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Purpose: To evaluate the effectiveness of automated fundus screening software in
detecting eye diseases by comparing the reported results against those given by human
experts.

Results: There were 1585 subjects who completed the procedure and yielded quali-
fied images. The prevalence of referable diabetic retinopathy (RDR), glaucoma suspect
(GCS), and referablemacular diseases (RMD)were 20.4%, 23.2%, and 49.0%, respectively.
The overall sensitivity values for RDR, GCS, and RMD diagnosis are 0.948 (95% confi-
dence interval [CI], 0.918–0.967), 0.891 (95% CI, 0.855–0.919), and 0.901 (95% CI–0.878,
0.920), respectively. The overall specificity values for RDR, GCS, and RMD diagnosis are
0.954 (95%CI, 0.915–0.965), 0.993 (95%CI–0.986, 0.996), and0.955 (95%CI–0.939, 0.968),
respectively.

Methods:Weprospectively enrolled1743 subjects at sevenhospitals throughoutChina.
At each hospital, an operator records the subjects’ information, takes fundus images,
and submits the images to the Image Reading Center of ZhongshanOphthalmic Center,
Sun Yat-Sen University (IRC). The IRC grades the images according to the study protocol.
Meanwhile, these imageswill also be automatically screenedby the artificial intelligence
algorithm. Then, the analysis results of automated screening algorithm are compared
against the grading results of IRC. The end point goals are lower bounds of 95% CI
of sensitivity values that are greater than 0.85 for all three target diseases, and lower
bounds of 95% CI of specificity values that are greater than 0.90 for RDR and 0.85 for
GCS and RMD.

Conclusions: Automated fundus screening software demonstrated a high sensitivity
and specificity in detecting RDR, GCS, and RMD from color fundus imaged captured
using various cameras.

Translational Relevance: These findings suggest that automated software can improve
the screening effectiveness for eye diseases, especially in a primary care context, where
experienced ophthalmologists are scarce.

Introduction

Diabetic retinopathy (DR), glaucoma, and various
kinds of macular degeneration (MD) are the leading
causes of blindness.1 According to Teo et al.,2 28.54
million adults worldwide have vision-threatening DR
in 2020 and the number can increase to 44.82 million

in 2045. For glaucoma, the worldwide prevalence is
projected as 76.0 million for 2020 and 111.8 million in
2040.3 The two most common types of MD are age-
related MD and myopic MD. In 2020, the prevalence
of age-related MD is approximately 196 million and
can increase to 288 million in 2040, and in 2015 myopic
MD has a prevalence of 10.0 million and is projected
to 55.7 million in 2050.4,5
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If these eye diseases can be detected in their early
stage, the vision loss is able to be slowed or prevented.
However, the early detection of these diseases requires
the examinations of high-level ophthalmologists, which
are usually not available for large-scale screening. Deep
learning (DL) has been widely applied in automatic
fundus photograph analysis, especially in detecting
vision-threatening eye diseases.6 Various algorithms
and clinical trials have been developed and conducted
for detecting DR,7–10 glaucoma suspects (GCS),11–13
and MD.14–17 Recent studies also showed these
algorithms are able to predict multiple diseases simul-
taneously. Ting et al.18 used a DL system to perform
detection of RDR, vision-threatening DR, GCS, and
RMD at the same time in a multiethnic population.
Islam et al.19 applied a DL method to predict six
diseases, namely, RDR, RMD, GCS, cataract, hyper-
tensive retinopathy, and myopia.

Here we present a prospective study to validate
the performance of an artificial intelligence (AI)
screening system for the detection of multiple eye
diseases. We validate that the AI screening system can
accurately and robustly detect referable DR (RDR),
referable macular diseases (RMD), and GCS among
fundus images of various cameras. We present detailed
comparison of sensitivity, specificity, and area under
the curve (AUC) values across different domains of
interest. Our main hypotheses are that lower bounds of
the 95% confidence interval (CI) of sensitivity values
are greater than 0.85 for all three target diseases, and
the lower bounds of the 95% CI of specificity values
are greater than 0.90 for RDR and 0.85 for GCS and
RMD.

Methods

AI Fundus Screening Algorithm

The automated screening algorithm consists of
three major modules, namely, a structural analysis,
quality assessment, and disease prediction. In the struc-
tural analysis module, we perform optic disc detec-
tion and fovea detection to locate the region of
interest (ROI) that is relevant to GCS and RMD,
respectively. The quality assessment module decides
whether each ROI (as well as the whole image) is of
low quality based on a comprehensive analysis of the
brightness, contrast, and blurriness. If any of the ROIs
is determined as low quality, the image will be disqual-
ified from the study and the system will prompt a
retake. In the disease prediction module, we use the
self-designed DL models to predict the diseases of
interest based on the given images. The disease predic-

tion module consists of three self-designed DLmodels,
which are designed to predict RDR, RMD and GCS.
The backbones of the three models are designed by
similar architectures.

The backbone of the disease prediction module is a
combination of DenseNet-12123 and bilinear pooling.
DenseNet-121 is a widely used general network struc-
ture proposed in recent years. The structure alleviates
the gradient disappearance phenomenon during model
training by stackingmultiple dense blocks with connec-
tions, and strengthens the internal feature reuse of the
model, so as to achieve a high accuracy of the model.
In addition, to obtain the better performance, follow-
ing unique strategies are adopted:

a) The input image size is increased from 224 × 224
to 512 × 512, which helps to better preserve the
detail information of the original image.

b) The bilinear pooling layer is used to replace
the gap layer in the original DenseNet-121. As
a general technique in the field of fine-grained
image classification, a bilinear pooling layer can
help the model to extract the texture information
in the image (such as DR-related bleeding/optic
disc and cup structure), so as to help model focus
on discriminative features.

c) In terms of DR detection, the model will output
fine grained grading results (no DR/phase
I/phase II/phase III/phase IV or above), and
then transform it into binary or ternary classi-
fication results through probability weighting.
When modeling and optimizing the model,
an automated screening algorithm encodes
the classification label by ordinal regression.
Compared with one-hot labels, ordinal regres-
sion labels impose stronger penalty when the
deviation is larger, so as to facilitate the grading.

In addition, to better distinguish patients with
other ophthalmic diseases from the target diseases, the
algorithm adds an additional “abnormal” category in
the model to decrease the intraclass divergence during
training

In this study, the automated screening algorithm
system runs locally on a desktop computer (Intel i5-
8400 and NVIDIA GeForce GTX 1060). The partic-
ipants will receive their AI screening reports within
30 seconds after taking the images. An AI screening
report shows whether participants were positive for
RDR, RMD, and GCS. The predicted possibilities of
each disease are also recorded internally to calculate the
AUC. The results are compared against the labels given
by ophthalmologists for evaluating the performance.
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Table 1. Internal Validation Performance of the AI
Screening Algorithm

Target
Disease Sensitivity (95% CI) Specificity (95% CI)

RDR 0.944 (0.914–0.967) 0.977 (0.965–0.986)
GCS 0.965 (0.947–0.980) 0.938 (0.917–0.954)
RMD 0.913 (0.878–0.942) 0.910 (0.890–0.928)

Before deployment of the algorithm, an internal
validation had been conducted to verify the effective-
ness. The experiments are conducted on an internal
dataset with 1229 scans, which contains 327 positive
cases of RDR, 324 positive cases of GCS, and 527
positive cases of RMD. The internal validation results
are shown in Table 1.

Study Design

We prospectively enrolled the subjects at seven
hospitals throughout China. Patients who visited the
designated hospitals between April 16, 2020, and
October 21, 2020, who were more than 18 years old,
and who were able to cooperate with fundus photog-
raphy were invited to participate. We excluded patients
who previously underwent eye surgery, were pregnant,
or were with ocular media opacification, because these
cases may affect the quality of fundus photos.

We obtained approval for the study protocol
from ethical committees of all the seven hospi-
tals (the clinical trial registration information
can be checked at https://github.com/BaiduIHU/
Clinical-trial-registration-AI100/tree/main). We
ensured that the subjects signed written informed
consent and were over 18 years old. The study was
funded by Kangfuzi Inc. and designed by the authors.
Xiangkang Inc., provided data management and
lockdown, equipment maintenance, monitoring, and
auditing services at all hospitals, as a contract research
organization.

Study Protocol

The study protocol consists of the following steps:

1. A participant signs written informed consent.
2. An operator records a participant’s demographic

information and medical history, then confirms
whether to enroll the participant according to the
selection criteria of this study. The inclusion crite-
ria are as discussed elsewhere in this article.

3. The operator encodes the participant’s informa-
tion according to authentication code table after

enrollment, then takes images with a fundus
camera according to the standard imaging proto-
col. One posterior pole image is taken for each
eye.

4. The operator submits the images to the IRC. The
IRC determines whether the images are readable.

5. For the readable images, the operator uploads
the images to automated screening algorithm for
the automatic analysis. The operator then prints
out, confirms, and signs on the automatic analy-
sis results. Meanwhile, the IRC grades the images
according to the study protocol and documents
the grading results.

Grading Standards

Overall Grading Procedure
We invited two certified ophthalmologists in IRC as

the graders. The two graders had 6 and 10 years of clini-
cal experience. Each grader reads the fundus images
according to the following standard procedure.

1. Image quality assessment. The grader first
assesses whether the fundus image is readable
or not. If the image is not readable, the grader
performs no further grading of diseases and
records the final result as low quality. Subjects
with low-quality images are not counted for final
performance calculation. The criteria of image
quality assessment are described elsewhere in this
article.

2. Optic disc, optic cup, and macula boundary
determination. For a readable image, the grader
first determines the boundary of the optic disc
and optic cup, and roughly estimates their respec-
tive diameters. The grader then locates the fovea
and determines the macula boundary as a circle
centered at the fovea with a certain radius, which
is the minimum of the three lengths: (i) two times
the optic disc diameter; (ii) the minimum distance
between the fovea and the optic disc boundary;
and (iii) the minimum distance from the fovea to
the two main branches of the central retinal vein.

3. Grading of RDR, RMD, and GCS. The grader
then examines the referable diseases in the images.
For the grading of RMD, the grader uses the
macula boundary determined in step 2 as the
ROI. For the grading of GCS, the grader consid-
ers the cup-disc-ratio based on the estimated
optic disc and optic cup diameters. The detailed
reference standards of the diseases are shown in
the later sections. Subjects who have two or three
diseases will be separately counted in each class.
We classified each image as positive or negative

https://github.com/BaiduIHU/Clinical-trial-registration-AI100/tree/main
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for GCS, RDR, andRMD.We do not pay special
consideration when analyzing the images with
two or more diseases.

4. For a fundus image, two graders independently
examine the image and give their first opinion
of the three diseases. If any of the first opinions
differ, the result are arbitrated by a senior
ophthalmologist with 19 years of clinical experi-
ence. The arbitrated results are documented on
the IRC grade recording forms as the final
grading results.

5. We ensured that all the graders were masked to all
patient information, including age, sex, medical
history, previous diagnosis, and other clinical test
results.

Quality Assessment Criteria
The grader will disqualify an image if any of the

following occurs.

1. The optic disc is not fully visible in the field of
view.

2. One-third or more of the macular region is not
visible in the field of view.

3. The optic disc is too bright owing to overexpo-
sure.

4. The macular region is too dark owing to under-
exposure or a small pupil.

5. The image is out of focus.
6. The image is blurred owing to motion, blinking,

ocular media opacity, and so on.

Reference Standard for RDR, RMD, and GCS
For RDR, we first follow Ting et al.6 to determine

the DR severity scale. In this study, we categorize a
subject as RDR positive if its DR severity level is
greater than or equal to II (moderate nonproliferative).
A typical fundus image with RDR contains at least
one microaneurysm and at least one hemorrhage or
exudate. It is worth noting that this study follows the
China RDR classification standard. In China’s classi-
fication standard, grades I, II, and III correspond with
grades I, II, and III of international standard, respec-
tively; grades IV, V, andVI correspondwith grade IV of
international standard. This discrepancy will not affect
the conclusions of the study.

For GCS, we follow the suspected glaucoma
hallmarks listed in Zhang et al.,22 including an enlarged
disc cup ratio, optic disc pallor, rim widths that do not
fit the inferior ≥ superior ≥ nasal ≥ temporal rule,
and so on. If the fundus image fits two or more of
the suspected glaucoma hallmarks, the subject is deter-
mined as GCS positive.

In community screening settings, various macular
abnormalities are prevalent. However, without further
examinations other than fundus photography, it is
difficult to make a differential diagnosis among all
types of macular diseases owing to their complicated
and nonspecific appearances. Thus, we combined a
referable macular lesion list in Zhang et al.,22 and
automated screening algorithmwas developed to detect
the set of macular lesions. The referable lesion list
includes drusen (of diameter >125 μm), exudate,
hemorrhage, atrophy, epiretinal membrane, macular
hole, retinal detachment, pigment epithelial prolifera-
tion, and so on. If the fundus image contains any of
the referable lesions in the macular area, the subject is
determined as RMD positive.

Statistical Analyses

The primary effectiveness evaluation criteria are
sensitivity and specificity. The statistical tests of sensi-
tivity and specificity are two sided. Only predictions
that are greater than the predetermined threshold are
counted in the analysis. We consider the AI algorithm
meets the clinical usage requirement when the lower
bounds of the 95% CIs exceed the predetermined end
points.

The sample size of the study is determined by the
significance level, the power of test, and the estimated
and target values of sensitivity and specificity. The
formula for calculating the sample size (for each target
disease) is as follows:

N =
[
Z1−α

√
P0 (1 − P0) + Z1−β

√
PT (1 − PT )

]2

(PT − P0)2
,

where α = 0.05 is the level of significance, 1 − β = 8
is the power of the test, P0 is the least acceptable value
for the sensitivity (or specificity) of the clinical study,
and PT is the estimated sensitivity (or specificity) set in
reference to the internal validation results. The calcu-
lated sample sizes needed for RDR, GCS, and RMD
are shown in Table 2. Because it is possible to share the
negative samples, the total estimated sample size was
1557 (the sum of 282, 363, 363, and 549). Considering
withdrawal and exclusion rates of approximately 10%,
we determine the total target sample size as 1730.

The sensitivity and specificity are computedwith the
following formulas:

Se = TP
TP + FN

, Sp = TN
TN + FP

where TP is a true positive, TN a true negative, FP a
false positive, and FN a false negative (Table 3). The
95% CIs of sensitivity and specificity are calculated
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Table 2. Estimated Sample Size Needed for Each Target Disease

PT Sensitivity P0 Sensitivity PT Specificity P0 Specificity Calculated N Positive Calculate N Negative

RDR 0.9 0.85 0.93 0.9 282 549
GCS 0.9 0.85 0.9 0.85 363 363
RMD 0.9 0.85 0.9 0.85 363 363

Table 3. Contingency Table Used for Sensitivity and
Specificity Calculation

IRCAlgorithm Positive Negative

Positive TP FP
Negative FN TN

using the Wilson method. All statistical analyses are
performed with the use of SAS software, version 9.3
(SAS Institute, Cary, NC).

Results

Study Population

In this study we initially selected a total of 1743
subjects. There were 1738 subjects who completed the
procedures and had fundus images taken. We excluded
153 subjects in the final full analysis set because
they quit, withdrew informed consent, did not meet
the inclusion criteria, repeatedly enrolled, or had a
recorded fundus images with low quality. As a result,
the full analysis set contains 1585 clear fundus images
from 1585 subjects (1 eye from each subject). The
average age of the subjects was 53.19 ± 15.59. Of
the 1585 subjects, 900 were male. Detailed demograph-
ics of the population are presented in Table 4. The
prevalence of RDR, GCS, and RMD were 20.4%
(334/1585), 23.2% (368/1585), and 49.0% (777/1585),
respectively. Further, for the 322 RDR patients, 10 of
them have mild nonproliferative DR, 229 of them have
moderate nonproliferative DR, 60 of them have severe
nonproliferative DR; the rest 35 have PDR. Detailed
demographics of the disease prevalence are presented
in Table 5.

Screening Performance of the Automated
Screening Algorithm

We evaluated the AI screening performance by
comparing the diagnosis results of automated screen-
ing algorithm against those given by the ophthalmol-

Table 4. Demographic of the Population

Gender, n (%)

Total 1585 (100.00)
Male 900 (56.78)
Female 685 (43.22)

Age (years)
Mean (SD) 53.19 ± 15.59
Median (Q1, Q3) 56.00 (43.00, 65.00)
Minimum, maximum 18.00, 91.00

Age frequency distribution, n (%)
Total 1585 (100.00)
<20 10 (0.63)
20–29 161 (10.16)
30–39 159 (10.03)
40–49 238 (15.02)
50–59 387 (24.42)
60–69 410 (25.87)
≥70 220 (13.88)

Ethnic group, n (%)
Total 1585 (100.00)
Han Chinese 1530 (96.65)
Others 53 (3.35)
Unknown 2 (0.13)

Table 5. Demographics of Disease Prevalence

Clinical Diagnosis n (%)

Normal 537 (33.88%)
RDR only 12 (0.76%)
GCS only 255 (16.09%)
RMD only 364 (22.97%)
RDR and RMD 304 (19.18%)
RDR and GCS 4 (0.25%)
GCS and RMD 95 (5.99%)
RDR and RMD and GCS 14 (0.88%)
Total 1585 (100%)

ogists. We report an overall evaluation in terms of
sensitivity, specificity, AUC, and their respective 95%
CIs, across all clinical trial centers and camera models.
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Table 6. Overall Performance of AI Screening Algorithm

Target Disease Sensitivity (95% CI) Specificity (95% CI) AUC (95% CI) Confusion Matrix (TP, FN, FP, TN)

RDR 0.948 (0.918–0.967) 0.954 (0.915–0.965) 0.976 (0.968–0.985) 307, 17, 57, 1204
GCS 0.891 (0.855–0.919) 0.993 (0.986–0.996) 0.990 (0.985–0.995) 328, 40, 9, 1208
RMD 0.901 (0.878–0.920) 0.955 (0.939–0.968) 0.968 (0.960–0.976) 700, 77, 36, 772

Table 7. Agreement Between the AI Screening
Algorithm and the Two Graders

AI vs. Grader 1 (6 Years)
Intraclass Correlation

Coefficient

AI vs. Grader 2 (10
Years) Intraclass

Correlation Coefficient

RDR 0.893 0.915
RMD 0.914 0.921
GCS 0.942 0.948

We also show the separate evaluation results of each
camera brand.

Overall Performance
Among 1585 subjects, 363, 339, and 737 subjects

are diagnosed by the algorithm as RDR, GCS, and
RMD, respectively. The overall sensitivity values for
RDR, GCS, and RMD are 0.948 (95% CI, 0.918–
0.967), 0.891 (95% CI, 0.855–0.919), and 0.901 (95%
CI, 0.878–0.920), respectively. The overall specificity
values for RDR, GCS, and RMD are 0.954 (95%
CI, 0.915–0.965), 0.993 (95% CI–0.986, 0.996), and
0.955 (95% CI, 0.939–0.968), respectively. The overall
AUC values for RDR, GCS, and RMD are 0.976
(95% CI, 0.968–0.985), 0.990 (95% CI, 0.985–0.995),
and 0.968 (95% CI, 0.960–0.976), respectively. The
complete results are shown in Table 6. We also assess
the agreement between the AI algorithm and the two

graders respectively. The intraclass correlation coeffi-
cients are provided in Table 7.

Performance by Camera Brands
In this study, we also validated the automated

screening algorithm on three different brands of
cameras that are used in the different centers. Detailed
information about these cameras is shown in Table 8.
For convenience, we use camera I, II, and III to denote
Topcon, Syseye, and Zeiss cameras, respectively, in the
following analysis. Centers A, C, D, and H use camera
brand I. Centers B and F use camera brands II and III,
respectively. Center G uses a mixture of camera brands
II and III. The total numbers of subjects are 981, 281,
and 323 for camera brands I, II, and III, respectively.
In Table 9, we report the sensitivity, specificity, AUC,
and numbers of positive samples for RDR, GCS, and
RMD diagnosed by ophthalmologists.

Screening Performance of Individual
Ophthalmologists

As a reference, we also compute the screening
performance in terms of sensitivity and specificity of
two independent graders. The ground truth of this
experiment is the same as which of automated screen-
ing algorithm. The result values are shown in Table 10.

Further, we investigated the interobserver agree-
ment of the three target diseases between the two
independent graders. The confusion matrix is reported
in Table 11.

Table 8. Information About the Three Different Cameras We Used

Brand Topcon Syseye Zeiss

Model TRC-NW400 RetiCam 3100 VISUCAM 200
Mode Non Mydriatic Non Mydriatic Non Mydriatic
Setting Desktop, Automatic Desktop, Automatic Desktop, Manual
Fixation Center Center Center
Resolution 1956 × 1934 2656 × 1992 2124 × 2056
Minimum pupil size 3.3 mm 2.8 mm 3.3 mm
Field of view 45° 50° 45°
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Table 9. Performance of the Automated Screening Algorithm inDetecting ThreeDiseases, Breakdownby Camera
Model

Target Disease Camera Model N-Positive Sensitivity (95% CI) Specificity (95% CI) AUC (95% CI)

RDR I 141 0.950 (0.900–0.980) 0.968 (0.954–0.979) 0.985 (0.977–0.993)
II 54 0.944 (0.846–0.988) 0.912 (0.867–0.945) 0.944 (0.912–0.976)
III 129 0.945 (0.890–0.978) 0.944 (0.902, 0.972) 0.982 (0.968–0.995)

GCS I 262 0.855 (0.806–0.895) 0.996 (0.988–0.999) 0.991 (0.984–0.997)
II 65 0.969 (0.893–0.996) 0.968 (0.934–0.987) 0.991 (0.982–1.000)
III 41 1.000 (0.914–1.000) 0.996 (0.980–1.000) 0.999 (0.997–1.000)

RMD I 403 0.854 (0.815–0.887) 0.971 (0.953–0.983) 0.964 (0.951–0.977)
II 165 0.970 (0.931–0.990) 0.853 (0.776–0.912) 0.972 (0.953–0.990)
III 209 0.938 (0.896–0.963) 0.965 (0.913–0.990) 0.981 (0.969–0.993)

Table 10. Independent Grader Results Compared With Arbitrated Ground Truth From IRC

Grader 1 Sensitivity Grader 1 Specificity Grader 2 Sensitivity Grader 2 Specificity

RDR 0.963 (0.936–0.981) 0.989 (0.981–0.994) 0.985 (0.964–0.995) 0.995 (0.990–0.998)
GCS 0.976 (0.954–0.989) 0.993 (0.986–0.997) 0.989 (0.972–0.997) 0.992 (0.985–0.996)
RMD 0.983 (0.972–0.991) 0.995 (0.987–0.999) 0.988 (0.978–0.995) 0.994 (0.986–0.998)

Table 11. Interobserver Agreement Between the Two
Independent Graders (Without Adjudication)

Disease Grader 2/Grader 1 Positive Negative Kappa

RDR Positive 307 19 0.928
Negative 18 1241

GCS Positive 355 13 0.943
Negative 19 1198

RMD Positive 757 11 0.966
Negative 16 801

Discussion

The purpose of this study was to analyze the
performance and robustness of automated screening
algorithm on fundus images. According to the study
design, the end points are the lower bounds of the 95%
CI of sensitivity values that are greater than 0.85 for
all three target diseases, and the lower bounds of the
95% CI of the specificity values that are greater than
0.90 for RDR and 0.85 for GCS and RMD. The results
show that the performance exceed the end points by a
fair margin.

In Table 6, we can see the automated screening
algorithm detects all three target diseases with sensi-
tivity values that are greater than 0.85, indicating its
significant application potential in primary care sites.
In general, primary care sites lack professional ophthal-
mologists. These highly sensitive automated screen-
ing algorithm are an important complementary tool

for screening in the early stage fundus disease. In
addition, the specificity values of the automated screen-
ing algorithm are also greater than 0.90 across all three
diseases. In a primary care setting with a large-scale
population but few positive cases, a high specificity
value means fewer false positives, which could help
to conserve valuable high-level health care resources.
In addition, the short screening time, consistency of
the results, and the narrow CI indicate that this AI
automated screening device is a reliable screening tool
in various population groups.

The overall AUCs for detecting all the three diseases
are high, indicating that the automated screening
algorithm can correctly distinguish positive features
from negative ones in three target diseases. The exper-
imental results also show that the automated screen-
ing algorithm has good generalizability to different
brands of cameras. In Table 9, we can see the algorithm
remains high AUCs (>0.94) for different cameras. The
sensitivity and specificity values for all three diseases
are greater than 0.85. The corresponding lower bounds
of the 95% CIs are greater than 0.80, except for the
specificity value of RMD in camera brand II (0.776).
This strong generalizability facilitates deployment in
primary care sites that cannot afford expensive equip-
ment.

In this study, we followed two standard grading
procedures16 for grading. The interobserver
comparison results show good consistency for discrim-
ination between disease presence and absence, which
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indicates the study conducted a reliable evaluation on
the AI algorithm screening performance.

Compared with validations of the other regis-
tered automated screening devices, like the IDx-DR,25
CARE,20 and Airdoc,26 this prospective study is the
first to include multiple retina pathologies in the evalu-
ation. Moreover, most similar studies evaluate the AI
devices on only one brand of camera. However, the AI
algorithms are notoriously vulnerable to the domain
shift,27,27 which means an AI device performs well
in one center, whereas it may show an unacceptable
performance in another center in its application. This
performance gap stems from the shift of data distri-
bution, which is usually caused by the camera differ-
ences. This study validated the algorithm performance
on four different brands of cameras, which shows the
fair generalization ability of this automated screening
algorithm.

There are also several limitations in this study.
First, this study was conducted in hospital settings
and recruited subjects from within the ophthalmol-
ogy department, where the population distribution
does not align with community screening or physi-
cal examination scenarios. In hospitals, there are more
patients with more severe diseases, whereas in general
population screening scenarios, there are more healthy
people and patients with milder and early stages of
the diseases. Thus, these study results cannot directly
indicate the performance of the AI software in commu-
nity screening scenarios. Actually, we have conducted
another comprehensive study to compare the AI
performance in an in-hospital scenario and commu-
nity screening scenario. It showed that the evalua-
tion results on general population will have a slight
decrease in the sensitivity (approximately 1%–2%), but

with an obvious increase in specificity (approximately
3%–6%) in the community screening scenario on all
three diseases. Detailed results and a discussion will be
provided in our future work.

Second, the ground truth of GCS may not be
completely correct. In this study, graders are blind to
all other clinical information except the fundus image.
However, a diagnosis based on fundus images is not
the gold standard for glaucoma. Although the graders
have a good agreement on GCS, this agreement may
be biased. Thus, the automated screening algorithm
may report false results regarding glaucoma, even if
it agrees with the graders. In contrast, the validated
AI model can only predict suspected glaucoma, but
cannot confirm the diagnosis. Clinically, glaucoma is
diagnosed through a combination of the visual field
test, intraocular pressure measurement, gonioscopy,
OCT, and color fundus photography-based optic nerve
assessment. Thus, an all-around AI model needs to
detect the glaucoma based on multimodal data. To
date, there is still no AI model that can combine all
these test results for an automated diagnosis. However,
several recent studies are working toward this goal. For
example, in the GAMMA challenge24 we organized
recently verified well-designed AI models that can
detect glaucoma from a combination of fundus images
andOCT volumes and achieve a superior performance.
A promising way to automatically confirm a glaucoma
diagnosis in the future is to further combine intraocu-
lar pressure measurement data and visual field test data
to create an automated glaucoma diagnosis AI model
in full accordance with the clinical glaucoma diagnosis
criteria.

Third, in this study, RMD is defined as a combina-
tion of several referable lesions. However, in real-world

Table 12. The Examples of False Negatives and False Positives

Target
Disease False Negative False Positive

RDR 1. Confusion between minor hemorrhages and
microaneurysm

1. Confused with hypertensive retinopathy

2. RDR signs appear at the edge of the image 2. Confused with retinal vein occlusion
3. Interference of epiretinal membrane 3. Confused with retinitis pigmentosa

GCS 1. Interference of myopic crescent Nine cases in total, with no obvious patterns
2. The optic disc is too bright, which results in a

smaller cup to disc ratio being detected
RMD 1. Drusen of critical referable size not detected 1. Camera lens stains

2. The lesion at the border of the macular area was
not counted in the macular area

2. Severe tessellation

3. Central serous chorioretinopathy not detected
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practice, the types of the referable lesions (such as
drusen and pigment epithelial proliferation) depend on
local medical guidelines. Sometimes, it also requires
long-term observation and comparisons to evaluate
the progress of the diseases. Thus, the diversity of
reference standards may limit the application scope of
automated screening algorithm.

Finally, although the performance of AI algorithm
exceeds the end points by a fair margin, there still have
several false positives and false negatives in all three
diseases. We analyzed the false-positive examples and
false-negative examples in detail. The main examples
are presented in Table 12.

In Table 11, it can be inferred that most false
positives are due to the interference of other diseases
or lesions. For example, the prediction of RDR is
interfered with hypertension fundus, venous obstruc-
tion, retinitis pigmentosa, minor hemorrhages, and so
on. One way to solve this may be to train a more
comprehensive AI model to discriminate against these
diseases and lesions. Another possible solution is to
combine some other medical records and examinations
to achieve more reliable predictions. Some other false
positives are caused by technical problems, such as the
stains on the camera lens or a limited field of view.
However, these technical pitfalls cannot be avoided in
real-world use, especially in primary care.
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