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ABSTRACT

With the emergence of genome editing technologies
and synthetic biology, it is now possible to engi-
neer genetic circuits driving a cell’s phenotypic re-
sponse to a stressor. However, capturing a continu-
ous response, rather than simply a binary ‘on’ or ‘off’
response, remains a bioengineering challenge. No
tools currently exist to identify gene candidates re-
sponsible for predetermining and fine-tuning cell re-
sponse phenotypes. To address this gap, we devised
a novel Regulostat Inferelator (RSI) algorithm to de-
cipher intrinsic molecular devices or networks that
predetermine cellular phenotypic responses. The RSI
algorithm is designed to extract gene expression pat-
terns from basal transcriptomic data in order to iden-
tify ‘regulostat’ constituent gene pairs, which exhibit
rheostat-like mode-of-cooperation capable of fine-
tuning cellular response. Our proof-of-concept study
provides computational evidence for the existence
of regulostats and that these networks predetermine
cellular response prior to exposure to a stressor or
drug. In addition, our work, for the first time, pro-
vides evidence of context-specific, drug–regulostat
interactions in predetermining drug response phe-
notypes in cancer cells. Given RSI-inferred regulo-
stat networks offer insights for prioritizing gene can-
didates capable of rendering a resistant phenotype
sensitive to a given drug, we envision that this tool
will be of great value in bioengineering and medicine.

INTRODUCTION

To survive, a living cell must constantly respond and adapt
to extracellular perturbations or stressors – toxins, drugs,

heavy metals, heat, and physical forces, capable of induc-
ing cell damage or death. Cellular response phenotypes,
or the characteristic traits of cellular responses to diverse
types of stressors, range from sensitive to resistant de-
pending on a given stressor. Of note, many cellular re-
sponse phenotypes, especially those pertaining to adap-
tive responses, exhibit spectrum-like graded response traits
ranging from extremely sensitive to highly resistant phe-
notypes (1,2) rather than simple on-or-off, all-or-none, or
response-or-no-response binary states (3). As such, it is of
paramount importance to understand the molecular mi-
lieu (i.e. the molecular constituents that makeup the cellular
context within cells) in predetermining the extent of cellular
response to a stressor.

Although genetic studies have driven current understand-
ing of how genetic factors determine cellular response phe-
notypes (4–6), emerging evidence indicates that the dynam-
ics of organisms are governed by phenotypic, not geno-
typic, interactions with environmental selection forces (7).
In fact, recent studies indicate that the heterogeneity of cel-
lular response phenotypes is predetermined by the molecu-
lar milieu within cells (8,9). The molecular milieu is thought
to govern cellular response phenotypes much like defined
atomic arrangements in the 3D structure of an antibody
molecule, which predetermine its recognition towards an
antigen even though the antibody has not previously en-
countered the antigen (10,11).

Despite the contribution of the molecular milieu in de-
termining cellular response phenotype, conventional bioin-
formatics tools that rely on differential gene expression (12)
and mutation-based approaches (13), rather than network-
or systems-based approaches, fail to fully capture it. Al-
though correlation-based methods are powerful approaches
to decipher gene–gene associations that are altered un-
der different conditions (14–17), none of these approaches
consider changes in mode-of-cooperation (MOC) between
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genes across the spectrum of cellular response phenotypes,
from sensitive to resistant. As a result, they lack the abil-
ity to reveal a given cell’s intrinsic molecular networks that
are ‘pre-built’ to predetermine the extent of response to a
stressor.

To address this gap in knowledge, we devised a novel com-
putational algorithm called Regulostat Inferelator (RSI).
We hypothesized that in biological systems there exist co-
operative genes that operate like rheostats to predeter-
mine and fine-tune how cells respond to a stressor such
as a drug. Here, we develop the RSI algorithm to iden-
tify networks consisting of cooperative gene pairs that op-
erate like rheostats. We termed these intrinsic molecular
devices consisting of rheostat-like gene pair networks that
predetermine and fine-tune cellular response phenotype in
a dynamic rather than an ‘on’ or ‘off’ manner as ‘regu-
lostats’. We used a systems biology analytical approach
on transcriptomic data because non-linear interplay be-
tween genetic, epigenetic, and environmental factors can
be reflected in the transcriptome. In principle, this ap-
proach casts a wider net than genetic-based approaches
such as genome-wide association studies (GWAS) and other
mutation/variant-centric studies to uncover molecular fac-
tors that modulate cellular response to a stressor. Using
cancer cells as a proof-of-concept study, we demonstrate
RSI is a novel algorithm capable of uncovering rheostat-
like gene pairs, the minimum component of regulostats that
modulate the extent of phenotypic response from sensitive
to resistant or vice versa.

In sum, our analyses provides computational evidence of
regulostats in cancer cells and their role in predetermining
drug response phenotypes. Furthermore, we demonstrate
that the RSI algorithm enables researchers to dissect reg-
ulostats capable of predetermining phenotypic responses
from different individual cell lines (or individual organisms)
to a specific stressor or drug. Such capability may facilitate
gene prioritization to engineer cellular phenotypes at the in-
dividual cell line or organismal levels. The computed results
in this study are provided in a web-based resource using the
Shiny package of R at http://rsi.hulilab.org/ and the source
code of RSI is freely available for academic use.

MATERIALS AND METHODS

Definitions of concepts and terminology

Given a gene never acts alone but rather cooperates with a
number of other genes to exert a particular function, it is
therefore pleiotropic (i.e. involved in affecting multiple cel-
lular phenotypes) (18) and nonlinear (i.e. the activity of a
gene is not always linearly proportional with one or more
genes in all cellular states) (19) in nature. Thus, the activity
of a pair of genes (termed a gene pair hereafter) forms the
basic functional unit that dictates the phenotype of a cell.

To decipher the molecular machinery that predetermines
a cellular response phenotype, it is necessary to identify
rheostat-like gene pairs whose collective activities consti-
tute a molecular network that we term a ‘regulostat’ (Figure
1). The fine-tuning of a cellular phenotypic response by a
gene pair in a regulostat is analogous to a sophisticated elec-
tronic device whose cooperative action among rheostats in
the whole system determines the quantity of the generated

current, which in turn fine-tunes the quality of the device
output (e.g. pitch of the output sound, Figure 1A). In con-
trast to gene regulatory networks, with hardwired connec-
tions between transcriptional regulators to defined regula-
tory sites on target genes that control cellular phenotypes
such as cell fate determination (20–22), the basic units of
a regulostat network are composed of gene pairs that do
not necessarily directly interact (e.g. indirect regulation via
a number of transcriptional or signaling events), but rather
exhibit ‘rheostat-like’ mode-of-cooperation (MOC) to fine-
tune (Figure 1B and C), instead of turn on or off, the cellular
response phenotype to a particular stressor (23).

Because a regulostat is a molecular network that prede-
termines a cellular response phenotype, it is therefore our
goal to identify gene pairs that constitute a regulostat from
basal cellular state (i.e. a state before a stressor is encoun-
tered). The basal transcriptome reflects gene activities in
terms of gene expression prior to stressor exposure and
therefore captures the molecular factors responsible for pre-
determining cellular response phenotypes. Basal transcrip-
tomic data from cancer cell lines with known phenotypic
responses to a specific drug (measured in log-transformed
IC50 values) are used in this study to identify rheostat-like
gene pairs that constitute a regulostat prior to drug expo-
sure.

As the 3D structure of an antibody molecule dictates
its binding specificity to an antigen prior to encountering
the antigen, we propose rheostat-like gene pairs inferred
from basal transcriptome data (i.e., prior to exposure to a
drug) play a role in predetermining drug response pheno-
types. While conventional understanding of drug–gene in-
teractions focuses on how genetic variations of a drug tar-
get affect the action of drugs (24–26), our novel approach
demonstrates it is the network, rather than an individual
genetic variation, driving drug response. We show it is the
activities of rheostat-like gene pairs, which collectively con-
stitute a regulostat in the basal transcriptome, that shape
context-specific interactions between drug and gene pairs,
thereby driving drug–network interactions and predeter-
mining drug response phenotypes.

Datasets

Raw microarray data (*.cel files) from 1000 Cell Line
(1000CL) data (27) were downloaded from ArrayExpress
repository using accession number E-MTAB-3610 (The
data can also be downloaded from Gene Expression Om-
nibus by using accession number GSE36139) generated on
Affymetrix Human Genome U133 Plus 2.0 Array. This
dataset contains 1001 molecularly annotated human cancer
cell lines derived from 29 tissues and correlated with 265 an-
ticancer drugs measured with IC50 values. Affymetrix Hu-
man Genome 219 Plate annotation data, as well as RMA
method, were used to extract and normalize the intensity
values of 18 564 genes (G) as described in our previous study
(28).

The regulostat inferelator (RSI) algorithm

Overall design. The RSI algorithm is designed to dissect
the repertoire of gene pairs that constitute the molecular

http://rsi.hulilab.org/
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Figure 1. The conceptual overview of regulostat networks. (A) Regulostats mimic the workings of a sophisticated electronic device equipped with multiple
control sites; the amount of output current at each control site is controlled by the cooperative action among rheostats that dictate the quality of the
final output, e.g. the pitch displayed by a speaker. (B) Hypothetical architecture of a regulostat corresponding to a cellular response phenotype A for a
given cell type. Relative amounts of gene 1 (g1) to gene 7 (g7), which comprise the regulostat, represented by pointers in the meter. Rheostat gene pairs’
modes-of-cooperation (MOC) is indicated as positive (red) or negative (blue) gene–gene co-expression correlations. Note that associations between the
regulostat constituent genes are the same for sensitive (AS) and resistant (AR) phenotypes except for their opposite directionality indicating rheostat-like
behavior of these gene pairs in both extreme response phenotypes. (C) Hypothetical individual cell line-specific regulostats representing sensitive (S1 and
S2) and resistant (R1 and R2) cell lines harboring only a subset of rheostat-like gene pairs.
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network that we termed a regulostat; these gene pairs be-
have like rheostats in modulating a stressor-induced cellu-
lar response phenotype. The basic assumption is that gene
pairs are the smallest constituent units of a regulostat. To
behave as a ‘rheostat’ in modulating the extent of a cellu-
lar response phenotype, a gene pair should exhibit opposite
mode-of-cooperation (MOC) measured by gene–gene coex-
pression correlation coefficients in sensitive and resistant re-
sponse phenotypes, (e.g. positive coexpression correlation
in sensitive phenotypes but negative coexpression correla-
tion in resistant phenotypes). This feature allows a gene pair
to ‘flip’ from a positive to negative correlation or vice versa
as it tunes the extent of a cellular response to a perturba-
tion. In principle, the RSI algorithm can be applied to in-
fer rheostat-like gene pairs that predetermine any continu-
ous spectrum-like cellular response phenotype, whether the
response is concerned with therapeutics or environmental
stressors. In this work, we used drug response phenotypes of
approximately 1000 cancer cell lines from 1000CL data (27)
as illustrative examples. The technical aspects of our RSI
algorithm are subdivided into the following 8 stages with a
schematic illustration provided in Figure 2 to enhance read-
ability.

Stage 1: Assignment of cells to their respective drug response
phenotypes. Given a human cancer type T with m cell lines
(CLs), T = {cl1, cl2, cl3, . . . , clm}, where responses of CLs
for n different anticancer drugs/compounds (given in log-
transformed IC50), � = {c1, c2, c3, . . . , cn}, one can cluster
CLs into k different bins based on log-transformed IC50
values. k-Mean clustering, a multivariate method that is
usually used in unsupervised machine learning problems,
can be applied to cluster univariate data such as IC50 scores
in this study. The minimum number of clusters (or bins) that
linearly recapitulate the transition from sensitive to resis-
tant phenotypes is 4, with bins 1 and 4 representing sensi-
tive and resistant phenotypes respectively, and bins 2 and
3 representing transitional phenotypes between the two ex-
treme phenotypes (see Figure 2A). The default parameter k
is set as 4 and T is therefore divided into four discrete bins
as follows:

T = {B1, B2, B3, B4} : Bi ∩ Bj = 0, T

= ∪4
i = 1 Bi & i, j = 1 : 4 (1)

In order to obtain more robust gene–gene coexpression
correlation coefficients, the minimum number of cell lines
within each bin for a given drug-cancer case (e.g. FK866-
SBC-3 refers to treatment of drug FK866 on SBC-3 cancer
cell line) is set to 4 (see Stage 2). This is because the results
of coexpression correlation are sensitive to the number of
data points (samples). In particular, reducing the number
of data points of well correlated gene pairs might yield a
poorly correlated outcome (Supplementary Figure S1). We
therefore used a minimum of four data points in each bin as
a default parameter/matter of standardization for a more
stable result. However, we recommend a higher number of
data points whenever a large sample size is available. Out of
3840 drug-cancer cases in the 1000CL data, 1169 cases had
at least four cell lines within each bin that satisfied our cri-
terion (Supplementary Data 1). Given any gene pair gi and

g j where i, j = 1 : G, there are at least four data points,
with one data point corresponding to the gene expression
values of a gene pair in a drug-cancer case.

Stage 2: Computing gene–gene coexpression correlation coef-
ficients in each bin. While randomly scattered data points
on the XY-coordinate plane show no relation between
two variables, centralized points around a linear line with
a slope close to ±1 on the XY-coordinate plane illus-
trate strong positive/negative correlation between two vari-
ables. In this study, for any gene pair gi , g j , and x and y
as their gene expression values on XY-coordinate plane,
where i, j = 1 : G over m cell lines in Bk : k = 1 : 4 (i.e.
x = {ecl1

gi
, ecl2

gi
, . . . , eclm

gi
} , y = {ecl1

g j
, ecl2

g j
, . . . , eclm

g j
} and eclm

gi

is the gene expression value of gi in mth cell line in bin Bk).
Pearson correlation (equation 2) and linear regression co-
efficients (equation 3) for the fitted model on x and y was
computed as follows:

cor =
∑m

i = 1 (xi − x̄) (yi − ȳ)√∑m
i = 1 (xi − x̄)2

√∑m
i = 1 (yi − ȳ)2

(2)

y f it = a + bx, a = (
∑

x)
(∑

x2
) − (

∑
x) (

∑
xy)

m
(∑

x2
) − (

∑
x)2 ,

b = m (
∑

xy) − (
∑

x) (
∑

y)

m
(∑

x2
) − (

∑
x)2 (3)

Here, a linear regression model is applied to select au-
thentic gene pairs that behaved linearly along the correla-
tion line, as shown in Figure 2A. This is because a high cor-
relation coefficient between two variables might have poor
distribution of data points along the correlation line. To se-
lect those gene pairs that are strictly (or closely) aligned with
the correlation lines, the Standard Error of the Estimate
(SEE) for the fitted regression lines as well as (1 − α)100%
confidence interval (CI) for the slope of regression lines in
bin B1(sensitive) and bin B4(resistant) were computed:

SEE =
√∑m

i = 1 (y f it − y)2

m
(4)

CI = b ± tm−2, α
2
Sb, Sb =

√ ∑m
i=1 (yi − ȳ)2

(m − 2)
∑m

i=1 (xi − x̄)2 (5)

The above mentioned scores were computed for all gene–

gene pairwise combinations, resulting in (
G
2 ) possible pairs

out of a total of G = 18 564 genes. Additional scores such as
the absolute values of differences of correlations in sensitive
and resistant bins, B1 and B4, and k bins centers were also
computed by the k-mean algorithm.

Stage 3: Computing phenotype flipping coefficients (PLCs)
to infer rheostat-like gene pairs. As described above,
a rheostat-like gene pair shows opposite modes-of-
cooperation (MOC) in sensitive and resistant phenotypes
in response to a perturbation. Because MOC of a gene pair
is computed in a gene–gene coexpression coefficient, we
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Figure 2. Outline of the Regulostat Inferelator (RSI) algorithm. (A) Deciphering rheostat-like gene pairs for a given drug-cancer case and reconstruction
of generic regulostat. k-Mean method is used to categorize cancer cell lines with drug responses measured in IC50 into four bins, ranging from 1 (sensitive)
to 4 (resistant) with bins 2 and 3 representing transitional response phenotypes between sensitive and resistant. The data points on XY-coordinate planes
from bins 1 to 4 correspond to expression values of genes i and j in cancer cell lines. To obtain gene pairs showing authentic strong gene–gene coexpression
correlations, linear regression modelling was performed. Standard error and confidence intervals were computed to determine the fittest regression line.
The phenotype flipping coefficient (PLC) was computed from gene–gene coexpression correlation coefficients across bins 1 to 4 for a given gene pair. Gene
pairs showing absolute values of PLC > 0.8 were deemed rheostat-like candidates. Positive PLC indicated positive rheostat-like mode-of-cooperation
(MOC) between a pair of genes and vice versa for a gene pair showing negative PLC. Rheostat-like gene pairs were subsequently ranked using RSI scores.
Internal-assignment recovery rates were determined for the top 2000 ranked gene pairs. The top 200 gene pairs that achieved stable recovery rates in at
least 5 out of 1160 drug-cancer cases were used to reconstruct the generic regulostat network. (B) Reconstruction of cancer cell line-specific regulostat
that predetermined drug response phenotype. Cancer cell line #1 was used as an illustrative example. Gene–gene coexpression correlation data points of
N gene pairs corresponding to cell line #1 are chosen if they show maximum or minimum point on the correlation lines of computed PLCs. The selected
gene pairs were used to reconstruct regulostat network corresponding to cell line #1. Red nodes: genes with higher expression values; blue nodes: genes
with lower expression values; red edges: gene pairs with positive PLCs; blue edges: gene pairs with negative PLCs. Plots show at bottom right illustrate
correlations of gene pairs with data points on the XY-coordinate plane corresponding to expression values of respective genes.

termed changes of gene–gene coexpression coefficients over
bins B1 to B4 as ‘phenotype flipping coefficients’ (PLC) in
the range of −1 to 1. Each gene pair has its own PLC score
as well as other scores as described in Stage 2. The PLC for
a gene pair was computed as follows:

For a given a gene pair under the default 4-bin scenario,
suppose corB1, corB2, corB3 and corB4 are the coexpres-
sion correlations of a given gene pair over bin 1 to bin 4,
and cB1, cB2, cB3 and cB4 are the centers of four respec-
tive bins computed by k-mean, the PLC is the correlation
of those correlation scores and bins center:

PLC =
∑4

i=1

(
cor Bi − cor B

) (
cBi − cB

)
√∑4

i=1

(
cor Bi − cor B

)2
√∑4

i=1

(
cBi − cB

)2
(6)

where cor B = 0.25 ∗
4∑

i = 1
cor Bi and cB = 0.25 ∗

4∑
i = 1

cBi .

Stage 4: Filtering rheostat-like gene pairs. There are
G× (G−1)

2 possible gene pairs of G genes to be considered. In
this study, there are 18 564 gene expressions over 1018 cell

lines with (
18564

2 ) = 172, 301, 766 possible pairwise gene

combinations. A filtering threshold is therefore needed in
order to limit the final number of selected gene pairs act-
ing as rheostat-like pairs. The filtering steps were applied as
follows: First, gene pairs with correlation coefficients show-
ing opposite signs in bin 1 and bin 4, and absolute values of
PLC greater than 0.8 were kept. The reason for applying
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this criterion was to select rheostat-like gene pairs showing
opposite MOC in sensitive and resistant phenotypes. Sec-
ond, gene pairs with correlation coefficients across bins B1
to B4 that do not follow linear ascending or descending or-
der (e.g. when a pair’s smallest correlation score is in B1,
then its correlation in B2 must be smaller than B3 & B4, and
its correlation in B3, must be smaller than B4 and so on, see
also Figure 2A) were removed. This criterion ensures the se-
lected rheostat-like gene pairs show linear change of coex-
pression correlation coefficients across bins B1 to B4. Gene
pairs are subsequently filtered based on their SEE (equa-
tion 4) and in-bound (IB) scores in B1 & B4, where IB is the
percent of cell lines (data points) between confidence inter-
val CI (equation 5) bounds divided by the total number of
cell lines in that bin. This step is to ensure only gene pairs
showing close fitting of data points to the correlation line
are selected. Those pairs with SEE scores above the third
quantile (mean) and IB scores less than third quantile of all
SEE scores in that bin were discarded.

Stage 5: Computing the RSI Score and ranking rheostat-like
gene pairs. Each gene pair has its own RSI score, which it-
self is composed of scores described in Stage 2 together with
PLC scores described in Stage 3. All scores have roughly
normal distributions but in different ranges. To normalize
and standardize these scores, all scores were divided by their
corresponding maximum values to transform them into a
common range of [0, 1]. The RSI score for each rheostat-
like gene pair is the unweighted sum of IB, 1/SEE scores in
B1 & B4, plus the PLC and the absolute value of the differ-
ence between correlations in B1 & B4 for the given gene pair
as follows: RSI score = �[IB + 1/SEE + PLC + abs(cor
Bin1 – cor Bin4)]. Finally, these rheostat-like gene pairs
were ranked based on their RSI scores and the top n1 pairs
were selected. In this study, n1 was set to be 2000.

Stage 6: Assessing the recovery rates of RSI-inferred gene
pairs comprising regulostats. We reason that if a gene pair
is a bona fide rheostat-like pair, in principle, its coexpres-
sion profile should be able to recover (or retrieve) the spe-
cific drug phenotypic response in a cell line. The percentage
of cell lines whose drug response phenotype is correctly re-
covered by a given gene pair is defined as the recovery rate
and is assessed via internal accuracy of correctly classifying
a given cell line according to its specific drug phenotypic
response based on the IC50 value of a drug. The computa-
tion procedure for the recovery rate is performed for each
drug-cancer case one at a time to evaluate the capability
of rheostat-like gene pairs to modulate response phenotype
for a given drug on cell lines derived from a particular can-
cer type. To provide the highest internal-assignment recov-
ery rate, we condensed n1 gene pairs to n2 (n2 < n1) gene
pairs. Our results for more than 1169 drug-cancer cases re-
vealed that ∼200 gene pairs provided a stabilized recovery
rate, where adding additional gene pairs does not further
improve nor deteriorate the recovery rate.

To obtain the minimal number of gene pairs with stable
recovery rate performance, n2 was set to be 200 in this study.
To select top n2 pairs, linear regression (lm) lines, with at
least four data points (i.e. cell lines) corresponding to each
gene pair, were used. Given a gene pair and its correspond-

ing lm lines, the distance of all cell lines from those lm lines
was computed with the expectation that a sensitive cell line
should exhibit the smallest distance from lm line in B1 (Re-
call that a cell line is a point on XY-plane where its x and
y coordinates is the expression values of gi and g j respec-
tively). Similar criterion also applied for resistant cell lines
in B4. The first pair in n2 pairs is the one that provides
the highest recovery rate, followed by second, third and the
200th pair added to the final list in a way that every time
the recovery rate must be either improved or stay the same
when adding a new gene pair to the list. To demonstrate how
the maximal stable recovery rate is calculated, we provide a
specific example in the Supplementary File.

Stage 7: Constructing the generic regulostat network. The
n2 gene pairs that achieved a stable recovery rate in Stage 6
were then plotted in network form with nodes of the graph
representing genes and the edge colors between the nodes
were determined by PLC values. R packages igraph v1.1.2
and RCy3 1.0.1, as well as the Cytoscape 3.5.1 network vi-
sualization tool, were used to reconstruct the regulostat net-
works. For each drug-cancer case, there is a list of n2 pairs
which provides the highest internal recovery rate for a given
drug-cancer case. To reconstruct the generic (i.e. common)
regulostat network corresponding to a given cancer type of
interest across all drugs, a set of gene pairs that are common
in at least 5 different drug-cancer cases among n2 lists were
selected.

Stage 8: Reconstructing drug-cell line-specific regulostat net-
works. A modified network reconstruction approach as
described in Stage 7 was used to obtain drug-cell line-
specific regulostat networks. Given a cell line of interest with
respect to a drug, e.g. B1, from the n2 list of corresponding
drug-cancer cases, a set of rheostat-like gene pairs in which
at least one of the genes in each pair has the maximum or
minimum coexpression point in comparison to all other cell
lines was selected (see Figure 2B).

Assessment of the performance of the RSI algorithm

We designed the following test schemes to assess the per-
formance of the RSI algorithm. Here, we first chose drug-
cancer cases with at least 4 cell lines assigned by k-mean
with k = 4, 6 or 8 depending on a 4-, 6- or 8-bin scenario.
Our data survey indicated that 15 drug-cancer cases fulfilled
this criterion (Supplementary Table S1 in the Supplemen-
tary File). These 15 drug-cancer cases were used as standard
test data for all test schemes described below.

Test Scheme 1: Assess the effects of bin number on detecting
the presence of rheostat-like gene pairs

Since computing phenotypic flipping coefficients (PLC) in-
volves evaluating changes in gene pair coexpression coeffi-
cients across different bins, increasing the number of bins to
more than four might affect whether rheostat-like gene pairs
can still be observed. As such, we expanded our studies to
include 6- and 8-bin scenarios, with bin 1 always contain-
ing sensitive cell lines and bin 6 (for 6-bin scenario) and bin
8 (for 8-bin scenario) always containing resistant cell lines.
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The intermediate bins were those that showed transitional
changes between a sensitive and resistant phenotype. We
used the RSI algorithm to perform studies of the selected
15 drug-cancer cases with 6- and 8-bin scenarios.

Test Scheme 2: Permutation tests to assess the robustness of
the identified rheostat-like gene pairs

To determine whether rheostat-like gene pairs identified in
the default 4-bin scenario are robust with respect to real
data, we devised the following two permutation strategies:

Permutation strategy 1: Permutate the cell line labels,
which had the same effect as permutating the IC50 values

Permutation strategy 2: Permutate the gene names
We performed 100 permutations for each strategy using

the selected 15 drug-cancer cases as test data. The top 200
rheostat-like gene pairs identified from each of these permu-
tation tests were used to recover cancer cell lines from real
data according to their respective specific drug phenotypic
response.

Test Scheme 3: Evaluate the performance of RSI score and
its derived scoring schemes

We assessed the performance of our original RSI scoring
scheme (Stage 5 of the RSI algorithm) in comparison to
nine other modified versions:

Original RSI score = �[IB + 1/SEE + PLC + abs(cor
Bin1 – cor Bin4)]

Scheme 1: RSI score = �[1/SEE + PLC + abs(cor Bin1
– cor Bin4)]

Scheme 2: RSI score = �[IB + PLC + abs(cor Bin1 – cor
Bin4)]

Scheme 3: RSI score = �[IB + 1/SEE + abs(cor Bin1 –
cor Bin4)]

Scheme 4: RSI score = �[IB + 1/SEE + PLC]
Scheme 5: RSI score = log[(IB)*(1/SEE)*(PLC)*abs(cor

Bin1 – cor Bin4)]
Scheme 6: RSI score = log[(1/SEE)*(PLC)*abs(cor Bin1

– cor Bin4)]
Scheme 7: RSI score = log[(IB)*(PLC)*abs(cor Bin1 –

cor Bin4)]
Scheme 8: RSI score = log[(IB)*(1/SEE)*abs(cor Bin1 –

cor Bin4)]
Scheme 9: RSI score = log[(IB)*(1/SEE)*(PLC)]
Computations were performed for the selected 15 drug-

cancer cases, and the top 100 rheostat-like gene pairs ranked
by each of these modified RSI scoring schemes was com-
pared to those of the original RSI scoring scheme. The top
100 rheostat-like gene pairs from each modified RSI scoring
scheme were also used to assess drug response phenotype
recovery rates for the 15 drug-cancer cases.

Test Scheme 4: Assess the effect of sample size on PLC and
RSI scores

To determine to what extent changing sample size might af-
fect the distribution of PLC and RSI scores, we employed
N-fold tests akin to N-fold cross-validation tests used in ma-
chine learning methods. We tested the effect of PLC and
RSI score distribution by reducing the selected 15 drug-
cancer cases to 90%, 80%, and 50% of their original data

size using the default 4-bin scenario and original RSI scor-
ing scheme. 10-fold, 5-fold and 2-fold tests were performed.
Here, the 5-fold test for the SB-715992-LUNG case is used
as an illustrative example. The number of data points (cell
line samples) for this drug-cancer case in bins 1 to 4 is as
follows: Bin 1 [45], Bin 2 [44], Bin 3 [37], and Bin 4 [48]. For
the first fold (fold 1), 20% of cell lines in each bin were ran-
domly removed and the remaining 80% of cell lines were
subjected to the RSI algorithm where both PLC and RSI
scores were computed. The whole process was repeated 4
more times (folds 2–5) by returning the previously removed
20% cell lines back to their respective bins and randomly
removing another 20%-set of cell lines from each bin. The
whole procedure was the same for 10-fold and 2-fold tests,
with 10% and 50% of data points (cell lines) respectively re-
moved from each bin.

Test Scheme 5: Evaluate the overall performance of the RSI
algorithm via cross-validation tests

Here, we used the 15 selected drug-cancer cases with 50%
(2-fold cross-validation), 80% (5-fold cross validation) and
90% (10-fold cross-validation) of data for training the
model and the remaining 50%, 20% and 10% as unseen data,
respectively. Similarity of data features (i.e. gene pairs) se-
lected at different folds during cross-validation is a general
measure of the robustness of prediction. Here, Tanimoto
distance (29) that measures similarity between two subsets
of selected gene pairs X and Y from two respective folds
from N-fold cross-validation (where N is 10, 5 and 2) is used:

Ssets = 1 − |X| + |Y| − 2
∣∣X ∩Y

∣∣
|X| + |Y| − ∣∣X ∩Y

∣∣
In each fold, ∼2000–2500 gene pairs are selected from

172,301,766 possible gene pairs. Similarities of gene pairs
over different training sets on different folds are compared.
Using the recovery rate computational procedure, we next
compared the internal accuracy obtained from the whole
dataset with the accuracy obtained for 10-, 5- and 2-fold
cross-validations on these 15 drug-cancer cases.

Pathway enrichment analysis

KEGG canonical pathway enrichment analysis was per-
formed using WebGestaltR v 0.1.1 R package (30) with gene
symbol as input gene ID type against all human genes.
This analysis included 924 genes most frequently found as
a component of n2 top rheostat-like gene pairs in at least
50 out of 1169 drug-cancer cases (Supplementary Data 2).
Default parameters using hypergeometric overlap statistics,
BH multiple test adjustment, and significance level with P-
value < 0.05 are deemed enriched from this 924-gene list.
Similar criteria are used for enrichment analysis of genes
residing in a generic regulostat.

Analysis on the proportion of pooled regulostat-constituent
genes with molecular functions pertaining to drug response
phenotype and drug targets

The top 200 gene pairs identified using recovery rate
procedure for regulostat networks across 1169 drug-
cancer cases were pooled together. Genes that occurred
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in only one drug-cancer case were removed; the re-
sulting 3366 genes were designated pooled regulostat-
constituent genes. The selected molecular functions
pertaining to drug response phenotypes in cancer cells
were evaluated from the following databases: tran-
scription factors (http://www.tfcheckpoint.org/), ki-
nases (https://www.uniprot.org/), metabolic enzymes
(https://www.genome.jp/kegg/), drug metabolizing enzymes
(https://www.genome.jp/kegg/), transporters (http://www.
tcdb.org/), cell cycle (https://www.genome.jp/kegg/), DNA
repair (https://www.mdanderson.org/documents/Labs/
Wood-Laboratory/human-dna-repair-genes.html), apop-
tosis (https://www.genome.jp/kegg/), and cellular stress
(http://software.broadinstitute.org/gsea/msigdb/index.jsp).
In addition, the proportion of known drug targets
(http://www.broadinstitute.org/repurposing) in the selected
top 200 gene pairs was also assessed. Full lists of genes
encoding these functional categories are provided in Sup-
plementary Data 3. 5 × 105 permutations of randomized
gene sets with equal size of pooled regulostat-constituent
genes (i.e. 3366 genes) were generated followed by Fisher’s
exact test (31) where significance of over-representation for
each functional category can be computed. The reference
gene size used is 18564.

Computing chemical similarity of drugs
The PubChem 881-bit substructure molecular finger-

print (ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/
pubchem fingerprints.txt) were calculated for each com-
pound (Supplementary Data 8) using the cdk package ver-
sion 1.5.11 (https://pubs.acs.org/doi/10.1021/ci025584y).
Fingerprints for these compounds were clustered using
hierarchical clustering method with Tanimoto distance
(29) and complete linkage.

Clustering of regulostat-constituent gene pairs vs. drug-
cancer cases

A subset of n2 lists of 1169 drug-cancer cases, which achieve
a stable internal-assignment recovery rate common among
at least five different drug-cancer cases, were selected for
clustering analysis. The clustering analysis was performed
by using hclust function of stat package in R, which uses
the complete linkage method for hierarchical clustering with
default parameters.

WEB-BASED RESOURCE AND SOURCE CODE

We developed a web-based resource using the Shiny pack-
age of R to enable researchers to explore and visualize our
computed results (http://rsi.hulilab.org/). Detailed descrip-
tions of this web-based resource’s features are provided in
the Supplementary File and the online web-based tutorial.
The RSI source code is freely available to academic re-
searchers.

RESULTS

Deciphering regulostat-constituent gene pairs that predeter-
mine drug response phenotypes in cancer cell lines

As proof-of-concept examples for our algorithm, we used
1000 Cell Line (1000CL) data containing 1001 molecularly

annotated human cancer cell lines with drug response data
corresponding to 265 anti-cancer drugs (27). The RSI algo-
rithm first assigns cells into four consecutive bins, or clus-
ters, via k-mean method according to their response phe-
notypes (measured in log-transformed IC50 values). Bins 1
and 4 correspond to sensitive and resistant phenotypes at
either ends of the spectrum, with bins 2 and 3 representing
transitional response phenotypes in between. We requested
that at least 4 different cell lines be presented in each bin
to compute gene–gene coexpression correlation coefficients,
which are necessary to ensure a robust result. The final,
cleaned up data set that meets our criteria contains a total
of 1169 drug-cancer cases (Supplementary Data 1).

We computed the flipping of coexpression correlations
for a gene pair across two extreme phenotypic ends as the
phenotype flipping coefficient (PLC) (Figure 2A and Ma-
terials and Methods RSI algorithm, Stages 2 to 4). Gene
pairs with absolute values of PLCs greater than 0.8 were
deemed to be potential rheostat-like units of a regulostat for
a given cellular phenotype. A linear regression model was
then applied to select authentic, strongly coexpressed gene
pairs with coexpression profiles close to correlation lines for
sensitive (bin 1) and resistant (bin 4) phenotypes (Figure 2A
and Materials and Methods RSI algorithm, Stages 2). The
standard error of the estimate for the fitted regression lines
and confidence interval for the slope of regression lines in
bins 1 and 4 were then computed. Under these selection cri-
teria, the resulting filtered gene pairs exhibited strong but
opposite coexpression correlations in sensitive (bin 1) and
resistant (bin 4) phenotypes, but only showed weak coex-
pression correlations across transitional phenotypes (bins 2
and 3) (Figure 2A). Gene pairs showing MOC characterized
by such flipping of coexpression correlations across sensi-
tive (bin 1) to resistant (bin 4) phenotypes are referred to as
‘rheostat-like gene pairs’.

Recovery rates of top rheostat-like gene pairs reveal evidence
of regulostats in modulating drug responses in cancer cells

Using RSI scores of the top 2000 ranked gene pairs, we ex-
amined to what extent these gene pairs can recover a cancer
cell line’s phenotypic response to a specific drug, given that
drug’s corresponding IC50 value. A step-by-step procedure
to compute the recovery rate with an illustrative example
is provided in the Supplementary File. We assessed the re-
covery rate, or percentage of cell lines correctly recovered to
their drug response phenotypes. We found ∼200 gene pairs
were capable of achieving stable maximal recovery rates out
of 1169 drug-cancer cases (Figure 3A and B) and across
tissue-specific cases (Figure 4A). As shown in Figure 3A
and B, the overall maximal recovery rates for all 1169 drug-
cancer cases are between 60 and 80%, which is comparable
with drug response recovery rates corresponding to each
cancer type (Figure 4A). The recovery rate for whether a
gene pair can correctly recover a specific drug phenotypic
response in a cell line is evaluated based on the distance be-
tween expression profiles of genes constituting a rheostat-
like gene pair to the lm line in each bin. As such, the more
cell lines of a given cancer type that can be recovered to the
known drug response phenotype (including both sensitive
and resistant cells), the stronger the relatedness of this gene

http://www.tfcheckpoint.org/
https://www.uniprot.org/
https://www.genome.jp/kegg/
https://www.genome.jp/kegg/
http://www.tcdb.org/
https://www.genome.jp/kegg/
https://www.mdanderson.org/documents/Labs/Wood-Laboratory/human-dna-repair-genes.html
https://www.genome.jp/kegg/
http://software.broadinstitute.org/gsea/msigdb/index.jsp
http://www.broadinstitute.org/repurposing
ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt
https://pubs.acs.org/doi/10.1021/ci025584y
http://rsi.hulilab.org/
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Figure 3. Assessment and characterization of RSI-inferred rheostat-like gene pairs for their potential constituency in a regulostat. (A) Assessment of
capabilities of RSI-inferred rheostat-like gene pairs to recover cell lines with known drug response phenotypes across 1169 drug-cancer cases by means of
internal-assessment recovery rate. Majority of drug-cancer cases show stable maximal recovery rates at the range of 60–80%. (B) Boxplot for the overall
recovery rate across 1169 drug-cancer cases. (C) Top 40 most commonly observed regulostat-constituent genes across 1169 drug-cancer cases. Frequency
indicates the number of times a given gene presents in a rheostat-like gene pair across the 1169 drug-cancer cases. (D) Enrichment analysis for canonical
pathways of 924 regulostat-constituent genes that are most frequently found in at least 50 out of 1169 drug-cancer cases (frequency ≥ 50).

pair in acting as a ‘rheostat-like’ switch in determining the
extent of drug response. Although at this stage RSI does
not quantify rheostat-like gene pairs in terms of recovery
for both sensitive and resistant cell lines, the recovery rate
can nonetheless be perceived as an approximate measure for
the involvement of a gene pair in predetermining and fine-
tuning drug response phenotype in a given cancer type. Our
study indicates that the top-ranked 200 rheostat-like gene
pairs are constituents of regulostats and their coexpression
profiles can recover known phenotypic responses specific to
a given drug in cancer cell lines.

Assessment of the RSI algorithm via different test schemes
revealed robust existence of rheostat-like gene pairs in prede-
termining drug response phenotypes

We sought to determine whether these rheostat-like gene
pairs that recovered known drug response phenotypes in
cell lines are indeed gene candidates within a regulostat
that predetermine cellular response phenotypes. First, we
evaluated how changing the bin number––from 4 to 6 and
8––affected the conclusion for the existence of rheostat-like
gene pairs. As shown in Supplementary Figure S2A and B,
we found cancer cell lines in the 6- and 8-bin scenarios ex-

hibit drug response phenotype recovery rates comparable
to the 4-bin scenario. Such findings demonstrate changing
bin numbers from 4 to 6 or 8 does not negate the conclu-
sion for the existence of regulostats in predetermining drug
response phenotypes. Supplementary Figure S3 illustrates
PCBP4-ELK3 as an example of such a rheostat-like gene
pair using 4-, 6- and 8-bin scenarios.

To assess the robustness of the identified rheostat-like
gene pairs in recovering specific drug phenotypic responses
in cancer cell lines, we tested the top 200 gene pairs identi-
fied using two different permutation schemes. The rationale
for our approach was that if the top-ranked rheostat-like
gene pairs inferred from real data are indeed biologically
relevant to drug response phenotypes, they should exhibit
good recovery rates in identifying cancer cell lines with de-
fined drug response phenotypes compared with gene pairs
inferred from permutated data. Supplementary Figure S4A
shows substantially better recovery rates of gene pairs in-
ferred from real data compared with gene pairs identified
from permutations on cell line labels (equivalent to permu-
tating the IC50 values), indicating biological relevance of
rheostat-like gene pairs inferred from real data in prede-
termining drug response phenotypes. However, gene pairs
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Figure 4. Assessment and characterization of RSI-inferred rheostat-like gene pairs for their potential constituency in a regulostat derived from specific
tissue of origin. (A) Boxplot for the overall recovery rate across drug-cancer cases correspond to specific tissue of origin by means of internal-assessment
recovery rate. (B) Top 15 most commonly observed regulostat-constituent genes for cancer cells derived from specific tissue of origin. Frequency indicates
the number of occurrences a given gene appears as a constituent of rheostat-like gene pairs across a particular cancer type.

selected from gene name permutated data showed compa-
rable recovery rates with gene pairs inferred from real data
(Supplementary Figure S4B). This is because in the scenario
of permutating gene names, the same corresponding pairs
with rheostat-like MOC inferred from real data will always
be identified except only the names of gene pairs are differ-
ent, therefore the selected pairs from permutated data al-
ways exhibit comparable recovery rates with gene pairs in-
ferred from real data. In summary, our permutation tests
showed that the identified rheostat-like gene pairs from real
data are constituents of regulostats that are relevant in pre-
determining drug response phenotypes in cancer cell lines.

To evaluate how modifications of RSI scoring schemes
affect the ranking of rheostat-like gene pairs, we examined
how the rank order of the top 100 gene pairs are affected
by each of nine modified RSI scoring schemes (see Materi-
als and Methods). As shown in Supplementary Figure S5,
we found Schemes 3, 4, 5, 8 and 9 in general show high
linear correlations to the top 100 rheostat-like gene pairs
identified using the original RSI scoring scheme. The con-
sistency of gene pair ranking correlation between the orig-

inal and Scheme 5 indicates that both additive and multi-
plicative schemes rank top gene pairs equally well. Interest-
ingly, our results suggest excluding PLC and absolute val-
ues of correlation coefficients between Bins 1 and 4 had no
major impact on the ranking of rheostat-like gene pairs as
with the original RSI scoring scheme. We reason that this
is due to the small value differences these two terms con-
tribute to affect the ranking of rheostat-like gene pairs. In
comparing the recovery rates of the top 100 gene pairs iden-
tified by each of the nine modified RSI scoring schemes to
the original RSI scoring scheme, we found the original RSI
scoring scheme exhibits the best recovery rates for 7, and
near best recovery rates for 4, out of 15 drug-cancer case
(Supplementary Figure S6). Our results therefore suggest
that the original RSI scoring scheme performs well in iden-
tifying top-ranked rheostat-like gene pairs that contribute
to predetermining drug response phenotypes.

To test how changing the sample size can affect the distri-
bution of PLC and RSI scores, we designed N-fold tests akin
to N-fold cross-validation tests used in machine learning
methods (see Materials and Methods). Using SB-715992-
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LUNG cancer case as an illustrative example (Supplemen-
tary Figure S7), we found comparable RSI score distribu-
tion for all of the tested folds (10-, 5-, 2-fold performed at
90%, 80% and 50% of original data size; see Supplementary
Data 4 for all tested 15 drug-cancer cases). These results
suggest that the computed RSI scores are robust, at least
up to a 50% reduction of the original sample size.

Finally, we evaluated the overall performance of the RSI
algorithm in detecting rheostat-like gene pairs of a regulo-
stat via cross-validation tests. We employed 10-, 5- and 2-
fold cross-validations on the selected 15 drug cancer cases.
In each fold ∼2000–2500 gene pairs were selected from
172,301,766 possible gene pairs. Similarity heatmaps for the
identity of ∼2000–2500 gene pairs selected from each of
these folds using Tanimoto distance are provided in Supple-
mentary Data 5. Due to the large number of possible gene
pair combinations (172,301,766 gene pairs), the probabil-
ity of selecting any random set size of 2500 pairs out these
possible combinations will be: 100 × (2500/172301766) ∼
0.001451%. Thus, the probability of selecting exactly two
similar sets out of 10-fold cross-validation is almost 0. The
worst performance is at the 2-fold cross-validation with sim-
ilarity distance 0.09, with P-value <1.0e-6 computed from
1,000,000 permutation test indicates statistical significance
in finding rheostat-like gene pairs in each of these folds.

Using the recovery rate computation procedure, we then
assessed the RSI performance by comparing the inter-
nal accuracy (i.e. recovery rate obtained by using whole
dataset) with the accuracies obtained from 10-, 5- and 2-
fold cross-validation tests. Plots for performance of each
cross-validation fold corresponding to the 15 drug-cancer
cases are provided in Supplementary Data 6. Supplemen-
tary Figure S8A–C summarizes the distribution of accura-
cies cumulated at selected top 200 gene pairs that recovered
known drug response phenotypes in cell lines for 10-, 5- and
2-fold cross-validation tests, respectively. As shown in Sup-
plementary Figure S8, both internal and cross-validation
tests show high distribution of accuracies greater than 80%
of performance for 10-, 5- and even 2-fold cross-validations,
indicating that the top 200 gene pairs selected by the RSI al-
gorithm are indeed rheostat-like gene candidates involved in
predetermining drug response phenotypes of cancer cells.

Although lower fold cross-validations using a smaller
number of samples for training processes often yield lower
performance rates, we investigated whether the drop of in-
ternal accuracies in lower fold cross-validations, in partic-
ular 2-fold cross-validations, may be due to specific drug
signals embedded in the selected 15 drug-cancer validation
models. Since our cross-validations were performed for one
drug-one cancer type for a total of 15 selected drug-cancer
cases (i.e. 15 drug-cancer models with respect to 2-, 5- and
10-fold cross-validations), surveying the change of internal
accuracies across different folds of cross-validations based
on drug similarity might provide clues for the existence of
specific drug signals. We therefore performed drug simi-
larity analysis on 15 drugs whose chemical structures (in
SMILES formats) are available from PubChem and HMS
LINCS DB (Supplementary Data 7 and 8). Chemical simi-

larity of these 15 drugs was computed using PubChem 881-
bit substructure molecular fingerprint and clustered based
on Tanimoto distance (29) and the result is represented as
a dendogram in Supplementary Figure S9A. Heatmaps for
average internal accuracies for 15 drug-cancer cases corre-
sponding to 2-, 5- and 10-fold cross-validations was then
organized based on chemical similarities (Supplementary
Figure S9B-D). As shown in Supplementary Figure S9A,
drugs within sister branches of mitomycin C (13 drugs in-
cluding mitomycin C) in general show high average internal
accuracies in 10-fold cross-validations (>93%) but the av-
erage internal accuracies generally drop in lower fold cross-
validations and 5 of these drugs drop to <80% of average in-
ternal accuracies at 2-fold cross validations. However, IPA-3
and elesclomol, which belong to different chemical families
than mitomycin C and its sister branches exhibit much more
stable internal accuracies across all 2-, 5- and 10-fold cross-
validations. The finding that specific drug signals affect in-
ternal accuracies in lower fold cross-validation models in-
dicates the existence of drug–network interactions, which
warrant further investigation.

Frequently observed regulostat-constituent genes are key
components in cancer-associated pathways

Having uncovered rheostat-like gene pairs for each drug-
cancer case, we sought to identify the top 40 most fre-
quently observed genes comprising the pairs across 1169
drug-cancer cases (Figure 3C). Closer inspection of the bio-
logical functions played by these top 40 genes revealed strik-
ing functional relatedness to the hallmarks of cancer pro-
gression and survival (32) (Supplementary Data 9). Fur-
ther enrichment analysis for canonical pathways involv-
ing 924 genes most frequently observed as a component
of the top 200 rheostat-like gene pairs in at least 50 out
of 1169 drug-cancer cases (frequency ≥ 50) (Supplemen-
tary Data 2) also revealed striking relatedness to cancer-
associated pathways (Figure 3D). Of particular interest, the
Hippo signaling pathway, which is responsible for control-
ling organ size during development via regulation of cell
proliferation and apoptosis and has been found to be el-
evated in liver cancer (33), was among the top enriched
pathways. Yes-associated protein 1 (YAP1), which is among
the top 40 most frequently observed regulostat-constituent
genes (Figure 3C), is the component of the Hippo signal-
ing pathway that functions as a tumor suppressor by pro-
moting apoptosis (Supplementary Data 9). In addition to
the Hippo signaling pathway, other highly enriched canon-
ical pathways also strikingly correlated with cancer biology
(Figure 3D). These pathways regulate cancerous signaling
(PI3K-Akt signaling pathway, MAPK signaling pathway,
p53 signaling pathway, TGF� signaling pathway, Rap1 sig-
naling pathway), cell remodeling (focal adhesion, tight junc-
tion, ECM-receptor interaction, proteoglycan in cancer, cell
adhesion molecules, regulation of actin cytoskeleton, ad-
herens junction), cell death (apoptosis), protein processing,
and folate biosynthesis that is crucial for DNA replication
and cell division. Of note, the top 15 most commonly ob-
served regulostat-constituent genes were specific to their tis-
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sue of origin (Figure 4B). Taken together, our analyses re-
vealed regulostats that predetermine drug response in can-
cer cells are composed of genes driving cancer cell survival.

Transcription factors, kinases, drug targets and genes with
molecular functions related to drug responses are over-
represented among pooled regulostat-constituent genes

Given the molecular milieu affects signaling events and
the fine-tuning of cellular response phenotypes, we sought
to elucidate the molecular functions of key components
within regulostats. In particular, we sought to determine
the extent to which regulostat-constituent genes pooled
from 1169 drug-cancer cases (called pooled regulostat-
constituent genes hereafter) consist of transcriptional reg-
ulators, kinases, and metabolic enzymes, as well as other
functional categories related to drug response phenotypes,
including drug metabolic enzymes, transporters, DNA re-
pair, cell cycle, apoptosis and cellular stress, and the propor-
tion of these pooled regulostat-constituent genes that are
known drug targets.

Our survey indicated transcription factors (18.38%), drug
targets (12.92%), metabolic enzymes (8.08%), and kinases
(3.12%) represent four major functional categories found in
pooled regulostat-constituent genes (Supplementary Figure
S10 and Supplementary Table S2). Apoptosis (1.04%), cell
cycle (1.01%), and cellular stress (0.65%) were additional
molecular functions represented in the data. Results from
Fisher’s exact test reveal that 7 out of 10 of these selected
drug response-related molecular functions are significant at
the threshold level of P-value < 0.05 (Supplementary Table
S2).

Further analysis of the top 20 most frequently observed
genes from these drug response phenotype-related genes
suggest their central roles in regulating processes such
as cell growth, repair, homeostasis, and apoptosis (Sup-
plementary Figure S11), which collectively predetermine
drug response phenotype under specific molecular con-
texts. For instance, transcription factors YAP1 (Yes As-
sociated Protein 1), ESRRG (Estrogen Related Receptor
Gamma), and kinases TGFBR1/2 (Transforming Growth
Factor Beta Receptor 1/2), ERBB4 (Erb-B2 Receptor Ty-
rosine Kinase 4), CDK6/7 (Cyclin Dependent Kinase 6/7)
are known to play important roles in cell cycle. Of note,
a number of the top 20 metabolic enzymes such as AOX1
(Aldehyde Oxidase 1), ADH7 (Alcohol Dehydrogenase 7),
HSD17B1 (Hydroxysteroid 17-Beta Dehydrogenase 1), and
MAOB (Monoamine Oxidase B) are involved in xenobi-
otic metabolic processes related to drug metabolism such as
cytochrome P450 and dopamine metabolism. In addition,
metabolic enzymes such as ATP5G2 (ATP Synthase Mem-
brane Subunit C Locus 2) and SUCLG2 (Succinate-CoA
Ligase GDP-Forming Beta Subunit) are important in ener-
getic processes required to sustain cellular activities.

Generic regulostat network indicates core genes that regulate
diverse drug responses

We next sought to identify and characterize rheostat-like
gene pairs observed in multiple drug response phenotype
by reconstructing a network we termed a generic regulo-
stat. To examine the molecular signals underpinning gene

pairs observed in regulostat networks of at least five drug-
cancer cases, the top 200 gene pairs that achieved stable
internal-assignment recovery rates as described above were
clustered according to their respective PLCs. The overall
clustered heatmap (Supplementary Data 10) featured data
from cancers derived from blood, lung, and the digestive
tract. As shown in Figure 5A, clustering results showed that
cancer cell lines derived from the same tissue of origin clus-
tered together with a number of defined drugs, suggesting
the role of cellular context in shaping drug–gene pair in-
teractions and the mode-of-action of drugs. For instance,
BMS-708163.1 (� -secretase inhibitor), vinorelbine (micro-
tubule inhibitor), bleomycin (DNA damage), docetaxel (mi-
crotubule inhibitor), and mitomycin C (DNA cross-linker)
clustered together for cancer cell lines derived from the di-
gestive tract via gene pairs PPP3CA (Protein Phosphatase
3 Catalytic Subunit Alpha)-ESRRG (Estrogen Related Re-
ceptor � ) and PPP3CA-GCG (glucagon) (Figure 5A). Our
results therefore indicate the existence of drug–gene pair in-
teractions under specific cellular contexts.

Next, pathway enrichment analysis for genes residing
in the generic regulostat network shown in Figure 5B re-
veals a number of metabolic pathways (drug metabolism
- cytochrome P450 and metabolism of xenobiotics by cy-
tochrome P450, TCA cycle, sphingolipid metabolism, tryp-
tophan and tyrosine metabolism, glycerolipid metabolism,
and retinol metabolism) are enriched (Supplementary
Data 11). In addition, numerous cancer-related pathways
(MAPK signaling pathway, endocytosis, VEGF signaling
pathway, calcium signaling pathway, Adherens junction,
phosphatidylinositol signaling system, ECM-receptor in-
teraction, TGF-beta signaling pathway, and ErbB signaling
pathway) as well as immune response-related pathways (T-
and B-cell receptor signaling pathway, natural killer cell me-
diated cytotoxicity and cytokine–cytokine receptor interac-
tion) are also enriched (Supplementary Data 11). Because
the generic regulostat is composed of gene pairs observed in
at least five different drug-cancer cases, we anticipate that
these gene pairs and their associated pathways, in principle,
play important roles in drug–network interactions prede-
termining the extent of cancer cell response phenotypes to
a broad range of drugs.

Closer examination of the generic regulostat network
(Figure 5B) revealed genes such as PPM1A (protein phos-
phatase, Mg2+/Mn2+ dependent, 1A), TMEM260 (a trans-
membrane protein), ABCA4 (ATP-binding cassette, sub-
family A (ABC1), member 4), LOC100507480 (an un-
characterized non-coding RNA gene), MAPK1 (mitogen-
activated protein kinase 1), KRT222 (keratin 222), PPP3CA
(protein phosphatase 3, catalytic subunit, alpha isozyme),
and FGF20 (fibroblast growth factor 20) appear most fre-
quently among rheostat-like gene pairs in different drug-
cancer cases (Figure 5B). We posit that these genes play
a role in determining the extent of diverse cancer drug
response phenotypes and associations of these ‘high fre-
quency’ genes to other genes in the generic regulostat im-
ply novel functional crosstalk in determining common drug
response phenotypes in diverse types of cancer cells. In
particular, MAPK1 appears as a hub in connecting DI-
RAS3 (DIRAS family, GTP-binding RAS-like 3), CT55
(Cancer/Testis Antigen 55), KRT8 (keratin 8) and NAA11
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Figure 5. Characterization of rheostat-like gene pairs in a generic regulostat. (A) Selected clustering results featuring cancer cells derived from lung, digestive
tract, and blood based on PLC values for gene pairs from n2 lists for at least 5 of 1169 drug-cancer cases achieving a stable internal-assignment recovery
rate. Colors indicate PLC values. Grey: no PLC available for a gene pair in a given drug-cancer case. (B) Regulostat network comprised of rheostat-like
gene pairs observed in at least 5 of 1169 drug-cancer cases. Node size represents the frequency (i.e. number of occurrences) for a given gene and edge
thickness represents the frequency a given gene pair normalized by 5 across 1169 drug-cancer cases.

(N(alpha)-acetyltransferase 11, NatA catalytic subunit),
suggesting a key role of functional crosstalk mediated
by these genes in modulating broad drug response phe-
notypes in cancer cells. Equally important is the ‘high
frequency’ gene pairs, in particular PPAP2A (phospha-
tidic acid phosphatase type 2A) with RALYL (RALY
RNA binding protein-like), ZNF322 (zinc finger protein
322) with TKTL1 (transketolase-like 1), FGF20 (fibroblast
growth factor 20) with THADA (thyroid adenoma asso-
ciated), ZFP42 (zinc finger protein 42 homolog (mouse))
with APOOL (apolipoprotein O-like), PPP3CA (protein
phosphatase 3, catalytic subunit, alpha isozyme) with ES-
RRG (estrogen-related receptor gamma), and PPP3CA
with GCG (glucagon). Although these genes are known to
play key roles in cellular homeostasis and survival, our work
reveals their novel functional crosstalk within a regulostat
to determine drug response phenotypes in cancer cells. In-
triguingly, we noticed a relatively high number of zinc finger
proteins (ZC3H8, ZDHHC23, ZFP42, ZNF217, ZNF239,
ZNF322, ZPLD1) are present in the generic regulostat net-
work (Figure 5B), highlighting the potential key roles of
transcriptional regulation by these zinc finger proteins in
determining general drug response phenotypes in cancer
cells.

Construction of regulostat networks corresponding to single
lung cancer cell lines provides insights to engineer drug re-
sponse phenotypes

Next, we sought to illustrate that RSI is capable of recon-
structing regulostat networks with respect to specific cancer

cell lines (Figure 2B). By comparing regulostat networks
from different cell lines showing similar response pheno-
types to a given stressor, one can delineate common molecu-
lar constituents or mechanisms that are responsible for con-
vergent response phenotypes. In addition, cell line-specific
regulostats allow one to determine genes that are essen-
tial for survival in the presence of a stressor and which
genes may be perturbed to rescue the potentially harmful
effects caused by the stressor. Finally, cell line-specific regu-
lostats for a broad spectrum of stressors facilitate systematic
comparative analyses with sensitive or resistant phenotypes,
which can be important in prioritizing drugs for individual-
ized medicine.

To reconstruct a cell line-specific regulostat, gene pairs
from n2 were chosen if they showed maximum or mini-
mum point on the correlation lines of computed PLCs (Fig-
ure 2B). The selected gene pairs were then used to recon-
struct a regulostat network corresponding to a given cell
line. We reconstructed regulostats for selected lung cancer
cell lines corresponding to drug FK866, a highly specific
noncompetitive inhibitor of nicotinamide phosphoribosyl-
transferase as illustrative examples (Figure 6). Networks of
regulostats corresponding to FK866-sensitive lung cancer
cell lines SBC-3 (Figure 6A) and NCI-H1876 (Figure 6B)
and FK866-resistant lung cancer cell lines SW1573 (Figure
6C) and SK-LU-1 (Figure 6D) were constructed.

Here, the signs (i.e. positive and negative) of PLCs are
important to infer MOC of drug–gene pair interactions in
predetermining the response phenotype corresponding to a
cell line and how to manipulate it. As shown in Figure 2A,
positive PLC for a given gene pair indicates a flip of MOCs
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Figure 6. Cell line-specific regulostats of lung cancer cells. (A) Regulostat specific to an SBC-3 lung cancer cell line that is sensitive to drug FK866 (bin
1). (B) Regulostat specific to NCI-H1876 lung cancer cell line that is sensitive to drug FK866 (bin 1). (C) Regulostat specific to SW1573 lung cancer cell
line that is resistant to drug FK866 (bin 4). (D) Regulostat specific to SK-LU-1 lung cancer cell line that is resistant to drug FK866 (bin 4). The node size
shows the gene expression level for that specific cell line, and its color is red if that gene has the highest expression value in the correlation line of PLC or
blue vice versa (see Figure 2B). Yellow nodes indicate the gene has both the highest and lowest expression when combined with different genes in a given
number of pairs. Red edges: positive PLCs; blue edges: negative PLCs.

from negative (bin 1) to positive gene–gene coexpression
correlation for the resistant (bin 4) phenotype and vice versa
for the negative PLC scenario. For instance, the regulostat
for FK866-sensitive cell line SBC-3 (Figure 6A) shows that
ADAMTS12-TMC5 and ADAMTS12-MLPH are negative
PLC pairs (indicated by blue edges). These gene pairs are at
the minimal side of the correlation line of positive gene–
gene coexpression correlations (indicated by blue nodes) in
bin 1. This means suppressing the expression of these genes
can confer sensitivity of the SBC-3 cell line to FK866. On
the contrary, CD52-PCDHGC3 and TMEM109-TPM1 are
positive PLC pairs (indicated by red edges) of the sensitive
cell line NCI-H1876 (Figure 6B), with one gene at the max-
imal value (red node) and its counterpart gene at the min-
imal value (blue node) of the correlation line of negative
gene–gene coexpression correlation in bin 1. For such a sce-
nario, expressing genes shown in red nodes and suppress-

ing genes shown in blue nodes will strengthen the negative
MOCs of these pairs and in principle will promote sensitiv-
ity of the NCI-H1876 cell line to FK866. Similar principles
of MOC are also applied to resistant cell lines (Figure 6C
and D).

Thus, regulostat network models of single cell lines (or of
an individual organism) provide context-dependent mech-
anistic insights to prioritize key gene pairs capable of mod-
ulating cellular response phenotypes. Moreover, regulostat
networks suggest directionality for potential intervention,
either activation or inhibition of selected gene pairs depend-
ing on their MOC.

DISCUSSION

Understanding how molecular contexts predetermine the
extent of cellular responses has important implications in
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many aspects of biology and medicine. Of note, molecular
phenotyping and the use of cellular response phenotypes
are emerging as important considerations to improve how
biological responses are engineered as well as drug discov-
ery efforts (34–38). Given a cell likely responds to a stres-
sor in a continuous manner, new tools capable of captur-
ing that continuous response rather than simply a binary
‘on’ or ‘off’ response are needed. As such, we devised the
RSI algorithm to identify gene pairs showing rheostat-like
mode-of-cooperation that predetermine and modulate the
cell’s response to a given stressor in a continuous manner.
In essence, the algorithm searches for gene pairs that act
like a rheostat, or an adjustable dimmer switch for a light
bulb (rather than a simple on-off light switch). The RSI al-
gorithm reconstructs networks composed of rheostat-like
gene pairs involved in predetermining cellular response phe-
notypes; we termed such networks regulostats.

Our proof-of-concept study together with a series of in
silico validations provides computational evidence for the
existence of regulostats capable of predetermining drug re-
sponse phenotypes in cancer cells. We reconstruct regulostat
networks corresponding to a given cancer type of interest
across all drugs and also regulostats for specific drug pheno-
typic responses to identify rheostat-like gene pairs. For the
first time, our work provides evidence of drug–regulostat
interactions, where rheostat-like mode-of-cooperative ac-
tion of gene pairs, the basic molecular units of a regulo-
stat, predetermine the extent of drug responses in cancer
cells. This kind of context-specific drug–gene pair interac-
tion is conceptually different from conventional drug–gene
interactions where genetic variations of a drug target are
the major factors causing altered drug actions (24–26). The
RSI algorithm therefore lays the conceptual foundation to
enable researchers to dissect rheostat-like gene pairs collec-
tively constituting a ‘regulostat’ in large-scale omics data,
thus honing in on the networks driving drug response phe-
notypes. Of note, our analyses indicate over-representation
of transcription factors, kinases, drug targets, as well as
genes with molecular functions related to drug responses,
such as apoptosis and cellular stress, in pooled regulostat-
constituent genes. Such findings indicate that transcrip-
tional regulation and signaling via phosphorylation events
are key modulatory modes shaping the activities of a reg-
ulostat in terms of predetermining and modulating how a
cell responds to a particular stressor.

Our work shows regulostats are present in most if not
all cellular contexts corresponding to a given stressor. In
contrast to the conventional gene-based model where cel-
lular response phenotypes are mainly explained by genetic
mutations (39,40) or polymorphisms (41,42), the regulostat
model provides an alternative, systems biology analytical
framework to indicate how cellular response phenotypes
and phenotypic selection are predetermined by bigger-
picture networks or regulostats in a cell capable of fine-
tuning a response. Importantly, by identifying key rheostat-
like gene pairs responsible for conferring drug resistance as
candidates for perturbation, the regulostat model will en-
able researchers to escape the vicious cycle of discovering
a new drug only to have cancer cells acquire resistance to it
(43,44). In principle, rheostat-like genes within inferred reg-

ulostats can be prioritized to modulate drug response, thus
rendering a resistant phenotype sensitive to a given drug.

The utility of RSI is not restricted to studying drug re-
sponse phenotypes. We reason that regulostat models also
have important implications in the area of gene essential-
ity (i.e. the dependency of cells on a particular gene for
survival/fitness under specific conditions). For instance,
genes whose activities that are responsible for resisting the
pressure exerted by a given stressor will confer fitness ad-
vantages for cell adaptation and survival and are essen-
tial for these cells. Therefore, gene essentiality is context-
dependent by nature (45). Deciphering the regulostat with
respect to a stressor therefore can provide insight for essen-
tial genes acting as rheostat-like pairs that confer resistance
to the pressure exerted by the stressor.

Based on its wide implications and the importance of reg-
ulostat models in bioengineering and medicine, we antici-
pate that the RSI algorithm will create a paradigm shift. By
providing mechanistic insights in terms of how gene pairs
cooperate to determine cellular phenotypes, in health and
disease, it is possible to prioritize specific gene target can-
didates. As such, novel biological phenotypes can be engi-
neered to offer the promise of individualized therapy for re-
versing resistance to anticancer drugs.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

Author’s contributions: C.Y.U., M.G.B. and C.Z. con-
tributed equally to this work. C.Y.U., M.G.B., C.Z. and
H.L. contributed to the conception and design of the study.
C.Y.U., M.G.B., C.Z. and H.L. contributed to the acquisi-
tion of data. C.Y.U., M.G.B., C.Z., J.L., C.C. and H.L. con-
tributed to the analysis and interpretation of data. C.Y.U.,
M.G.B., C.C. and H.L. drafted the manuscript. H.L. super-
vised the study.

FUNDING

National Institutes of Health (NIH) [R01CA196631,
R01CA208517, R01AG056318, R01AG61796,
P50CA136393]; Glenn Foundation for Medical Research;
W.M. Keck Foundation; Mayo Clinic Center for Biomed-
ical Discovery and Mayo Clinic Center for Individualized
Medicine. Funding for open access charge: National
Institutes of Health.
Conflict of interest statement. None declared.

REFERENCES
1. Rutkowski,D.T. and Kaufman,R.J. (2007) That which does not kill

me makes me stronger: adapting to chronic ER stress. Trends
Biochem. Sci., 32, 469–476.

2. Sumner,E.R. and Avery,S.V. (2002) Phenotypic heterogeneity:
differential stress resistance among individual cells of the yeast
Saccharomyces cerevisiae. Microbiology, 148, 345–351.
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