosion rate =
1

Rc
(4)

By inspection of Equation (3), Z converges to Rs as w increases to infinite, while Z goes
to Rs + Rc + Rf + ZW as w decreases to zero as follows,

Zhigh = Rs (5)

Zlow = Rs + Rc + R f + ZW (6)

In this study, the polarization resistance, RP, was simply expressed as the difference
between high frequency impedance, Zhigh, and low frequency impedance, Zlow, provided
that Rc value is large enough compared to Rf and ZW. Consequently, the approximate
polarization resistance R′P can be expressed as follows,

R′P = Zlow − Zhigh
∼= Rc (7)

It was demonstrated that this simplified approach is effective for rapid monitoring of
the corrosion rate by EIS [34,39].

3. Results and Discussion
3.1. Test Phase 1: Recovery of Corrosion Protection Performance in the Corrosion Initiation Phase

Figure 7 shows the variation of corrosion rate in the four concrete prism samples
exposed to a total 45 cycles of wetting-and-drying cycles in test phase 1. The instantaneous
corrosion rate in Figure 7 was determined based on the approximate polarization resistance
R′P in Equation (7). The impedance values at the low and high frequencies (i.e., Zlow and
Zhigh) were determined at 10 mHz and 10 kHz, respectively [34]. Figure 8 shows the
variations of Zlow and Zhigh used to calculate R′P in Figure 7. After completion of the 13th
cycle of wetting-and-drying, three of the four concrete prism samples (TP1-2, TP1-3, and
TP1-4) were rehabilitated by the EDT process (see Figure 4a). Test results obtained from
the control specimen without EDT (TP1-1) are shown in Figure 7a, and test results from
the rehabilitated concrete samples (TP1-2, TP1-3, and TP1-4) by EDT with three different
MgCl2 concentrations (0.3M, 1M, and 3M) are shown in Figure 7b–d. The timing of EDT is
indicated by red dash lines in Figure 7b–d.
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Figure 7. The variation of corrosion rates in the four concrete prism samples in test phase 1: (a) the control sample without
EDT, TP1-1, (b–d) the three rehabilitated samples treated by EDT with three different concentration levels of MgCl2 solution
with: (b) 0.3M, (c) 1M and (d) 3M, respectively.

In the 1st~13th cycles of the immersion and drying cycles, the instantaneous corrosion
rate in the four concrete prism samples was lower than the criterion for the de-passivation
of reinforcing steel (4.0 × 10−6 Ω−1cm−2) [38]. After the 14th cycle, the corrosion rate
of the control sample, TP1-1, suddenly increased over 3.0 × 10−6 Ω−1cm−2 in the dry
condition and over 1 × 10−5 Ω−1cm−2 (about 250% of the de-passivation criteria) in the
wet condition (Figure 7a). However, it was clearly observed in Figure 7b,c that the corrosion
rate of concrete samples treated by electrochemical deposition (EDT) was controlled under
the de-passivation level (i.e., 4.0 × 10−6 Ω−1cm−2) even after being continuously exposed
to a harsh environment during the 14th to 45th cycles. The use of 0.5M MgCl2 solution
was effective for prevention of steel corrosion by suppressing the corrosion rate under
the de-passivation criterion (4.0 × 10−6 Ω−1cm−2). Specifically, Figure 8b shows that
EDT was effective for improving Rc and Rs values in the steel and concrete interface. The
recovery of corrosion protection performance by EDT is mainly attributed to the presence
of precipitates on the steel surface. The precipitates formed by EDT impede charge transfer
rate for the steel corrosion reaction (Fe → Fe2+ + 2e−) and reduction rate of dissolved
oxygen (O2 + 2H2O + 4e− → 4OH−) in the rust layer. Furthermore, the use of a higher
concentration level of MgCl2 solution (1M and 3M) further decreased the corrosion rate of
reinforced steel in concrete compared to the use of 0.3M MgCl2. Figure 7c,d shows that the
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corrosion rate of concrete samples treated by EDT in 1M and 3M MgCl2 solutions (TP1-3
and TP1-4) decreased to approximately 50% of the values before EDT process. However,
the use of 3M MgCl2 solution does not show a clear benefit compared to 1M MgCl2
solution. The concrete samples in the experimental phase 1 were under low corrosion
activity. Therefore, the EDT process can be governed by the amount of hydroxide ion
(OH−) caused by corrosion of steel rather than the amount of magnesium ion (Mg2+) in
concrete pore solution. In this study, it can be inferred that 1M MgCl2 is sufficient to recover
corrosion protection capability of concrete under relatively low corrosion rate.
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Figure 8. The variation of charge transfer resistance Rc and the solution resistance Rs in the four concrete prism samples in
test phase 1: (a) the control sample without EDT, TP1-1, (b–d) the three rehabilitated samples treated by EDT with three
different concentration levels of MgCl2 solution: (b) 0.3M, (c) 1M and (d) 3M, respectively.

3.2. Test Phase 2: Recovery of Corrosion-Resistant Performance in the Rust Propagation Phase

Figure 9a,b show the bode plots representing the variation of modulus and phase shift
of AC impedance, respectively, with frequency measured on the four concrete cylinder
samples in the test phase 2. The EIS spectra of the concrete specimens were measured
under a frequency range of 1 mHz to 100 kHz with an amplitude of ±10 mV in a 0.5M
NaCl solution using the three-electrode system (see Figure 5b). The bode plots measured
on the solid and deteriorated concrete cylinder samples (TP2-1 and TP2-2) are presented as
open circles (#) and open squares (�), respectively. Bode plots of the rehabilitated concrete
samples by EDT for 2 days and 7 days (TP2-3 and TP2-4) are presented as diamonds
(♦) and triangles (∆), respectively. In addition, the optimum EIS curves predicted by the
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EIS equivalent circuit shown in Figure 6 are represented by dashed lines in Figure 9a,b.
Results show that experimental data are in good agreement with the fitted curves. Table 3
summarizes the predicted EIS parameters from the curve fitting.
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Figure 9. Experimental bode diagram and curve fitting for reinforcing steel in 0.5M NaCl solution: (a) modulus of impedance
and (b) phase shift of impedance with (#) passive rebar in the concrete sample TP2-1, (�) corroded rebar in the concrete
sample TP2-2, (♦) electro-deposited rebar with −2 µAcm−2 for 2 days in the concrete sample TP2-3, (∆) electro-deposited
rebar with −2 µAcm−2 for 7 days in the concrete sample TP2-4, respectively.

Table 3. Fitting parameters used for curve-fitting in Figure 9a,b.

Specimen
No.

Fitting Parameters Two-Frequency Values

R0
kΩcm2

C1
µFcm−2 α1

Rf

kΩcm2
C2

µFcm−2 α2
Rc

kΩcm2 W
Rp

kΩcm2
Zlow

kΩcm2
Zhigh

kΩcm2
R
′
P

kΩcm2

TP2-1 5.23 ×
10−2

1.13 ×
10−7 0.91 2.62 ×

10−2
3.10 ×
10−4 0.85 2.06 ×

109 - 8.37 ×
1014 244.09 0.07 244.02

TP2-2 7.85 ×
10−2

5.40 ×
10−7 0.66 7.28 ×

10−2
5.20 ×
10−4 0.78 19.5 1.59 ×

100 14.7 15.24 0.06 15.18

TP2-3 1.45 ×
10−2

3.76 ×
10−7 0.73 7.02 ×

10−2
1.10 ×
10−3 0.71 38.5 1.34 ×

10−6 37.56 29.82 0.10 29.72

TP2-4 0.80 ×
10−2

7.07 ×
10−9 0.83 1.82 ×

100
5.10 ×
10−4 0.77 165.10 2.60 ×

10−4 135.72 92.23 1.59 90.64

Bode plots obtained from EIS are informative on the variation of interfacial condi-
tions of steel and concrete in the concrete samples during EDT. The phase shift curves in
Figure 9b shows that there are valleys in a low frequency region (100 Hz to 0.001 Hz).
There are the other valleys appearing in the high frequency regions (100 kHz~10 kHz).
The presence of valley in a phase shift curve of EIS spectra is physically interpreted as an
impedance by storing electrons (i.e., capacitor action) in the interfaces between various
component materials (e.g., steel, aggregates, and cement hydration products) in reinforced
concrete [40]. The valley in the low frequency range is related to the double layer in the steel
and concrete interface, while the valley in the high frequency range is related to an interfacial
film representing rust propagation and precipitation of Ca(OH)2 [7,37]. It was noticed in
Figure 9b that the slope of the curve becomes steeper as the polarization time increases in
the EDT process. Therefore, it can be inferred that the valley in high frequency region also
characterizes the precipitation of Mg2+ ions due to EDT. The modulus of impedance in a
high frequency range of 10 kHz to 100 Hz (see Figure 9a), where the phase shift values are
almost zero, represents the impedance caused by rust layer and precipitations on the steel
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surface (i.e., Rs). In contrast, the modulus of impedance values in a low frequency range
(0.01 Hz to 0.001 Hz) represents the impedance of charge transfer associated with corrosion
reaction (i.e., Rc).

Figure 10 shows the variation of EIS parameters of the three concrete samples (TP2-2,
TP2-3, and TP2-4) after being rehabilitated by EDT with different polarization times (i.e., 0,
2, and 7 days). Figure 10a shows the variation of charge transfer resistance Rc (on the left
side in the y axis) and solution resistance Rs (on the left side in the y axis). The variation
of the corrosion rate is shown in Figure 10b. Corrosion rate was determined by inserting
Rc values summarized in Table 3 into Equation (4). For comparison, the approximate
polarization resistance R′P based on the two frequencies was also shown in Figure 10. After
completion of the accelerated corrosion test Rc value of the concrete sample (TP2-2) was
only 19.5 kΩcm2, which is significantly lower than the value of solid concrete sample
(TP2-1). Accordingly, the corrosion rate of the TP2-2 sample was 5.12 × 10−5 Ω−1cm−2,
indicating the deteriorated concrete before EDT is under high corrosion activity [38]. After
EDT, Rc value increases to 38.5 kΩcm2 and 165.1 kΩcm2 as the polarization time of EDT
increases to 2 days and 7 days, respectively. Consequently, the corrosion rate of concrete
sample decreases as the duration of EDT increases to 0, 2, and 7 days. The speed of cor-
rosion rate becomes slower as the duration of EDT increases. Furthermore, it appears
to converge into a certain value greater than a criterion for the initiation of corrosion
(4 × 10−6 Ω−1cm−2). It can be inferred that there is a limitation in the status of deterio-
rated concrete that can be recovered by EDT processes, which is dependent on corrosion
activity levels.
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Figure 10. Variation of electrochemical impedance spectroscopy (EIS) parameters with duration of electrochemical deposi-
tion treatment (EDT): (a) variation of charge transfer resistance (on the left side in the y axis) and solution resistance (on the
right side in the y axis) with duration of EDT, and (b) variation of corrosion rate with duration of EDT.

3.3. Test Phase 3: Crack-Filling Capability of EDT

This section describes the efficiency of EDT on repairing (closing and filling) a surface-
breaking crack in concrete samples. Figure 11a shows an optical microscope image of a
surface-breaking crack formed in the concrete specimen (TP3-1) by the accelerated corrosion
test. Figure 11c, an enlarged image in the region pointed out by a white rectangle in
Figure 11a, shows that the surface-breaking crack had a width of 100 µm to 200 µm and
a length of 20 mm to 30 mm. Figure 11b shows a picture taken from the same location of
the concrete in Figure 11a after EDT. Overall, the whole concrete surface turned whiter.
Furthermore, Figure 11d, an enlarged image in the region pointed out by a white rectangle
in Figure 11b, clearly shows that the mouth of the surface-breaking crack was closed by



Sensors 2021, 21, 6287 14 of 20

white component. After SEM/EDX observation, the white components had a plate like
structure and were mainly composed of magnesium and oxygen. Therefore, it can be seen
that the precipitation of magnesium ions (i.e., Mg(OH)2) filled the mouth of the surface-
breaking crack and the voids in concrete. Similar results were observed on the three other
concrete samples (TP3-2, TP3-3, TP3-4) in this study.
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Figure 11. Optical microscope images of a surface-breaking crack formed in the concrete sample TP3-
1: (a) before and (b) after being rehabilitated by EDT process, respectively, and (c,d) enlarged images
in the region of interests pointed out by the white rectangular symbol in Figure 11a,b, respectively.

Figure 12a–d show the optical images of the cross-sections of the four concrete samples
after being treated by four different EDT processes, TP3-1, TP3-2, TP-3-3, and TP3-4,
respectively. Precipitation of magnesium ions appeared around the mouth of surface-
breaking crack and continued to the tip of the cracks along the crack interface. Cross
section image shows that the precipitation of magnesium formed in the porous corrosion
products, which would become a barrier to decrease the diffusion rate of dissolved oxygen
and external harmful materials and thus suppress the corrosion rate. Figure 13a show the
SEM image of the cross-section of a concrete sample at the tip of a surface-breaking crack
(TP3-3). Equivalent elemental maps are shown in Figure 14b–f, representing distribution of
O, Fe, Si, Ca, and Mg, respectively. The cross-section of a reinforcing steel is characterized
by high Fe and low oxygen concentration, while the concrete cross-section is characterized
by low Fe and high oxygen. The cross-section of the crack is presented as the region
with high magnesium concentration. The cross-section images and the elemental maps
demonstrate that precipitation of magnesium ions formed at the tip of a surface-breaking
crack on the steel and concrete interface, which would improve the corrosion resistance of
reinforced concrete.
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EDT process: (a) SEM image, (b) distribution of primary elements in the regions 1 and 2 in the SEM image shown in
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Figure 14. Equivalent elemental maps representing spatial distribution of: (a) O, (b) Fe, (c) Si, (d) Ca, (e) Ca and (f) Mg,
respectively, measured at the tip of a surface-breaking crack in the concrete sample TP3-3 after being rehabilitated by
EDT process.

One interesting finding in this study is that the post-treatment with a NaOH solution
significantly reduces the time for repairing a surface-breaking crack using EDT process. The
effectiveness of the post-treatment process with high alkalinity solution can be explained
by higher solubility of magnesium ions in lower pH as follows,

14 = pH + pOH−, Ksp = [Mg2+] [OH−]2 (8)

where Ksp is the solubility product of Mg(OH)2 (=5.61 × 10−12 at 25 ◦C) [41]. By taking a
logarithm on both sides of the above equation and considering the ion product of water,
Equation (8) can be modified to

log[Mg2+] = 28 − 2pH + logKsp (9)

Consequently, the concentration of Mg2+ ions decreases as pH increases, which in-
dicates the amount of precipitation of Mg2+ decreases as pH decreases. In general, the
conventional EDT mechanism in the literature follows path 1 in Figure 15. The precipita-
tion of ions is caused by reaction of magnesium ions and hydroxide ions in the vicinity of
reinforcing steel in concrete, as follows,

O2 + 2H2O + 4e− → 4(OH)−, and (10)

Mg2+ + 2OH− →Mg(OH)2 + H2O. (11)



Sensors 2021, 21, 6287 17 of 20

Sensors 2021, 21, 6287 16 of 19 
 

 

O2 + 2H2O + 4e− → 4(OH)−, and (10)

Mg2+ + 2OH− → Mg(OH)2 + H2O. (11)

 
Figure 15. Relationship between the concentration of Mg2+ and the pH of the solution. 

However, a conventional EDT process used in the experimental phases 1 and 2 was 
not effective for repairing (closing or filling) a surface-breaking crack in concrete samples 
in this study. It can be attributed to several reasons: (1) pH drop around cracks in concrete 
after formation of a surface-breaking crack during the accelerated corrosion test, (2) mi-
gration of (OH)− ions toward the external anodic electrode during the EDT processes, and 
(3) pH drop in an external electrolyte due to the migration of OH−. It seems that only two 
weeks was not sufficient for conventional EDT method to work. In this study, it was found 
that the post treatment process with a NaOH solution is effective for facilitating the pre-
cipitation of Mg2+ ions through the 2nd path in Figure 15. In this light, it is not recom-
mended to expose the repairing concrete to high alkalinity before EDT. For example, in 
the case of EDT process 4, the concrete specimen was treated by NaOH solution (pH 13) 
prior to the main electrochemical process. White precipitations were more concentrated 
around crack mouth, which could impede electro-deposition current flows. Conse-
quently, less precipitations were observed around the crack tip compared to the other 
three concrete specimens without the pre-treatment process. 

4. Conclusions 
A series of experimental studies was conducted in this research to investigate the 

rehabilitation performance of electrochemical deposition treatment (EDT) for deteriorated 
reinforced concrete with various severity levels. Deteriorated concrete specimens, repre-
senting the three degrees of corrosion phases: corrosion initiation, rust propagation, and 
formation of a surface-breaking crack, were rehabilitated by a series of EDT processes. It 
was observed that EDT has a great potential as a comprehensive rehabilitation method for 
corrosion-induced deterioration with various severity levels. Specific findings and con-
clusions of this study are drawn as follows: 
(1) It was observed from test phase 1 that EDT was an effective method to improve cor-

rosion-resistant properties of the concrete specimens in the initiation phase of corro-
sion. After EDT using a 0.3 M MgCl2 solution in an electrolyte by applying a constant 
current −2 μAcm−2 for 24 h, impedance of the steel-and-concrete interface (i.e., charge 
transfer resistance and solution resistance) increased to prevent de-passivation of 

C
on

ce
nt

ra
tio

n 
of

 c
at

io
n 

[m
ol

/l]

In
cr

ea
si

ng
 M

g2+
 a

nd
 O

H
−

io
ns

 b
y 

ED
T

Figure 15. Relationship between the concentration of Mg2+ and the pH of the solution.

However, a conventional EDT process used in the experimental phases 1 and 2 was not
effective for repairing (closing or filling) a surface-breaking crack in concrete samples in this
study. It can be attributed to several reasons: (1) pH drop around cracks in concrete after
formation of a surface-breaking crack during the accelerated corrosion test, (2) migration
of (OH)− ions toward the external anodic electrode during the EDT processes, and (3) pH
drop in an external electrolyte due to the migration of OH−. It seems that only two weeks
was not sufficient for conventional EDT method to work. In this study, it was found that the
post treatment process with a NaOH solution is effective for facilitating the precipitation
of Mg2+ ions through the 2nd path in Figure 15. In this light, it is not recommended to
expose the repairing concrete to high alkalinity before EDT. For example, in the case of
EDT process 4, the concrete specimen was treated by NaOH solution (pH 13) prior to
the main electrochemical process. White precipitations were more concentrated around
crack mouth, which could impede electro-deposition current flows. Consequently, less
precipitations were observed around the crack tip compared to the other three concrete
specimens without the pre-treatment process.

4. Conclusions

A series of experimental studies was conducted in this research to investigate the
rehabilitation performance of electrochemical deposition treatment (EDT) for deteriorated
reinforced concrete with various severity levels. Deteriorated concrete specimens, repre-
senting the three degrees of corrosion phases: corrosion initiation, rust propagation, and
formation of a surface-breaking crack, were rehabilitated by a series of EDT processes. It
was observed that EDT has a great potential as a comprehensive rehabilitation method
for corrosion-induced deterioration with various severity levels. Specific findings and
conclusions of this study are drawn as follows:

(1) It was observed from test phase 1 that EDT was an effective method to improve
corrosion-resistant properties of the concrete specimens in the initiation phase of
corrosion. After EDT using a 0.3 M MgCl2 solution in an electrolyte by applying a con-
stant current −2 µAcm−2 for 24 h, impedance of the steel-and-concrete interface (i.e.,
charge transfer resistance and solution resistance) increased to prevent de-passivation
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of steel, even when the concrete specimen was exposed to harsh corrosive environ-
ment. The corrosion protection performance is attributed to precipitates on the steel
surface that impeded charge transfer rate for the steel corrosion reaction (Fe→ Fe2+

+ 2e−) and reduction rate of dissolved oxygen (O2+2H2O +4e− → 4OH−) in the
rust layer. The use of higher concentration of MgCl2 solutions (i.e., 1M and 3M in
this study) was effective for further decreasing the corrosion rate of steel in concrete
compared to the use of 0.3M MgCl2 solution.

(2) Furthermore, EDT successfully suppressed the corrosion rate of concrete specimens
under high corrosion activity. It was observed that the corrosion rate decreased as
the polarization duration in EDT increased. The speed of corrosion rate decrement
appears to be slower as the duration of EDT increases. However, it is not clear based
on the limited data in this study how much the deteriorated reinforced concrete
can be recovered by EDT. More systematic studies are still needed to investigate the
corrosion recovery capability of EDT for concrete with various degree of corrosion
levels.

(3) From the experimental results of test phase 3, EDT was effective for repairing (closing
and filling) a corrosion-induced surface-breaking crack in concrete. From the visual
inspection based on optical microscopic and SEM images, precipitation of magnesium
ions formed at the mouth of a surface-breaking crack and continued to the crack
interface and rust products, eventually reaching the crack tip rooted on the steel-and-
concrete interface. One interesting finding in this study is that the post-treatment
with a NaOH solution significantly reduced the time for repairing a surface-breaking
crack using an EDT process.

(4) Experiments in this study were performed using reduced concrete samples and
deteriorated by accelerated corrosion tests in the laboratory. More systematic studies
are still needed to better understand the rehabilitation performance EDT for the
deteriorated concrete in actual reinforced concrete structures.
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