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Abstract

Chloroplast (cp) genomes of Lilium amabile, L. callosum, L. lancifolium, and L. philadelphi-

cum were fully sequenced. Using these four novel cp genome sequences and five other pre-

viously sequenced cp genomes, features of the cp genomes were characterized in detail

among species in the genus Lilium and other related genera in the order Liliales. The lengths

and nucleotide composition showed little variation. No structural variation was found among

the cp genomes in Liliales. Gene contents were conserved among four newly sequenced cp

genome in Lilium species, the only differences being in two pseudogenes. We identified 112

genes in 13 functional categories, 18 of which carried introns that were conserved among

the species in Liliales. There were 16–21 SSR loci (>12 bp, >3 repeats) in the cp genomes

in Lilium and the genomic locations of these loci were highly variable among the species.

Average mutations were 15 SNPs per 1kb and 5 indels per 1kb, respectively, in the cp

genomes of the newly sequenced four Lilium species. Phylogenetic classifications revealed

some discrepancies between trees based on the cp genomes and previous classifications

based on the morphology and geographic distributions.

Introduction

Lilies, the plants in the genus Lilium, are perennial herbaceous flowering plants with over 110

species distributed widely in temperate and boreal zones in the Northern Hemisphere [1]. All

lilies grow from large bulbs, plant height ranging from 50 cm to 200 cm. Because lilies bear

large and showy flowers in diverse colors, which are often fragrant, many commercial cultivars
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have been produced by interspecific hybridization [2]. Currently lilies are the number three

flowering crop after roses (Rosa) and mums (Chrysanthermum) worldwide [3].

Taxonomical classification of the genus Lilium has been disputed and repeatedly modified

since its first botanical classification into five sections based on the morphological characters

by Endlicher in 1836 [4]. In 1949, Comber divided the genus into seven sections based on 13

different morphological characteristics and germination types [5]. Although the seven-section

system has been slightly modified by subsequent cytogenetic and interspecific hybridization

analyses [6–7], it is basically solid with only a few species being re-assigned to different sec-

tions. Recently, Pelkonen and Pirttilä [8] reviewed the lily classifications based on the mor-

phology, cytogenetic and molecular analyses, proposing a classification into seven sections as

follows; Martagon, Pseudolirium (American group), Archelirion (Oriental group), Lilium (Can-
didium group), Sinomartagon (Asiatic group), Leucolirion (Trumpet group), and Daurolirion
(L. bulbiferum and Dauricum group).

Chloroplasts are cellular organelles in photosynthetic plants and algae. The chloroplast

genomes (cp genome) vary typically between 120 and 170 kb in, and are comprised of a quad-

ripartite structure that includes two copies of invert repeat (IR) regions separated by a large-

single copy (LSC) and a small-single copy (SSC) region [9–10]. The number of genes encoded

in cp genome varies from 100–120 genes that are often arranged in an operon-like manner

and transcribed as polycistronic precursor mRNAs which are processed into mature mRNAs

by splicing and nucleolytic cleavage [10–12]. The inheritance of the cp genome is predomi-

nantly by maternal inheritance except in a few species of eudicots in the families of Gerania-

ceae, Campanuclaceae and Fabaceae which have biparental cp genome inheritance [10].

Because the uniparental inheritance does not allow sequence shuffling by recombination, the

cp genome sequences have been the primary choice for delineating maternal lineages in plant

systematic studies [13–15]. In Lilium and allied genera, Hayashi and Kawano [16] analyzed the

phylogenetic relationships using two cp genes, rbcL and matK, sequences according to which

the species in the genus Lilium can be grouped into three different major groups. The authors

argued that the molecular-systematic results were not congruent with the classifications based

on morphology. In the phylogenetic analysis of Lilium species endemic in Qinghai-Tibet Pla-

teau (Q-T Plateau) using matK sequences, Gao et al. [17] grouped these lilies into 9 lineages in

which the species in different sections of Comber [4] and Pelkonen and Pirttilä [8] were

mixed. Moreover, the phylogenetic grouping using the matK gene sequences were different

from grouping based on the nuclear ITS sequence [17].

The advent of the next-generation sequencing technology and various bioinformatics tools

have allowed easier gaining of more cp genome sequences in diverse plant species [18–20]. In

lilies, the whole cp genome sequences have been reported for L. taliense [20], L. tsingtauense
[21], L. hansonii [22], L. fargesii [23], L. cernuum [24], L. distichum [25], L. longiflorum [26], and

L. superbum (KP462883). In the present work we are adding four more Lilium species with a

sequenced whole cp genome; L. amabile, L. callosum, L. lancifolium, and L. philadeliphicum. The

four species were chosen to add the chloroplast genomes in the Korean endemic Lilium species

in the section Sinomartagon and compare them with the cp genome of L. philadelphicum that is

a native North American species in the section Pseudolilium [8]. The current report contains

the comprehensive genomic and phylogenomic analyses of the cp genomes in the genus Lilium.

Materials and methods

DNA preparations, sequencing, and assembly

Chloroplast genomes of four Lilium species were sequenced: L. lancifolium, L. amabile, L. callo-
sum and L. philadelphicum. L. lancifolium (Accession No GWL0702), L. amabile (Accession
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No GWL15789), and L. callosum (Accession No GWL3662) were accessions that have been

maintained at the Lilium germplasm nursery in Kangwon National University, Korea. L. phila-
delphicum was an accession collected from its natural habitat (46˚ 2’ 5.63"N; 81˚ 46’ 23.172"

W) close to Sudbury, Ontario, Canada, in June 2016. L. philadelphicum is not on the list of the

endangered or protected species, and no permissions were required for collections of leaves

for this specimen from its natural habitats.

Fresh leaves (~100 mg) were sampled from young plants. Cellular DNA was extracted using

the DNAeasy Plant Maxi Kit (QIAGEN, Valencia, CA, USA). DNA (5 ug) samples were then

sheared to an average size about 300 bp by nebulization with compressed N2 gas. Quality of

the sheared DNA was assessed using a Bioanalyzer 2200 (Agilent Technologies, Santa Clara,

CA, USA), and a paired-end library was constructed using the Illumina Paired-End Library

Kit (Illumina, San Diego, CA, USA). Genomic DNA sequencing was then carried out on a sin-

gle lane of a HighSeq 2000 flow cell by Phyzen Inc. (Seoul, Korea). The sequence was filtered

and assembled using de novo assembly package software, CLC Assembly Cell v.4.2.1 (https://

www.qiagenbioinformatics.com/products/clc-assembly-cell/, Quigen Co., Ltd. Hilden, Ger-

many) for a complete chloroplast genome assembly using the dnaLCW method (de novo
assembly of low coverage whole-genome shotgun sequencing method) as suggested protocol

of Kim et al. [27]. The ambiguous sequences including structural borders and mono-polymer

were manually edited. The complete chloroplast genome map was produced using reported

chloroplast genomes from other Lilium species as references (KM103364 in L. hasonii,
KC968977 in L. longiflorum, KX592156 in L. fargesii, KP462883 in L. superbum) [20–26]. The

circular chloroplast genome map was then drawn using the OrganellarGenomeDRAW tool

(ORDRAW) [28].

Gene and simple sequence repeat (SSR) annotation

Gene annotation of the newly sequenced cp genomes was performed using the Dual Organel-

lar GenoMe Annotator (DOGMA) [29], and all initiation and stop codons were manually

confirmed in the DOGMA-annotated data. Predicted introns were further checked by com-

parison with other cp genome sequences, and all annotated transfer RNA (tRNA) genes were

verified using ARAGORN [30]. SSR sequences were detected with the UGENE program

(http://ugene.net/) by a command “Find tandems” with a default set a minimum size 12 bp

and repeat count 3.

SNPs/Indel analysis

The nine cp genome sequences were aligned using MAFFT version 7 program (http://mafft.

cbrc.jp/alignment/software/). The VCF (variant call format) was built using Msa2vcf (http://

lindenb.github.io/jvarkit/MsaToVcf.html). Then, the SNPs and indels were identified

manually.

Sequence identity and phylogenetic analysis among the cp genomes in

Liliales

Cp genomes of 13 species in the order Liliales (nine Lilium species, two Fritillaria species, one

of each Smilax and Alstroemeria species) were used for sequence identity and phylogenetic

analyses. The cp genome of Allium cepa (order Asparagales) was used as an out-group in the

analyses. Except for the four newly sequenced cp genomes, the cp genomes were downloaded

from GenBank. A multiple sequence alignment was then generated in ClustalW, and gaps

were edited using the MEGA5 program [31]. For sequence identity comparison and sequence

divergence along the cp genomes, sequences were compared and plotted using the mVISTA
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program (http://genome.lbl.gov/vista/mvista/submit.shtml). For phylogenetic analyses, two

data sets were used; one with the whole cp genome sequences and another with protein coding

sequences. After maximum parsimony analysis was performed with PAUP v4b10 [32], maxi-

mum likelihood (ML) analyses were performed with 1000 bootstrap replicates using

RAxML-HPC BlackBox v.8.1.24 at Cipres Science Gateway site (http://www.phylo.org/tools/

obsolete/raxmlhpc2.html#) [33].

Results

Cp genome length and AT contents among the Lilium species

The complete cp genomes of four Lilium species were successfully assembled using high-qual-

ity Illumina sequence data filtered by CLC Assembly Cell software. The cp genomes were

assembled with average coverage depth 177x in L. amabile, 92x in L. callosum, 58x in L. lancifo-
lium, 116x L. philadelphicum, respectively, using at least 13 Gbp genome sequence data gener-

ated by Illumina sequencer platform (S1 Table). Table 1 summarizes the length of cp genomes

and GC contents in Lilium species. Total lengths of the cp genomes range from 152,175 in L.

philadelphicum to 153,235 in L. fargesii. The lengths of LSC range from 81,580 in L. philadel-
phicum to 82,230 in L. longiflorum, and those of SSC from 17,038 in L. fargesii to 17,620 in L.

hansonii, respectively. The lengths of IRs varies from 26,491 in L. callosum to 26,990 in L. farge-
sii. The nucleotide compositions of cp genomes had a high AT content in the range of 62.93%

in L. philadelphicum to 63.01% in L. fargesii. The IR regions showed lower AT ratio than the

LSC and SSC regions in all Lilium species. Thus, the length and nucleotide variations were low

among the cp genomes in the Lilium species. The four newly sequenced cp genomes in the cur-

rent study did not show any structural and gene order variations (Fig 1). The cp genomes were

deposited to GenBank with accession numbers KY940844 for L. lancifolium, KY940845 for L.

amabile, KY940846 for L. callosum, and KY940847 for L. philadelphicum, respectively.

Genes encoded in the cp genomes in lilies

In each cp genome of the four newly sequenced Lilium species, we annotated a total of 156

genes, of which 102 are protein-coding genes, 46 are tRNA genes, and 8 are ribosomal RNA

(rRNA) genes (S2 Table). Because some genes are duplicated or triplicated, the 156 genes are

classified into 112 different genes. Table 2 shows the 112 genes that are classified into 13 func-

tional categories, with no differences among the four newly sequenced cp genomes. The LSC

and SSC regions contain 96 and 12 genes, respectively, and each IR region has 24 genes that

are inversely oriented to one another. There are two pseudogenes, ndhG in L. philadeliphicum

Table 1. Chloroplast genome length and A+T contents among eight Lilium species.

species L. ama L. call L. lan L. phil L. han L. long L. far L.dis

Total length (bp) 152,567 152,626 152,574 152,175 152,655 152,793 153,235 152,598

LSC (bp) 82,001 82,040 82,005 81,580 82,051 82,230 82,217 82,031

SSC (bp) 17,582 17,604 17,585 17,521 17,620 17,523 17,038 17,487

IRs (bp) 26,492 26,491 26,492 26,537 26,492 26,520 26,990 26,540

% of AT

LSC 65.16 63.92 65.15 65.07 65.18 62.98 65.28 65.08

SSC 69.26 69.30 69.26 69.41 69.31 69.21 69.26 69.32

IRs 57.52 57.51 57.52 57.50 57.52 57.56 57.80 57.52

Total 62.97 62.99 62.97 62.93 63.00 62.98 63.01 62.94

https://doi.org/10.1371/journal.pone.0186788.t001
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and cemA in L. amabile, L. callosum and L. lancifolium, which carried premature stop codons

(Table 2).

Eighteen genes contain introns; ten protein-coding genes (rps16, atpF, rpoC1, petB, petD,

rpl16, rpl2, ndhB, rps12, ndhA) and six tRNA genes (trnK-UUU, trnG-UCC, trnL-UAA,

trnV-UAC, trnI-GAU, trnA-UGC) have single introns, whereas two protein-coding genes (clpP
and ycf3) have two introns each. One intron-containing gene (rps12) is trans-splicing, having

the first exon in the LSC and the second and third exons in IR regions (Table 2).

Of the 18 intron-containing genes, introns in 17 genes were conserved among the species

in the genera Lilium, Fritillaria, and Smilax in the order Liliales (Table 3). The intron in

trnG-UCCwas not present in the L. fargesii and two Fritillaria species. Six genes including the

trnG-UCC showed intron absence in Allium cepa in the order Asparagales.

SSR sequences in the cp genomes in Lilium species

We identified 96 SSR loci with a threshold of over 10 bp and 3 repeats and the 96 SSR loci con-

sisted of 14 di-nucleotide repeats, 74 tri-nucleotide repeats, and 8 tetra-nucleotide repeats in L.

lancifolium cp genome (data not shown). When the stringency was increased to a threshold

over 12 bp and 3 repeat count, the number of SSR loci was narrowed to 42 SSR loci which con-

sisted of eight di-nucleotide repeats, 12 tri-nucleotide repeats, 17 tetra-nucleotide repeats, and

five penta-nucleotide repeats (Table 4). The SSR loci were mostly present in the LSC regions

except of the three loci in SSC. No SSR locus was present in the invert repeat regions (IRs).

Twelve, three, and 27 SSR loci were present in intronic regions, exons and intergenic spacers,

respectively. The number of SSR loci varied from 16 in L. lancifolium to 21 in L. fargesii and

the presence/absence polymorphisms were highly variable among the species. Of the 42 SSR

Fig 1. Chloroplast genome maps of four Lilium species. The gene orders of the cp genomes of L. amabile, L. callosum, and L. lancifolium were

identical but different from the cp genome of L. philadelphicum by two pseudogenes (red arrows). The former three cp genomes have a

pseudogene ndhG in SSC region, but this pseudo gene was absent in L. philadelphicum. The pseudogene cemA in LSC was present in the cp

genome in L. philadelphicum, but absent in the former three cp genomes.

https://doi.org/10.1371/journal.pone.0186788.g001
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loci, only four loci were present in all the Lilium cp genomes. L. amabile and L. callosum shared

exact SSR loci and repeat numbers. The SSR loci in L. lancifolium were all present in L. amabile
and L. callosum, but one locus (trnL-UAA) at LSC was different in the number of repeats as

(AT)8 in L. lancifolium and (AT)10 in L. amabile and L. callosum

SNPs and Indels among cp genomes in Lilium species

We identified 3,018 mutations which consisted of 2,271 SNPs and 747 indels among the 4

newly sequenced cp genomes (Table 5, S3 Table). The average variations were 15 SNPs per 1

kb and 5 indels per 1kb, respectively. The most variable region was in the introns with 67.7

mutations per 1 kb, followed by the intergenic region with 36 mutations per 1 kb. Of the 112

genes, 80 genes showed variations (Fig 2, S4 Table). Of the 80 genes with SNPs, only 27 had

indels. The number of SNPs in a gene was not related with the number of indels, 19 genes hav-

ing more SNPs than indels, while 7 genes had more indels than SNPs (S5 Table). Gene length

was highly correlated with the number of SNPs, but the the number of indels was not related

with the gene length. Four of the 46 tRNA genes showed variations.

Sequence divergence along the cp genomes among species in Liliales

We identified no major structural variations such as inversions or large deletions in cp

genomes of the 9 Lilium species. Sequence divergence hotspot regions along the cp genomes

Table 2. Gene products of the cp genomes in L. amabile, L. callosum, L. lancifolium and L.

philadelphicum.

Photosystem I psaA, B, C, I, J, ycf32), ycf4

Photosystem II psbA, B, C, D, E, F, H, I, J, K, L, M, N, T, Z

Cytochrome b6/f petA, B1), D1), G, L, N

ATP synthase atpA, B, E, F1), H, I

Rubisco rbcL

NADH oxidoreductase ndhA1), B1), C, D, E, F, G5), H, I, J, K

Large subunit ribosomal

proteins

rpl21) 3), 14, 161), 20, 22, 233), 32, 33, 36

Small subunit ribosomal

proteins

rps2, 3, 4, 73), 8, 11, 12 1) 3) 4), 14, 15, 161), 18, 193)

RNA polymerase rpoA, B, C11), C2

Unknown function protein

coding gene

ycf1, 23)

Other genes accD, ccsA, cemA6), clpP2), matK

Ribosomal RNAs rrn163), 233), 4.53), 53)

Transfer RNAs trnA-UGC1)3), trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnfM-CAU,

trnG-GCC, trnG-UCC1), trnH-GUG3), trnI-CAU3), trnI-GAU1)3) trnK-UUU1),

trnL-CAA3), trnL-UAA1), trnL-UAG, trnM-CAU, trnN-GUU3), trnP-UGG,

trnQ-UUG, trnR-ACG3), trnR-UCU, trnS-GCU, trnS-GGA, trnS-UGA,

trnT-GGU, trnT-UGU, trnV-GAC3), trnV-UAC1), trnW-CCA, trnY-GUA

1) Gene containing a single intron
2) Gene containing two introns
3) Two gene copies in IRs
4) Trans-splicing gene
5) Pseudogene in L. philadelphicum
6) Pseudogene in L. amabile, L. callosum and L. lancifolium

https://doi.org/10.1371/journal.pone.0186788.t002
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were analyzed among nine Lilium species. Five other species (two Fritillaria species, Smilax
china, Alsroemeria aurea, and Allium cepa) were included in the cp genome variation survey

(Fig 3). Among the Lilium species, most sequence variations were found in the noncoding

intergenic regions in the LSC and SSC regions. Two hypervariable regions were identified in

the gene-sparse intergenic regions in LSC, and are designated by bars at the top of Fig 3. The

sequence variations in the IR regions were comparably lower than the LSC and SSC regions.

In comparisons beyond the Liliales, sequence variations were also present in intergenic regions

throughout the cp genomes. As expected, sequence divergence among the species in Liliaceae

(the genera Lilium and Fritillaria) was lower along the whole cp genomes, compared to the

divergence among all the species.

Phylogenetic analysis among species in Liliales

Phylogenetic trees based on the whole-cp genomes and those based on the 71 protein coding

genes were not different from each other, and showed clustering which agreed with the taxo-

nomical hierarchical order (Fig 4). Allium cepa in the order Asparagales was out-clustered

from the species in Liliales. Among the species in Liliales, Alstroemeria aurea in the family

Alstroemeriacea and Smilax china in the family Smilaceae were out-grouped from the Liliaceae

species. The two Fritillaria species showed distinct clustering from the species in the genus

Lilium. The nine Lilium species were clustered in two groups; one group with three Sinomarta-

gon lilies (L. lancifolium, L. callosum, and L. amabile), one Martagon lily (L. hansonii), and one

Leucolirion lily (L. longiflorum), and another group with two Pseudolirium lilies (L. superbum
and L. philadelphicum), one Sinomartagon lily (L. fargesii), and one Martagon lily (L.

distichum).

Table 3. Presence or absence of introns in 18 genes in 13 species in the order Liliales and Allium cepa.

Genes L. am L. ca L. la L. ph L. ha L. lo L. su L. di L. fa F. ci F. ta S. ch A. au A. ce

petB o o o o o o o o o o o o o -

petD o o o o o o o o o o o o o -

rpl2 o o o o o o o o o o o o o o

rpl16 o o o o o o o o o o o o o -

rps16 o o o o o o o o o o o o o -

atpF o o o o o o o o o o o o o o

rpoC1 o o o o o o o o o o o o o o

ndhA o o o o o o o o o o o o o o

ndhB o o o o o o o o o o o o o o

ycf3 o o o o o o o o o o o o o o

rps12 o o o o o o o o o o o o o -

clpP o o o o o o o o o o o o o o

trnA-UGC o o o o o o o o o o o o o o

trnG-UCC o o o o o o o o - - - o o -

trnI-GAU o o o o o o o o o o o o o o

trnK-UUU o o o o o o o o o o o o o o

trnL-UAA o o o o o o o o o o o o o o

trnV-UAC o o o o o o o o o o o o o o

Note: L am; L. amabile: L. ca; L. callosum: L la; L. lancifolium: L. ha; L. hannai: L. su; L. superbum: L. di; L. distichum: L. fa; L. fargesii: L. ci; L. cirrnum: F. ci;

Fritillaria cirrhosa: F. ta; F. taipaiensis: S. ch; Smilax china: A. au; Altroemeria aurea: A. ce; Allium cepa.

https://doi.org/10.1371/journal.pone.0186788.t003
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Table 4. Distribution of SSR sequences in the cp genomes of Lilium species.

SSR type L. am L.ca L.la L.ph L.ha L.lo L.su L.fa L.di

AT - - - - - - - 6 6 LSC(trnK-UUU)*

AT 6 6 6 7 6 6 6 6 - LSC(trnS-GCU- trnG-UCC)***

AT - - - - - 6 - - - LSC(trnS-GCU- trnG-UCC)***

AT - - - - - - 6 - 6 LSC(rpoB-trnC-GCA)***

AT - - - - - 6 6 7 6 LSC(trnL-UAA)*

AT - - - - - 6 - - - LSC(petB-petD)***

AT 10 10 8 - 8 - - - - LSC(trnL-UAA)*

AC - - - - - - 6 - - LSC(psbK-psbI)***

AAT - - - - 4 - - - - LSC(accD-psaI)***

ATA 4 4 4 - 4 4 - 4 4 LSC(petD-rpoA)***

ATT - - - - - 4 - - - LSC(ycf1)**

TTG - - - - - 6 - - - LSC(matK-rps16)***

TTG 4 4 - - - - - - - LSC(rps16)*

TAT 4 4 4 4 4 - 4 - 4 LSC(trnT-UGU-trnL-UAA)***

TAT - - - - - - 4 4 4 LSC(petD-rpoA)***

TTA 4 4 4 4 4 4 4 4 4 LSC(trnV-UAC)*

TTA - - - 4 - - - - - LSC(psaJ-rpl33)***

TTA 4 4 4 4 5 4 - - - SSC(rps15-ycf1)***

GAA 4 4 4 4 4 4 4 4 4 LSC(accD-psaI)***

AAAT - - - - - 3 - - - LSC(rps16-rtnQ-UUG)***

AAAT - - - 4 - - - - - LSC(psbM-trnD-GUC)***

AAAT - - - - - - - 3 3 LSC(psaJ-rpl33)***

AAAT 4 4 4 3 4 3 3 3 4 SSC(ndhG-ndhI)***

AATA 3 3 3 3 3 3 3 3 3 LSC(rpl22)**

AATA 3 3 3 3 3 3 3 3 3 SSC(ndhD)**

AATT 3 3 3 3 3 3 3 3 3 LSC(atpI-rps2)***

ATTT - - - - - - - - 3 LSC(rpoC1)*

AGAA - - - - - - - 3 3 LSC(trnS-GCU-trnR-UCU)***

AGAA 3 3 3 3 3 3 3 - - LSC(trnG-UCC-trnR-UCU)***

TTTA 3 3 3 3 3 3 3 3 - LSC(rpoC1)*

TTTA 3 3 3 3 3 3 - - - LSC(rpoC1)*

TTTA - - - 3 - - 4 3 3 LSC(psaA-ycf3)***

TTAT - - - 3 - - 3 3 3 LSC(ycf3)*

TTAT - - - 3 - - - 3 3 LSC(trnT-UGU-trnL-UAA)***

TTCT - - - 3 - - 3 3 3 LSC(rpl16)*

TAAT 3 3 3 - 3 3 - - - LSC(psbM-trnD-GUC)***

AAATA - - - - - - - 3 - LSC(atpH-atpI)***

AATTA - - - - - 3 - - - LSC(rbcL-accD)***

AAATA - - - - - - 3 3 - LSC(atpH-atpI)***

TTTAC 3 3 3 - 3 - - 3 - LSC(rpoC1)*

TTAAG - - - - 3 - - - 3 LSC(accD-psaI)***

* Intron region

** Coding region

*** Intergenic region

https://doi.org/10.1371/journal.pone.0186788.t004
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Discussion

This report contains novel cp genome sequences of four Lilium species and other previously

sequenced cp genomes in Liliales for the purpose of genomics and phylogenomics analyses,

based on the whole cp genome sequences. The cp genomes in nine Lilium species, including

five previously sequenced cp genomes showed remarkably low variations in length, base com-

positions, gene contents, intron retentions, and genome structure. Cp genomes of certain line-

ages of land-plants have undergone gene losses and significant structural rearrangements [34].

A good example is the genus Astragalus in the family Fabaceae, in which inversions and gene

losses resulted in the variations in cp genome structure and gene contents between species

[19]. In the analysis of 81 genes from 64 plastid genomes, Jansen et al. [34] reported 62 inde-

pendent gene and intron losses that are limited to more derived monocot and eudicot clades.

Kim and Kim [26] surveyed gene losses among cp genomes in monocots and noted that gene

Table 5. Numbers of SNPs and indels in different regions of cp genomes in L. amabile, L. callosum, L. lancifolium and L. philadelphicum.

Intergenic Genic Total

51,365 bp Exon Intron 152,567 bp

84,026 bp 17,176 bp

No. of SNPs 1,305 966 1,047 2,271

Frequency (%) 2.54 1.15 6.1 1.49

No. of InDels 558 73 116 747

Frequency (%) 1.09 0.09 0.68 0.49

Total 1,863 1,039 1,163 3,018

Frequency (%) 3.63 1.24 6.77 1.98

https://doi.org/10.1371/journal.pone.0186788.t005

Fig 2. Numbers of SNPs and indels in 82 genes among nine cp genomes in Lilium species.

https://doi.org/10.1371/journal.pone.0186788.g002
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losses were frequent events in some monocot families. Among three families, Liliaceae, Smila-

ceae, and Alstromeriaceae in the order Liliales, they found that gene content and order were

conserved except of the infA loss in Smilax and Altroemeria. Introns in cp genes were known

to be generally conserved in land-plant cp genomes. We observed an intron loss polymor-

phism in trnG-UCC gene among the Lilium speices and two Frillaria species. This intron, how-

ever, was present in Smilax china and Alstromemeria aurea in Liliales, but absent in Allium
cepa in Asparagales. The presence/absence polymorphism of this gene was also reported both

Fig 3. Sequence identity plots among 13 species in the order Liliales and Allium cepa.

https://doi.org/10.1371/journal.pone.0186788.g003

Fig 4. Phylogenetic trees based on the whole cp genome sequences (A) and functional genes (B) among 13 species in the order Liliales and Allium cepa.

The trees were made using maximum likelihood algorithm and the numbers on the nods designate the bootstrap values.

https://doi.org/10.1371/journal.pone.0186788.g004
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among monocot and eudicot species [34]. Thus, the intron loss of this gene must have hap-

pened independently, rather than in a lineage specific manner.

Simple sequence repeats (SSR) occur in both nuclear and cp genomes in all plants. Cp SSRs

have been demonstrated as robust marker systems in population genetics and ecology [35–37],

but has some drawbacks due to low variation compared to the high polymorphism in nuclear

SSRs [38]. Prior to this report, several cp genomes in Lilium species have been reported [20–

26], but no data on the cp SSRs are available. SSRPs (simple sequence repeat polymorphisms)

are derived from two mechanisms such as unequal crossing-over and DNA replication slip-

page [39]. However, there is no unequal crossing-over in the cp genome SSRs, resulting in the

low intra-specific polymorphisms as noted by Wheeler et al. [38]. Because once the SSR

sequences occur de novo in the cp genome, they may stay in the position in the lineages. Thus,

the presence/absence polymorphisms of the SSR locus between species may be useful indica-

tors in the analysis of genetic relatedness. In practice, L. amabile and L. callosum, shared the

exact loci, these two species also showed a very close phylogenetic relatedness.

Cp genome structural changes have been noted in several unrelated lineages in flowering

plants such as Geraniaceae [40], Onagraceae [41], Campanulaceae [42], and Fabaceae [43].

Inversions and heteroplasmic variations have been reported within the genus Astragalus in the

family Fabaceae [19]. However, no structural variations were observed among the cp genomes

in the genus Lilium in the current study. Conservation of the cp genome structure in Liliales

has also been reported by Kim and Kim [26], supporting our finding of constrained structural

variation in the cp genomes in the genus Lilium. In a comparison between two cp genomes of

tropical trees in the genus Machilus in the family Lauraceae, Song et al. [44] counted 297 muta-

tion events including a micro-inversion, 65 indels, and 231 substitutions. In the coding

regions, they counted 95 SNPs between the two species. The number mutations in the cp

genomes in Lilium species observed in the current study was comparatively higher. The dis-

crepancy between the two studies may derive from the difference in the number cp genomes:

four cp genomes in our study compared to two cp genomes in the study by Song et al [44].

We identified two hypervariable regions in the LSC regions. Zhang et al. [20] surveyed the

mutations in cp genome wide variations in five Epimedium species in the family Berberidaceae,

in which overall variation patterns along the cp genomes are congruent with our results, but

they did not observe such prominent hypervariable. In our analysis, the two hypervariable

regions were also found in the Fritillaria species in Liliaceae. Shaw et al. [14, 45–46] surveyed

noncoding cp DNA sequences among angiosperm species to choose the regions for phyloge-

netic and phylogeographic studies, in which they showed that most variations are in the non-

coding intergenic regions in LSC and SSC regions. Moreover, they reported two variable

regions within the LSC and one within the SSC. The two hypervariable regions in our study

were the same regions as in their report in LSC. However, Smilax and Alstoemeria species in

the order Liliales do not have the conspicuous hypervariable regions which show variations

along the LSC and SSC regions. Thus, the two hypervariable regions might be limited to the

Liliaceae or to the tribe Lilieae.

Cp genome sequences have been employed for phylogenetic analysis in the genus Lilium by

several investigators [20–24, 26]. We are adding four novel cp genomes to have more compre-

hensive analyses on interspecific relationships. Our analyses basically confirms the phyloge-

netic trees based on the whole cp genome sequences and protein coding genes. The nine

Lilium species were clustered into two groups in the phylogenetic trees (Fig 3), which was con-

sistent with the sequence divergence patterns generated by the mVISTA program (Fig 2). Our

results are congruent with the results of Bi et al. [23]. In their study, seven Lilium cp genomes

were grouped into two groups in which the L. superbum (section Pseudolirion) and L. fargesii
(section Sinomartagon) were grouped into one cluster and L. longiflorum (section Leucolirion)
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and L. hansonii (section Martagon) into another. However, the cp genome-based phylogenetic

trees are incongruent with recent classification of the morphological features and geographic

origin [8]. This was also reported by Hayashi and Kawano [16] in their study of phylogenetic

relationships based on two cp genes, rbcL and matK, among Lilium species and related genera.

Gao et al. [17] also noted that the phylogenetic groupings were dissimilar among the Lilium
species collected from Q-T plateau in China based on the nuclear ITS and cp matK sequence

variations. The phylogenetic relationship inferred from retrotransposon based markers

showed the L. lancifolium in Sinomartagon was not grouped with L. callosum and L. amabile in

Sinomartagon section [47]. The two Martagon lilies, L. hansonii and L. distichum were clus-

tered in the same group in their report, but these two species were separated into different

groups in our study. The high bootstrap values indicate the robustness in the current analysis.

Thus, the discrepancies might be derived from the phylogenetic inferences from maternal

inheritance of cp genomes and biparental inheritance of nuclear genomes.

Conclusion

The comparative genomic and phylogenomic analyses of the cp genomes in the genus Lilium
and other related genera in the order Liliales revealed high conservation in length, AT ratios,

gene contents and genome structures. There were 18 intron-containing genes. One intron loss

was observed in species- relationship independent manner. We observed 16–21 SSR loci and

high variations of presence/absence polymorphisms among the cp genomes among the species

in the genus Lilium. Compared to the limited length and structure variations, there were signifi-

cant numbers of sequence variations of SNPs, indels and SSR loci in the cp genomes of the

genus Lilium. The two hyper-variable regions in the LSC may need to be compared with cp

genomes of other distantly related genera for a better understanding of selection constraints

along the cp genomes. Discrepancies in the positions of some species in the phylogenetic trees

should be further analyzed. The presence/absence polymorphisms in SSR loci in the cp genomes

may be expanded to more species to trace for the maternal lineages, as the SSRs stay in the cur-

rent loci after de novo occurrence.
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