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Maintenance of intestinal epithelium homeostasis is a complex process because of the
multicellular and molecular composition of the gastrointestinal wall and the involvement
of surrounding interactive signals. The complex nature of this intestinal barrier system
poses challenges in the detailed mechanistic understanding of intestinal morphogenesis
and the onset of several gut pathologies, including intestinal inflammatory disorders,
food allergies, and cancer. For several years, the gut scientific community has explored
different alternatives in research involving animals and in vitro models consisting of
cultured monolayers derived from the immortalized or cancerous origin cell lines. The
recent ability to recapitulate intestinal epithelial dynamics from mini-gut cultures has
proven to be a promising step in the field of scientific research and biomedicine. The
organoids can be grown as two- or three-dimensional structures, and are derived from
adult or pluripotent stem cells that ultimately establish an intestinal epithelium that is
composed of all differentiated cell types present in the normal epithelium. In this review,
we summarize the different origins and recent use of organoids in modeling intestinal
epithelial differentiation and barrier properties.

Keywords: intestinal epithelial cells, gut organoids, epithelial barrier, inflammatory bowel disease, inducible
pluripotent stem cells, embryonic stem cells

INTRODUCTION

The gastrointestinal tract (GI) is the main organ related to digestive functions, including absorption
and transport of nutrients, water, and electrolytes, and secretion of proteins into the intestinal
lumen for maintaining the balance or homeostasis. The intestinal epithelium is an effective
barrier against the invasion of microorganisms or infectious agents (Turner, 2009). The intestinal
epithelium is composed of a wide layer of specialized and polarized cells interconnected via
their membranes including basement membrane through protein complexes (Clevers, 2013). The
multipotent intestinal stem cells (ISCs) located at the crypt base generate transit-amplifying cells,
which divide successively to generate the following six main types of well-differentiated intestinal
epithelial cells (IECs): goblet cells, Paneth cells, enteroendocrine cells, absorptive cells, tuft cells,

Abbreviations: GI, gastrointestinal tract; ISCs, intestinal stem cells; IECs, intestinal epithelial cells; IBD, inflammatory
bowel diseases; UC, ulcerative colitis; CD, Crohn’s disease; MUC, mucin genes; ESCs, embryonic stem cells; iPSCs, induced
pluripotent stem cells.
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and microfold (M) cells. These cells migrate toward the tip of the
villus or the apex of the crypt in the colon and perform specific
functions in the epithelium (Figure 1A). Paneth cells are located
at the bottom of the crypt and are involved in epithelial defense
as well as stem cell maintenance (Gassler, 2017). Goblet cells are
responsible for the synthesis and secretion of mucus, whereas
enteroendocrine cells produce hormones and neuropeptides that
differ along the rostro-caudal axis of the GI tract. Absorptive cells
are involved in metabolic and digestive functions, as well as in
the generation of innate immune response due to the expression
of specific receptors on their surface (Van Der Flier and Clevers,
2009; Pott and Hornef, 2012). Tuft cells exhibit activity against
helminths, and M cells are associated with immunological
vigilance and maturation via the recognition of luminal antigens
or microorganisms and their subsequent presentation to the
underlying immune cells (Peterson and Artis, 2014).

The main functions of the epithelial barrier are maintaining
the balance of ions, nutrients, and water passage from the lumen
to the organism and restricting the translocation of luminal
antigens such as microorganisms and their harmful derivatives.
The imbalance in intercellular junctional organization and loss
of the intestinal barrier function can lead to the onset of
various diseases, including inflammatory bowel diseases (IBD).
The integrity of the intestinal epithelial barrier is important in
IBD, as it constitutes the delimiting factor for the exposure of
microbiota to the host immune system. Consequently, defects
in intestinal mucosa homeostasis can trigger alterations in
intestinal permeability. This leads to antigen translocation and
signaling cascade activation causing apoptosis, erosion, and
ulceration, which are considered crucial steps in the initiation
or development of chronic intestinal inflammatory disorders
(Zeissig et al., 2004; Schulzke et al., 2006; Mankertz and Schulzke,
2007; Antoni et al., 2014).

Defects in the mucus layer can also trigger IBD manifestation.
Polymorphisms in some mucin (MUC) genes are associated
with IBD pathogenesis (Kyo et al., 2001; Moehle et al.,
2006; McCole, 2014). Loss of functional MUC2 led to
spontaneous manifestation of colitis in mice (Van der Sluis
et al., 2006; Heazlewood et al., 2008). Interestingly, Visschedijk
et al. (2016) observed the development of ulcerative colitis
(UC) in patients carrying MUC2 rare variants. The integrity
of the mucus barrier is important in the protection and
repair of the epithelium during inflammation. However,
whether such defects cause dysregulation in immune system
during IBD initiation is unclear. Additionally, factors such
as host’s microbiota and immune system can affect intestinal
homeostasis. Accordingly, the commensal microbiota plays a
determining role in epithelial differentiation (Rakoff-Nahoum
et al., 2015). Intestinal physiology also depends on luminal factors
including antigens in the diet such as fibers, amino acids, and
proteins. Several nutrients come in contact with microbiota and
epithelium, and are an essential stimulus in the control and
development of the epithelial barrier (De La Serre et al., 2010;
Everard et al., 2013; Anhê et al., 2015; Lerner and Matthias, 2015;
Gil-Cardoso et al., 2016).

Because of the cellular and molecular complexity of the
intestine, elucidating the overall intrinsic mechanisms underlying

the regulation of epithelial homeostasis is difficult. In this regard,
the use of cell lines has been beneficial (Ponce de León-Rodríguez
et al., 2019), however, the immortalized or cancerous nature of
such models have limitations in mimicking the normal cellular
gut epithelium composition. The recent developments in three-
dimensional gut organoid culture systems have revolutionized
the basic and biomedical science research. These systems are
characterized by high regeneration potential from both normal
and diseased primary tissues, and are mini-guts mimicking
the physiological features of their tissue of origin. Various
methodologies based on the use of whole intestinal crypts that
contain adult somatic stem cells or the use of pluripotent stem
cells, either embryonic stem cells (ESCs) or induced pluripotent
stem cells (iPSCs), have been optimized to allow the formation
of villus-crypt-like structures capable of long-term self-renewal
(Sato et al., 2009, 2011; Jung et al., 2011; Múnera and Wells, 2017).

CELL SOURCES FOR ORGANOID
PRODUCTION AND TARGETED
MODELING

Organoids Derived From Intestinal
Crypts
Gut organoid culture was first described using mouse small
intestinal segments (Sato et al., 2009). This approach was further
expanded to other portions of the intestine and was referred to
as “enteroid” culture when the small intestinal origin was used or
“colonoids” when the colon was used as a source (Stelzner et al.,
2012). One crucial cellular component driving the formation
of enteroids is the Lgr5+ stem cell lineage, which leads to the
production of polarized and differentiated enterocytes, goblet,
enteroendocrine, and Paneth cells (Sato et al., 2009). Lgr5+ cells
form a layer that initially resembles a spheroid with subsequent
formation of invaginations, simulating the fission of the crypts
and intestinal architecture observed in vivo (Sato and Clevers,
2013). A study reported that Paneth cells are crucial for the
generation of signals essential for the maintenance of ISCs and
organoids (Sato et al., 2011). Even though these so-called mini-
guts were found to be able to grow in vitro without a need of
mesenchymal niche, the minimal growth conditions for these
entities include factors and extracellular molecules that normally
compose this niche. More precisely, Matrigel, a semi-viscous
medium enriched with the extracellular matrix, provides the
essential microenvironment for IEC self-renewal, differentiation,
and cell–cell interactions (Figure 1A). In addition, a cocktail of
biological enhancers such as the bone morphogenetic protein
inhibitor Noggin, epidermal growth factor, R-spondin-1, and
Wnt3a is required for IEC expansion and maintenance under the
culture conditions (Ootani et al., 2009; Sato et al., 2009, 2011).
An additional conserved feature of organoids compared with
the in vivo system is that organoids exhibit the luminal region
in which apoptotic enterocytes and metabolites are expelled.
However, in contrast to the gut mucosa, where the external milieu
is in contact with the enterocyte apical side, the polarized apical
side of enterocytes faces to the inside of organoids, whereas the
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FIGURE 1 | Methodology to obtain 3D intestinal organoids. (A) Adult stem cells from isolated intestinal crypts allow the development of three-dimensional cultures
reproducing the structure and physiology of the intestine. These mini-guts are embedded in a semi-solid medium (Matrigel) and are grown in the presence of different
factors sustaining stability of their niche, cellular differentiation and maintenance in culture for long periods of time. (B) Pluripotent stem cells (PSCs) or reprograming
of skin fibroblasts can also lead to the formation of these 3D systems.

basolateral region is in contact with the growth medium (Sato
et al., 2009). A recent strategy has been optimized to reverse this
polarity by eversion of the apical side facing the culture medium
(Co et al., 2019).

The use of the CreER/LoxP system, which allows conditional
deletion of a targeted gene in an inducible manner, is a powerful
tool for determining the role of various molecules in gut
organoids that mimic intestinal pathologies (Bohin et al., 2018;
Montenegro-Miranda et al., 2020). The recent establishment of
organoids derived from the biopsies of patients with intestinal
diseases provides the utmost advantage of exhibiting the
similar characteristics of the primary diseased tissue from the
perspective of developing personalized therapies. d’Aldebert
et al. established and characterized colonoids from patients with
IBD and compared them with those of healthy individuals.
They concluded that despite these colonoids exhibit a similar
cellular composition during the first 12 days of culture, IBD-
derived organoids exhibit the characteristics of inflammation
with increased cell death, reversal of cell polarization, and
decreased expression of tight junction proteins (d’Aldebert
et al., 2020). Noben et al. reported that IBD-derived colonoids
are representative tools for assessing the molecular alterations
responsible for the different types of inflammatory disorders in
these patients. For example, the organoid cultures derived from
patients with Crohn’s disease (CD) had a remarkable decrease in
the expression of MUC2 gene transcripts as determined by qPCR

and when compared with the organoids derived from healthy
individuals or patients with UC. However, the inflammatory gene
transcript signatures were not maintained compared with the
original biopsies or the primary tissue sites of the corresponding
patients (Noben et al., 2017).

Organoids and Epithelial Barrier
Properties
Several reports have used gut organoids in studies pertaining
to epithelial barrier functions and host–pathogen interactions.
Using enteroids from wild-type C57BL/6 mice, Farin et al.
(2014) observed a high and rapid sensitivity of Paneth cells
toward degranulation and release of microbial peptides in
the presence of interferon-γ, without generation of a similar
response toward various molecular patterns associated with
the microbes. The aforementioned apical-out enteroids not
only retain their capacity for cell differentiation and native
intestinal functions but also are suitable for barrier permeability
assays including 4 kDa fluorescein isothiocyanate-dextrans
(Co et al., 2019; Figure 2A). Other experimental protocols
include dissociation of organoids, allowing the formation of
polarized 2D monolayers directly on the pore membranes of
Transwell systems (Kozuka et al., 2017; Tong et al., 2018;
In et al., 2019; Figure 2B). Significant efforts are needed to
obtain and reproduce the monolayers that mimic different
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properties of the tissue of origin, such as in vivo epithelial
cell organization, epithelial cell absorption and transport
mechanisms, and transepithelial electrical resistance (Fernando
et al., 2017; Altay et al., 2019). Recently, Wang et al. showed
that the fragmented colonic spheroids seeded as single cells on
Transwells and exposed to an air–liquid interface for 21 days
can recapitulate morphological changes and patterns of cell
differentiation. This allowed goblet cells to produce a thick
protective mucus layer covering the epithelium, opening the
new possibilities for investigating the intestinal barrier under
these conditions (Wang et al., 2019). On the other hand,
Moon et al. (2014) used culture monolayers from colonoids of
multiple genetic mouse strains to study the role of polymeric
Ig receptor during immunoglobulin A transcytosis. Epithelial
barrier dysfunction in the context of pathogen exposure
has also been studied (Noel et al., 2017; Nakamura, 2019).
A group of researchers established suitable enteroid monolayers
derived from the human fetal small intestine to study viral
replication of Enterovirus A71 and bacterial translocation of
Listeria monocytogenes after apical infection (Roodsant et al.,
2020). The colonoids generated from patients with CD could
reproduce epithelial barrier properties, as observed in the
native intestinal epithelium, based on the expression profile
of key junctional components (ZO-1, OCLN, CLDN4, and
CTNNB) and paracellular permeability assays using fluorescein
isothiocyanate-dextran (Xu et al., 2018).

Organoids and IEC Lineage
Differentiation
Gut organoid culture has provided important clues as to
how IECs can integrate external signals from the environment
and intrinsically affect cell fate determination during epithelial
renewal. The high Wnt activity was found to be central to
IEC determination. The high expression of Wnts favors ISC
proliferative status and commitment of Paneth cells, whereas
the low expression leads to the differentiation of enterocytes
and goblet cells (Farin et al., 2014, 2016; Tian et al., 2015; Kim
et al., 2020). Thus, pharmacological activators or inhibitors of
Wnt, in addition to other pathways such as Notch and ROCK,
can be used to manipulate epithelial cell differentiation in the
small intestine toward a specific cellular fate (Yin et al., 2014;
Beumer et al., 2018; Petersen et al., 2018). Similar strategies have
been optimized recently for human and mouse colonoids (Wilson
et al., 2021). Another study has reported the reprograming
capacity of a specific cocktail of transcriptional factors (HNF4γ,
GATA6, CDX2, and FOXA3) to produce gut-like organoids from
mouse fibroblasts (Miura and Suzuki, 2017). HNF4γ was also
proposed to act as a major driver of enterocyte differentiation
by coupling the use of mouse enteroids with integrative systems
biology analysis (Lindeboom et al., 2018). Interestingly, Cldn7
depletion in mouse enteroids revealed the crucial role for this
tight junction membrane protein in the regulation of ISC survival
as well as the differentiation of IEC cell lineage differentiation
(Xing et al., 2020). Organoids offer thus exciting opportunities
to elicit differentiation- related mechanisms in the context of
developmental biology and medicine (Figure 2C).

Organoids Derived From Isolated ESCs
and iPSCs
The organoids derived from ESCs and iPSCs have emerged as
an alternative approach when gut tissues are somewhat limited,
or when invasive procedures are simply not possible for human
patients. This method relies on specifying the progenitor cells
from iPSCs with an optimized protocol sequence involving
specific signals, factors, and culture conditions to ultimately
stimulate their differentiation and subsequent formation of
ex vivo organoids (Forbester et al., 2015; Dotti et al., 2017;
Hibiya et al., 2017). Unlike other cellular systems, the organoids
produced by this method simultaneously promote the presence
of mesenchymal cells (Figure 1B), that surround the intestinal
epithelium, forming a cellular microenvironment similar to
that observed in the intestine (Spence et al., 2011; Gjorevski
et al., 2016; Takahashi et al., 2018). Although many single
organoids can regenerate from iPSCs, these structures do not
recapitulate the mature differentiation process, and rather show
characteristics similar to the embryonic development of the
epithelium, which limits their use in the functional analysis of
gut adult stages (Spence et al., 2011; Fordham et al., 2013).
Furthermore, evidence supports that the organoids derived from
PSCs exhibit a high tendency for tumor formation in the
absence of specific, controlled growth conditions (He et al.,
2020). Nevertheless, considerable efforts have been made to
improve this method and to bring these models closer to the
physiology related to the mature intestinal tissues. One study
enhanced mini-gut maturation and cellular vascularization by
generating enteroids from human ESCs or iPSCs that were
subsequently engrafted in vivo into the kidney capsule of
immunocompromised mice (Watson et al., 2014). Another group
developed the first model of human intestinal organoids with
a functional enteric nervous system using PSC-derived neural
crest cells that allowed contractile activity (Workman et al., 2017).
Similarly, Holloway et al. (2020) grew and co-differentiated
endothelial cell populations in vitro within the culture of human
PSC-derived intestinal organoids, with characteristics similar
to those of the native endothelial cells, and thus ensuring
vascularization of this system. Thus, ESCs and iPSCs are powerful
tools for the study of normal intestinal development (McCauley
and Wells, 2017; Perez-Lanzon et al., 2018; Sugimoto et al.,
2018; Fowler et al., 2020) or for elucidating the mechanisms
underlying the onset of diseases such as cancer (Crespo et al.,
2017; Smith and Tabar, 2019). However, an important limitation
to consider while designing such experimental strategies is the
genetic heterogeneity of iPSCs, as opposed to crypt-derived IECs,
that can further affect the phenotypes and gene expression of
differentiated cells under these assays (DeBoever et al., 2017;
Kilpinen et al., 2017).

Challenges and Future Perspectives
Organoids are 3D structures, which have become the potential
tools for the study of ex vivo intestinal physiology. While mouse
organoid experiments can be functionally validated in vivo with
available genetically modified mouse models, human organoids
provide new perspectives into human biology. However, the

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 August 2021 | Volume 9 | Article 732137

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-732137 August 9, 2021 Time: 12:41 # 5

Gómez and Boudreau Gut Organoids and Barrier Function

FIGURE 2 | Development of 2D monolayers and organoids with reverse polarity for their application in the study of intestinal biology. (A) Reversal of the cell polarity
of intestinal organoids in the absence of extracellular matrix proteins, allows direct access to the apical surface of the epithelium and facilitates interaction with
microbes and other molecules. (B) Transwell-based 2D monolayer culture of IECs can be obtained from the dissociation of enteroids or colonoids. (C) Applications
for organoid models such as drug development, genetic manipulation or pathogen-host interactions and their key uses for basic science and precision medicine.

expansion of progenitor cells that constitute the fundamental
basis of this constantly-renewing system faces challenges in terms
of reproducibility among different laboratories. The variations
involved in this process range from individual manipulation in
the laboratory; oxygen levels and the source and quality of growth
medium factors used in the cultures; methodologies of stem cell
isolation from the primary tissues; and genetic and epigenetic
variability of the cellular source (Shuhendler et al., 2013;
Lehmann et al., 2019). All these parameters represent important
caveats for the successful establishment of gut organoid cultures.
Another important aspect while studying the characteristics of
these cultures is the absence of various cell types that normally
interact with epithelial cells to maintain the homeostasis in
intestinal epithelium. These include immune, mesenchymal,
endothelial, muscle, and nerve cells, as well as microbes and
their metabolites. Setting up mini-gut co-culture conditions with
different cell types, such as isolated intraepithelial lymphocytes,
monocytes/macrophages/neutrophils, or fibroblasts are
attracting the possibility of reproducing the in vivo intestinal
microenvironments under these conditions (Nozaki et al., 2016;
Pastuła et al., 2016; Staab et al., 2020). In addition, the recent
advances offer new possibilities for the genetic engineering of
organoid culture systems. CRISPR/Cas9 technology is one of the
most commonly used genomic editing techniques that combines

Cas9 endonuclease action to short guide RNA sequences
specifically binding to genomic target sequences (Drost et al.,
2017; O’Rourke et al., 2017; Roper et al., 2018). The recent
inclusion of bioengineering strategies to build biomimetic-based
or microfluidic-based scaffolds, gut organoid-on-a-chip which
are built as microfluidic devices allowing continuous perfusion
as it is the case in a living tissue, and organoid-derived intestinal
grafts (Rahmani et al., 2019) might enhance our understanding
of the overall structural and cellular complexity of organoid
culture.

CONCLUSION

Organoid culture has emerged as an important biological tool
for the study of intestinal epithelial biology. Understanding
the mechanisms underlying the successful establishment of
mini-gut from stem cells and mechanisms underlying the
IEC-differentiation process can provide new knowledge for
developing accurate organoid models. These models will be
able to reproduce with greater fidelity for the intrinsic
epithelial pathological defects that affect the intestine during
intestinal diseases. The culture of gut organoids has been
instrumental in testing the functional integrity of the barrier

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 August 2021 | Volume 9 | Article 732137

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-732137 August 9, 2021 Time: 12:41 # 6

Gómez and Boudreau Gut Organoids and Barrier Function

normally established between the host and possible surrounding
pathogens. This combined with the recent development of new
genetic technologies can provide potential opportunities for
implementing this ex vivo culture system in the basic and
clinical research for the purpose of regenerative medicine and
personalized therapies (Figure 2C).
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