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Guidance for the utility of linear models in
meta-analysis of genetic association studies of
binary phenotypes

James P Cook1,3, Anubha Mahajan2,3 and Andrew P Morris*,1,2

Linear mixed models are increasingly used for the analysis of genome-wide association studies (GWAS) of binary phenotypes

because they can efficiently and robustly account for population stratification and relatedness through inclusion of random effects

for a genetic relationship matrix. However, the utility of linear (mixed) models in the context of meta-analysis of GWAS of binary

phenotypes has not been previously explored. In this investigation, we present simulations to compare the performance of linear

and logistic regression models under alternative weighting schemes in a fixed-effects meta-analysis framework, considering designs

that incorporate variable case–control imbalance, confounding factors and population stratification. Our results demonstrate that

linear models can be used for meta-analysis of GWAS of binary phenotypes, without loss of power, even in the presence of extreme

case–control imbalance, provided that one of the following schemes is used: (i) effective sample size weighting of Z-scores or

(ii) inverse-variance weighting of allelic effect sizes after conversion onto the log-odds scale. Our conclusions thus provide essential

recommendations for the development of robust protocols for meta-analysis of binary phenotypes with linear models.
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INTRODUCTION

Linear mixed models (LMMs) have received increasing prominence in
the analysis of genome-wide association studies (GWAS) of complex
human traits because they account for genetic structure, across
participants, which arises from population stratification, cryptic related-
ness or close familial relationships.1–7 In this framework, structure is
modelled by means of a genetic relationship matrix (GRM), constructed
from genome-wide SNP genotype data across study participants (or
from known familial relationships). A random-effects model is then
used to evaluate the evidence of association for an SNP by accounting
for the contribution of the GRM to the overall variance of the trait. This
flexible modelling framework can incorporate fixed effects to account
for covariates, and can be used to estimate components of heritability
that are explained by (subsets of) genotyped SNPs.8,9

Linear models assume that the outcome of interest is a quantitative
trait with a Gaussian distribution. However, it has become increasingly
common to use LMM approaches in population- and family-based
GWAS of binary phenotypes because of their flexibility in accounting
for structure, and their computational tractability in comparison with
logistic mixed models. Linear models have the disadvantage that allelic
effect estimates cannot be interpreted, directly, in terms of the odds
ratio (OR), although approximations on the log-odds scale can be
obtained.10 Recent studies have also demonstrated that LMMs have
less power than traditional logistic regression modelling techniques in
GWAS of case–control phenotypes unless ascertainment is adequately
accounted for.11,12

While the properties of linear (mixed) models in the analysis of
GWAS of binary phenotypes at the cohort level have been explored

previously,10 their utility in the context of meta-analysis has not been
investigated. In this study, therefore, we present simulations to
compare the type I error rates and power of generalised linear (mixed)
models under alternative weighting schemes in a fixed-effects meta-
analysis framework. We consider a range of study designs that
incorporate variable case–control imbalance across GWAS to reflect
the increasing use of large-scale, population-based biobanks, and
investigate the impact of confounders and population stratification on
the properties of the analytical strategies. We conclude by making
recommendations for the development of robust protocols for meta-
analysis of GWAS of binary phenotypes with linear (mixed) models,
which will be highly relevant in the era of large-scale consortium
efforts to unravel the genetic basis of complex human diseases.

MATERIALS AND METHODS
Consider a GWAS of n participants, with binary phenotypes, genome-wide
genotypes and additional covariates denoted by y, G and x, respectively. We
denote the phenotype of the ith participant by yi∈ {0, 1}, and their genotype at
the jth SNP by Gij∈ [0, 2], coded under a dosage model in the number of
minor alleles. In a generalised linear mixed modelling framework,

g E y½ �ð Þ ¼ aþ bGj þ gx þ u ð1Þ
where g(.) is the link function, β is the allelic effect of the jth SNP on the
phenotype and γ is a vector of covariate regression parameters. In this
expression, u is a vector of random effects, defined by u~MVN(0, λK), for
the variance component λ and GRM K, derived from genome-wide SNP data
(or known familial relationships) to account for population structure.
A likelihood ratio test with one degree of freedom is then formed by comparing
the maximised log likelihood of the unconstrained model (1) with that
obtained under the null hypothesis of no association, β= 0. Note that model
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(1) reduces to a generalised linear model (no random effects) for λ= 0, which is
appropriate in the absence of structure because of population stratification and/
or familial relationships.
Under a logistic regression model, for the logit link function, the maximum-

likelihood estimate of the allelic effect, b̂LOG , can be interpreted directly as the
log-OR of the jth SNP. However, under a linear regression model, for the identity
link function, the maximum-likelihood estimate of the allelic effect, b̂LIN, is
measured on the wrong scale. Nevertheless, we can obtain an approximation of
the allelic log-OR and corresponding variance from the linear model,10 given by

b̂LOG
0 E

b̂LIN
âLIN 1� âLINð Þ

and

Varðb̂LOG0 Þ ¼ Varðb̂LINÞ
âLIN 1� âLINð Þ½ �2

where âLIN is the maximum-likelihood estimate of the intercept. In practice, âLIN
is usually obtained from the null model for which βLIN=0, because the effect of
any SNP on the phenotype is expected to be small. Here, we estimate â by the
proportion of participants that are cases, for which the correction factor
âLIN 1� âLINð Þ½ ��1 is minimised when the number of cases and controls in the
study is equal (ie, no imbalance). This transformation of parameter estimates
from the linear regression model has been demonstrated to provide an accurate
approximation of the allelic log-OR provided that genetic effects are small, the
case–control ratio is well balanced and the SNP is common.10

Fixed-effects meta-analysis
Consider N GWAS, for which we have tested for association of the phenotype
with the jth SNP under a generalised linear model (1). We denote the effective
sample size of the kth GWAS by nk, given by

4n0kn1k
n0k þ n1k

where n0k and n1k denote the number of controls and cases, respectively. In the
kth GWAS, we also denote the P-value obtained from the regression model by
pk, and the estimated allelic effect from the regression model by b̂k.
Under an effective sample size weighting scheme, we obtain a combined

Z-score for association of the jth SNP across GWAS by

ZðSSÞ ¼
P

kf
�1 pk

2

� � b̂k
b̂kj j

� � ffiffiffiffiffi
nk
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P

k

ffiffiffiffiffi
nk
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where ϕ− 1 is the inverse normal distribution function. Alternatively, under an
inverse-variance weighting scheme, we obtain an estimate of the allelic effect of
the jth SNP on the phenotype, and the corresponding variance, across GWAS by

B ¼ Var Bð Þ
�X

k

b̂k Var b̂k
� �h i�1

�

where

Var Bð Þ ¼
�X

k

Var b̂k
� �h i�1

��1

We then obtain a combined Z-score for association of the jth SNP across
GWAS by

ZðIVÞ ¼ Bffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Bð Þp

Simulation study
We have performed a series of detailed simulations to investigate the type I
error rates and power of alternative approaches to study-level association testing
of a binary phenotype (linear and logistic regression modelling) in the context
of fixed-effects meta-analysis (with effective sample size or inverse-variance
weighting schemes), summarised in Table 1.
Our first study design consisted of 10 cohorts of a binary phenotype,

ascertained from the same population, each comprising of 2000 participants.
We considered three scenarios for case–control imbalance, described in Table 2,
such that the meta-analysis comprised a total of 10 000 cases and 10 000
population controls: (i) no imbalance (1:1 ratio in each cohort); (ii) moderate
imbalance (variable ratio of 3:1 to 1:3 across cohorts); and (iii) extreme
imbalance (variable ratio of 19:1 to 1:19 across cohorts). For each scenario, we
investigated models of association parameterised according to: (i) the risk allele
frequency (RAF) of the causal SNP, denoted q; and (ii) the allelic OR for the
risk allele, denoted ψ.
For each model, we generated 10 000 replicates of genotype data for the

causal SNP in the study participants. For each replicate, genotypes were
simulated in the required numbers of cases and controls in each cohort,
according to the causal SNP RAF and allelic OR, and assuming Hardy–
Weinberg equilibrium. Specifically, genotypes in cases and controls were
simulated from a multinomial distribution, with probabilities given by

P RRjcaseð Þ ¼ c2q2=T

P Rrjcaseð Þ ¼ 2cq 1� qð Þ=T

P rrjcaseð Þ ¼ 1� qð Þ2=T

P RRjcontrolð Þ ¼ q2

P Rrjcontrolð Þ ¼ 2q 1� qð Þ

P rrjcontrolð Þ ¼ 1� qð Þ2
where R denotes the risk allele and T ¼ c2q2 þ 2cq 1� qð Þ þ 1� qð Þ2.
To assess the impact of confounders on the alternative analysis strategies, we

also simulated a binary covariate for each individual from a Bernoulli distribution,
taking the value 1 in cases with probability o= 1� oð Þ and 0 otherwise, and
taking the value 1 in controls with probability 1= 1� oð Þ and 0 otherwise.
We also investigated the impact of population stratification on the alternative

analysis strategies. Within each cohort, cases and controls were ascertained
from sub-population A with probabilities θ and (1− θ), respectively, and were

Table 1 Summary of approaches to study-level association testing of a binary phenotype

Study-level analysis Random effects? Summary statistic Meta-analysis weighting Meta-analysis summary statistic(s)

Logistic regression No P-value Effective sample size P-value
Logistic regression No Allelic effect on log-odds scale Inverse variance P-value and effect size on log-odds scale

Linear regression No P-value Effective sample size P-value
Linear regression No Alelic effect on linear scale Inverse variance P-value and effect size on linear scale

Linear regression No Allelic effect converted to log-odds scale Inverse variance P-value and effect size on log-odds scale

Linear regression GRM P-value Effective sample size P-value
Linear regression GRM Allelic effect on linear scale Inverse variance P-value and effect size on linear scale

Linear regression GRM Allelic effect converted to log-odds scale Inverse variance P-value and effect size on log-odds scale

Abbreviation: GRM, genetic relationship matrix.
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otherwise ascertained from sub-population B. The RAFs in sub-populations A
and B were assumed to be 0.4 and 0.6, respectively, and used to generate
genotypes at the causal SNP under Hardy–Weinberg equilibrium, from a
multinomial distribution, as defined above. For each individual, we then
simulated genotype data for 1000 additional uncorrelated SNPs, assuming
Hardy–Weinberg equilibrium, and independent of case–control status, from a
multinomial distribution. For each SNP, we assumed minor allele frequencies
of 0.2 and 0.8, respectively, in sub-populations A and B. Genotypes at the 1000
SNPs were then used to construct the GRM within each cohort.
Our second study design consisted of two cohorts of a binary phenotype,

ascertained from the same population. The first cohort consisted of 1000 cases
and 1000 controls. The second cohort represented a large biobank of 100 000
individuals, within which we investigated the impact of the extent of case–
control imbalance on the meta-analysis. For each scenario, we assumed a causal
SNP RAF of 0.5 and an allelic OR of 1.25, and generated 10 000 replicates of
genotype data for the causal SNP in the study participants. For each replicate,
genotypes were simulated in the required number of cases and controls in the
two cohorts, assuming Hardy–Weinberg equilibrium, from a multinomial
distribution, as described above.
For both study designs, we used a linear Wald test, implemented in EPACTS,

to obtain parameter estimates and association P-values under a linear regression
model (no random effects) within each cohort for each replicate. To obtain
parameter estimates under a logistic regression model (no random effects)
within each cohort, we used a Firth bias-corrected likelihood ratio test, also
implemented in EPACTS, which has been demonstrated to be more robust to
case–control imbalance than Wald or score statistics for binary outcomes.13 To
obtain parameter estimates under a LMM (random effects for GRM) within
each cohort, we used EMMAX,1 also implemented in EPACTS. We combined
summary statistics through fixed-effects meta-analysis with effective sample size
and inverse-variance weighting using METAL14 and GWAMA,15 respectively.
Across all scenarios, each test of association, after meta-analysis, was

evaluated at nominal significance thresholds of Po0.05 and Po0.01, and at
the traditional genome-wide standard of Po5× 10�8. For estimated allelic
effect sizes on the log-odds scale (from the logistic regression model and after
conversion from the linear regression model), we also evaluated bias and mean
square error (MSE).

RESULTS

No population stratification or confounders
We first considered the properties of fixed-effects meta-analysis of
association summary statistics obtained from linear and logistic
regression models without random effects for the GRM and for
simulations generated in the absence of structure or confounders.
Supplementary Figure S1 presents the type I error rate (at a nominal
5% significance threshold) of each of the analytical strategies

considered (Table 1) for an SNP with RAF in the range of 1–50%.
For all frequencies investigated, the type I error rate was consistent
with the nominal significance threshold of Po0.05, irrespective of the
analytical approach and the extent of case–control imbalance.
Figure 1 presents the power (at genome-wide significance) of each

of the analytical strategies considered (Table 1), as a function of the
allelic OR, for an SNP with RAF in the range of 1–50%. There is no
appreciable difference in power between the five approaches unless
there is extreme case–control imbalance. In this extreme imbalance
setting, the power of the meta-analysis under inverse-variance
weighting of effect sizes from the linear model (without conversion
to the log-odds scale) is substantially lower compared with that for the
other approaches. However, we also observe a loss in power of the
meta-analysis under inverse-variance weighting of effect sizes from the
logistic regression model for rare SNPs (RAF 1%), irrespective of the
extent of case–control imbalance, which has not been reported
previously. We observe the same pattern of results at less stringent
significance levels (Supplementary Figure S2), with the inverse-
variance weighting of effect sizes from the linear model (without
conversion to the log-odds scale) being substantially less powerful
when there is extreme case–control imbalance.
Supplementary Figures S3 and S4 present the bias and MSE of the

estimated allelic OR after meta-analysis under the inverse-variance
weighting of effect sizes from the logistic regression model and the
linear regression model after conversion to the log-odds scale. Results
are presented as a function of the allelic OR. There is minimal
difference in both metrics between the two meta-analysis strategies.
However, for rare SNPs (RAF 1%), the meta-analysis under inverse-
variance weighting of effect sizes from the logistic regression model
underestimates the allelic OR, irrespective of case–control imbalance,
explaining the reduction in power of this strategy that was
observed above.

Impact of a confounding variable in the absence of population
stratification
We next considered the properties of fixed-effects meta-analysis of
association summary statistics obtained from linear and logistic
regression models without random effects for the GRM and for
simulations generated in the absence of structure, but where the binary
phenotype was also correlated with a confounding variable. We
assumed a causal SNP with RAF 50% and an allelic OR of 1.15 for
the binary phenotype. Supplementary Figure S5 presents the power (at
genome-wide significance) of each of the five analytical strategies
considered (Table 1), as a function of the relative risk of the
confounding variable, defined by o= 1� oð Þ. As expected, there is a
general decline in power to detect association across analytical
strategies as the relative risk of the confounder of the binary phenotype
increases. However, as demonstrated by the simulations in the absence
of confounders, the inverse-variance weighting of effect sizes from the
linear model (without conversion to the log-odds scale) was less
powerful when there is extreme case–control imbalance.
Supplementary Figure S5 also presents the bias and MSE of the

estimated allelic OR after meta-analysis under the inverse-variance
weighting of effect sizes from the logistic regression model and the
linear regression model after conversion to the log-odds scale. Results
are presented as a function of the relative risk of the confounding
variable. Irrespective of the case–control imbalance, the estimated
allelic OR after conversion to the log-odds scale becomes increasingly
biased (underestimated) as the relative risk of the confounding
variable increases, although power is not affected.

Table 2 Summary of case–control counts in each cohort for

alternative imbalance scenarios considered in the simulation study

Cohort No imbalance Moderate imbalance Extreme imbalance

Cases Controls Cases Controls Cases Controls

1 1000 1000 600 1400 100 1900

2 1000 1000 700 1300 300 1700

3 1000 1000 800 1200 500 1500

4 1000 1000 900 1100 700 1300

5 1000 1000 1000 1000 900 1100

6 1000 1000 1000 1000 1100 900

7 1000 1000 1100 900 1300 700

8 1000 1000 1200 800 1500 500

9 1000 1000 1300 700 1700 300

10 1000 1000 1400 600 1900 100

Total 10 000 10 000 10 000 10 000 10 000 10 000
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Impact of population stratification
We then considered the properties of fixed-effects meta-analysis of
association summary statistics obtained from linear regression models,
with and without random effects for the GRM and for simulations
generated in the presence of population stratification (cases and
controls ascertained from sub-populations A and B). Supplementary
Figure S6 presents the type I error rate (at a nominal 5% significance
threshold) of each analytical strategy considered (Table 1) as a
function of the probability, θ, that a case is ascertained from sub-
population A. Irrespective of the extent of population stratification, the
type I error rate was consistent with the nominal significance
threshold of Po0.05 for any fixed-effects meta-analysis strategy using
the linear model with random effects for the GRM. However, as
expected, type I error rates became increasingly inflated as the extent
of population stratification was elevated for all fixed-effects meta-
analysis strategies using the linear model without a random effect for
the GRM.
Figure 2 presents the power (at genome-wide significance) of the

three fixed-effects meta-analysis strategies that aggregate association
summary statistics from the linear model with random effects for the
GRM, for a causal SNP with allelic OR of 1.15 for the binary
phenotype. There is no appreciable difference in power between the
analytical strategies, unless there is extreme case–control imbalance. In
this extreme imbalance setting, the power of the meta-analysis under
inverse-variance weighting of effect sizes from the linear model
(without conversion to the log-odds scale) is substantially lower
compared with that for the other approaches. The difference in power
between these approaches is consistent, irrespective of the extent of
population stratification.

Impact of inclusion of a population biobank with extreme case–
control imbalance
Finally, we considered the properties of fixed-effects meta-analysis of
association summary statistics obtained from linear and logistic
regression models without random effects for the GRM, for simula-
tions generated in the absence of structure. In these simulations,
association summary statistics were aggregated from a population
biobank of 100 000 participants with extreme case–control imbalance
and a balanced case–control study of 2000 participants. Figure 3
presents the power (at genome-wide significance) of each of the
analytical strategies considered (Table 1), for a causal SNP with RAF
50% and an allelic OR of 1.25, as a function of the number of cases in
the population biobank. As reported above, in this extreme imbalance
setting, the power of the meta-analysis under inverse-variance
weighting of effect sizes from the linear model (without conversion
to the log-odds scale) is substantially lower compared with that for the
other approaches. The difference in power reduces as the extent of the
imbalance in the biobank decreases (i.e. the proportion of cases
increases), and thus has most detrimental impact for rare diseases.

DISCUSSION

We have presented simulations to evaluate the utility of linear models
in the context of meta-analysis of GWAS of binary phenotypes. Our
results highlight that the extent of case–control imbalance across
studies can have a major impact on the performance of a linear
regression model. We have demonstrated that, for extreme imbalance,
meta-analysis under inverse-variance weighting of allelic effect esti-
mates from a linear regression model results in a substantial reduction
in power, unless they are first converted onto the log-odds scale. This
is of particular importance because existing, widely used software16 for

Figure 1 Power to detect association (at genome-wide significance, Po5×10−8) of a binary phenotype with a causal SNP, in the absence of population
stratification or confounders, using alternative meta-analysis strategies for summary statistics obtained from linear and logistic regression models without
random effects for the GRM (Table 1). Results are presented as a function of the allelic OR, for a causal SNP with RAF in the range of 1–50% and for
variable extent of case–control imbalance (defined in Table 2).
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the meta-analysis of association summary statistics from LMMs
implements inverse-variance weighting of allelic effect estimates
without conversion to the log-odds scale.
For a binary phenotype, under a linear regression model, the

standard error of an allelic effect estimate is dependent on multiple
factors, including allele frequency, total sample size, OR and variance
of the trait. For a fixed total sample size, the variance of the trait (and
thus standard error of the allelic effect estimate) decreases as the case–
control imbalance becomes more extreme. However, the power to
detect association with the binary phenotype is less in imbalanced
studies, and they should, in fact, be given less weight in any meta-
analysis. Correction of allelic effect estimates from the linear regression
model onto the log-odds scale circumvents this issue by inflating the
corresponding standard error by a factor that is inversely proportional
to the case–control imbalance.
Case–control imbalance is becoming increasingly widespread in

GWAS of binary phenotypes, particularly with the availability of large-
scale, extensively studied, population-based biobanks, often with

linkage to electronic medical records.17–20 The utility of linear models
in these extremely imbalanced case–control designs has not been
previously studied in the context of meta-analysis. Crucially, our
investigation highlights that linear models can be used for meta-
analysis of GWAS of binary phenotypes, without loss of power, even in
the presence of extreme case–control imbalance, provided that one of
the following schemes is used: (i) effective sample size weighting of
Z-scores or (ii) inverse-variance weighting of allelic effect sizes after
conversion onto the log-odds scale.
Our simulations demonstrate that meta-analysis of association

summary statistics for binary phenotypes from LMMs is robust to
population stratification, even in the presence of extreme case–control
imbalance. However, it is important to note that this conclusion is
valid only when population stratification does not lead to violation of
the LMM assumption of homoscedasticity, for which residual
variances are constant, irrespective of covariates.21,22 Heteroscedasti-
city can occur in the presence of population stratification, for example,
when strata have variable case–control imbalance or heterogeneous

Figure 2 Power to detect association (at genome-wide significance, Po5×10−8) of a binary phenotype with a causal SNP, in the presence of population
stratification (cases and controls ascertained from sub-populations (A and B), using alternative meta-analysis strategies for summary statistics obtained from
linear regression models with random effects for the GRM (Table 1). Results are presented as a function of the probability that a case is ascertained from
sub-population A, for a causal SNP with allelic OR of 1.15 for the binary phenotype and for variable extent of case–control imbalance (defined in Table 2).
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disease risk. Under these circumstances, LMMs are valid only for
variants that have similar RAFs across strata, such that there is only
weak confounding due to structure. Otherwise, computationally
efficient software will be required to implement logistic mixed models
on the scale of the whole genome.
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Figure 3 Power to detect association (at genome-wide significance, Po5×10−8) of a binary phenotype with a causal SNP, in the absence of population
stratification or confounders, using alternative meta-analysis strategies for summary statistics obtained from linear and logistic regression models without
random effects for the GRM (Table 1). Association summary statistics were aggregated from a population biobank of 100 000 participants with extreme
case–control imbalance and a balanced case–control study of 2000 participants. Results are presented for a causal SNP with RAF 50% and an allelic OR of
1.25, as a function of the number of cases in the population biobank.
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