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Abstract: (1) Background: pediatric hydrocephalus is a challenging condition. Programmable
shunt valves (PSV) have been increasingly used. This study is undertaken to firstly, to objectively
evaluate the efficacy of PSV as a treatment modality for pediatric hydrocephalus; and next, review its
associated patient outcomes at our institution. Secondary objectives include the assessment of our
indications for PSV, and corroboration of our results with published literature. (2) Methods: this is
an ethics-approved, retrospective study. Variables of interest include age, gender, hydrocephalus
etiology, shunt failure rates and incidence of adjustments made per PSV. Data including shunt
failure, implant survival, and utility comparisons between PSV types are subjected to statistical
analyses. (3) Results: in this case, 51 patients with PSV are identified for this study, with 32 index
and 19 revision shunts. There are 3 cases of shunt failure (6%). The mean number of adjustments
per PSV is 1.82 times and the mean number of adjustments made per PSV is significantly lower
for MEDTRONIC™ Strata PSVs compared with others (p = 0.031). Next, PSV patients that are
adjusted more frequently include cases of shunt revisions, PSVs inserted due to CSF over-drainage
and tumor-related hydrocephalus. (4) Conclusion: we describe our institutional experience of PSV
use in pediatric hydrocephalus and its advantages in a subset of patients whose opening pressures
are uncertain and evolving.

Keywords: pediatric hydrocephalus; programmable shunt valve; ventriculoperitoneal shunt

1. Introduction

Hydrocephalus is the most prevalent neurosurgical problem encountered in the pedi-
atric population [1–3]. Affected children represent a disproportionate share of all admis-
sions to hospital [4]. The most frequent method of cerebrospinal fluid (CSF) diversion is the
ventriculoperitoneal shunt (VPS) [2]. Although the VPS extends survival and leads to im-
proved neurological outcomes, it has notable shortcomings that may compromise patients’
quality of life [2]. Modifications have been developed in the existing shunt systems, in order
to circumvent problems associated this treatment modality [5]. For example, programmable
shunt valves (PSV) have been increasingly used for patients with hydrocephalus. This is
because incorporating a valve with an adjustable opening pressure has the advantage of
enabling neurosurgeons to make non-invasive alterations in the opening pressure of the
valve as the patient’s clinical course temporally changes after VPS insertion [6–8]. Nonethe-
less, clinical studies on the efficacy of PSV have been conflicting—some have reported no
significant differences in shunt failure rates between PSV versus traditional fixed pressure
valves (FPV) in children [2,9], while others have demonstrated otherwise [5,10]. Presently,
there exists no definite consensus regarding which type of shunt is preferred in the pediatric
population, and under what circumstances they should be considered [9,11–19].
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As part of the largest children’s hospital in Singapore, our Neurosurgical Service is no
stranger to the challenges of managing children with shunts. This is particularly relevant
for patients who undergo physiological changes that may affect CSF drainage rates during
their lifetimes. The primary aims of this study are to review firstly, the use of PSV as a
treatment modality for pediatric hydrocephalus; and next, the associated patient outcomes
at our institution. Secondary aims include the evaluation of reasons for our use of PSV and
corroboration of our results with published literature.

2. Materials and Methods
2.1. Study Design and Patient Demographics

This is an ethics-approved, retrospective study of prospectively collected data con-
ducted in KK Women’s and Children’s Hospital (SingHealth Centralised Institutional
Review Board, CIRB Reference: 2020/2416). The inclusion criteria encompass all patients
less than 18 years old who are diagnosed with hydrocephalus and subsequently had a PSV
inserted as part of their VPS construct. In addition, patients who failed other previous
techniques of CSF diversion and underwent insertion of VPS with a PSV are included.
Patients above the age of 18 years, those who do not have hydrocephalus, and patients
with incomplete clinical information are excluded. Demographic data is retrieved from the
hospital’s electronic medical records and, or hardcopy notes. For the purposes of this study,
we define ‘index shunts’ as VPS inserted for the first time in individual patients, including
those who failed prior other techniques of CSF diversion, including endoscopic third
ventriculostomy (ETV). Next, ‘revision shunts’ refer to VPS inserted after their previous
implant(s) have failed, regardless of the underlying cause.

2.2. Incidence of Opening Pressure Adjustments in PSV

As part of the study, the cumulative number of opening pressure adjustments made
per PSV after shunt insertion is tabulated. Here, only adjustments that are therapeutically
directed (i.e., based on patient’s clinical and, or radiological indications) are included.
(Figure 1). Adjustments made in cases of prior inadvertent opening pressure changes (such
as, after exposure during MRI scans) are excluded. The endpoint of this subgroup analysis
is to determine whether the use of PSV in each patient has been appropriate. In the context
of this study, this translates to the assumption that a higher number of shunt adjustments
means that this subset of patients has appropriately benefitted from the use of PSV, in
comparison to being initially fitted with FPV.

Figure 1. General overview of common indications for adjustments to PSV in study population.

2.3. Statistical Methods

Statistical analyses are generated using SPSS version 27 (Statistical Package for the
Social Sciences Statistics, IBM, USA). The Pearson chi-square test or Fisher exact test is used
to compare categorical variables, as appropriate. The Wilcoxon-signed ranked test is used
to compare continuous variables. Odds ratios (ORs) and 95% confidence intervals (CIs) for
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risk factors of VPS failure and malfunction are calculated by univariate logistic regression
analyses. The Kaplan-Meier method is used to estimate the overall time to shunt failure,
and the log-rank test is used to compare the different brands of PSV and failure difference
between index and revision-type PSV shunts. A p-value of <0.05 is considered statistically
significant for this study.

3. Results
3.1. Overview of Study Population and its Demographics

A total of 396 patients are identified for this study from 1 January 1997 to 31 May 2021.
In this cohort, there are 51 cases of PSV insertion (12.8%). This compares with 345 cases of
FPV shunts, and 88 cases of endoscopic third ventriculostomy (ETV). Next, the youngest
patient with a PSV is 2 months old, while the oldest is 18 years old (mean age = 6 years
6 months old; median age = 4 years old). More PSV are inserted in males (29 cases; 59% of
all PSV patients) than in females (20 cases; 41% of all PSV patients).

In the PSV group (n = 51), 32 of these cases are index shunts (55%), whereby 4 patients
(8%) have prior failed ETVs. The remaining 19 cases are shunt revisions (37%), that
is, for either a previous FPV or PSV shunt. (Figure 2). For the index PSV insertion
group, the most common indication for shunt placement is that of tumor-related causes
(14 cases; 50% of index PSV patients), followed by 5 cases of post-hemorrhagic hydro-
cephalus (18% of index PSV patients). Here, the primary causes of hemorrhage include:
3 neonatal hemorrhage (2 intraventricular and 1 intraparenchymal hemorrhage), 1 cerebral
arteriovenous malformation-related hemorrhage and 1 midbrain cavernoma hemorrhage.
There are 3 cases of post-infectious hydrocephalus, 2 post-traumatic hydrocephalus, 2 cases
of congenital hydrocephalus, and 1 case of idiopathic intracranial hypertension and cran-
iosynostosis each. (Figure 3). At the time of this writing, there are 18 patients who are no
longer on active follow-up with us: 5 patients have been transferred under the care of other
institutions (2 patients to our adult hospital, and 3 patients who returned overseas). In
addition, 7 patients passed away due to conditions unrelated to shunt malfunction, while
no data is available for the 6 remaining patients. The mean duration of follow-up for all
PSV shunt patients is 39.7 months (range 1 month to 144 months).

Figure 2. Breakdown of programmable shunt cases.
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Figure 3. Indications for index PSV insertion.

Among the 19 cases of shunt revision, 2 patients have previous PSV that are revised
again to new PSV shunts, while the remaining 17 initially have FPV that are converted
to PSV. The indications for shunt revision include 5 cases of CSF over-drainage, 7 cases
of shunt malfunction and or, blockage, 4 cases of shunt infection, and 1 case of shunt
migration. There are 2 cases where no clinical data is available. (Figure 4). Among the
4 cases of failed ETV, 3 of these cases are performed for tumor-related hydrocephalus
(1 medulloblastoma, 1 pineoblastoma, 1 patient with Neurofibromatosis Type 1 (NF1) who
presents with concurrent supra- and infratentorial glial tumors) while 1 is attempted for
post-hemorrhagic hydrocephalus. Of note, the child with NF1 has ETV attempted twice
prior to PSV insertion. The other 3 cases have PSV insertion after failure of their first ETV.

Figure 4. Breakdown of 19 cases with previous shunts.

3.2. Types of PSV Encountered and Shunt Failure Rate

The most common PSV utilized in our unit are the CODMAN™ Certas (23 cases)
and the MEDTRONIC™ Strata (15 cases), followed by the MIETHKE™ ProGAV (9 cases).
There are 4 patients (3 CODMAN™ Hakim and 1 Sophysa Polaris®) whose shunts are
inserted elsewhere but transferred to us for continuity of care. Of note, our neurosurgical
team is cognizant of these other types of PSV, especially with regards to their working
mechanics, adjustment tools and contactable vendor expertise to ensure patient safety in
times of emergency (Table 1).
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Table 1. Opening pressures of selected fixed pressure shunts and programmable shunts [20–25].
(Of note, the standard setting for the Sophysa Polaris® allows for opening pressures to be adjusted
between 30 mmH2O and 200 mmH2O; additional options, however, are available: 10–140 mmH2O,
50–300 mmH2O, or 80–400 mmH2O.

Medtronic PS
Medical® Strata®

Codman
Certas Plus

MIETHKE
proGAV® 2.0

Codman
Hakim

Sophysa
Polaris

Pressure range
(mmH2O) 15–220 25–400 0–200 30–200 30–200

Number of
settings 5 8 20 18 5

‘Virtual off’
function No Yes No No No

MRI-safe Yes Yes Yes Yes Yes

MRI-resistant No Yes, up to
3 Tesla

Yes, up to
3 Tesla No No

MRI artefacts Yes, worse at
higher settings

Yes, worse at
higher settings

Yes, worse at
lower settings

Yes, based
on in vitro
findings

Yes, worse
at higher
settings

Verification
and adjustment

of settings

Portable,
handheld

adjuster tool

Portable,
handheld

adjuster tool

Portable,
handheld

adjuster tool

Requires
X-ray

verification

Portable,
handheld
adjuster

tool

Availability in
Singapore Yes Yes Yes Yes No

Availability in
small sizes Yes

Yes, but
not available
in Singapore

Yes

Microvalve
shunt

available by
manufac-
turer, but

not available
in Singapore

No

Amongst our 51 cases of PSV patients, there are 3 cases of shunt failure (6%) related
either to shunt infection or malfunction (Figure 5). These patients subsequently underwent
shunt revision, either to a FPV (1 case) or another PSV (2 cases). Here, 1 patient has a history
of post-hemorrhagic hydrocephalus with interval shunt infection approximately 2 and
a half years later; and decision is made to revise the shunt with a PSV. Another patient with
obstructive hydrocephalus secondary to craniosynostosis developed PSV shunt blockage,
8 months after insertion. This shunt is subsequently changed to another PSV while awaiting
definitive surgery for the craniosynostosis. The last patient initially has a PSV shunt, but
this is changed 4 days after insertion to a FPV shunt due to shunt malfunction. Following
that, we compared the time to shunt failure between the different types of PSVs, and time
to shunt failure between index and revision for all our PSV shunts. However, there was no
statistical significance for both comparisons. (Supplementary Figures S1 and S2).

3.3. Analysis of Frequency of PSV Adjustments

In the cohort of 33 PSV patients with available follow-up data, the mean number of
adjustments per PSV is 1.82 times (SD ± 1.74). (Supplementary Figure S3). In this case,
22 patients (66.7%) have their opening pressure settings adjusted more than once, whereas
the remaining 7 patients (21.2%) required no adjustments of their PSV. Separately, we note
that the number of adjustments made per PSV increased in recent years, particularly from
2016 onwards. There is a significantly lower number of mean number of adjustments made
per PSV from the period of 1 January 2000–31 December 2015 versus 1 January 2016–30
June 2021 (0.8 mean adjustments per PSV, SD ± 0.9 versus 2.1 adjustments per shunt,
SD ± 1.7; p = 0.031) (Figure 5). Next, we found that the mean number of adjustments made
per PSV is significantly lower for the MEDTRONIC™ Strata PSVs compared with other
PSV types (0.8 vs 2.1; p = 0.031). We postulate that this may be related to a lower range of
settings available for the MEDTRONIC™ Strata, which allows a lesser ‘fine-tuning’ effect,
in comparison to the other PSV types. (Table 2). Nonetheless, we acknowledge that the
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MEDTRONIC™ Strata is the only PSV type available at our institution prior to 2016; with
the other 2 brands (CODMAN™ Certas and MIETHKE™ ProGAV) utilized only from 2016.
Key reasons for the preference of the MIETHKE™ ProGAV include the availability in a
smaller size, the valve is MRI-resistant up to 3 Tesla and finally, the ability to ‘fine-tune’ the
opening pressures. Hence, from 2016 onwards, we note a statistically significant shift in
preferences for the CODMAN™ Certas and MIETHKE™ ProGAV PSVs, in comparison to
the MEDTRONIC™ Strata. This was statistically significant (p < 0.001) on the Chi-square
tests performed on the proportion of MEDTRONIC™ Strata PSV vs other PSV before, and
after 2016. This change in practice likely explains the increase in the mean number of
adjustments made per PSV after 2016.

Figure 5. Failure-free survival for all PSV shunts.

Table 2. Comparative mean number of adjustments per PSV before and after 2016.

Before 2016 From 2016 Onwards p-Value

Mean number of
adjustments per PSV

0.8
SD ± 0.9

2.1
SD ± 1.7 p = 0.031

Following that, we observed that patients with PSVs that are shunt revisions tend to be
adjusted more frequently than index shunts (2.2 mean adjustments per PSV, SD ± 1.9 versus
1.7 mean adjustments per PSV, SD ± 1.6; p = 0.488). In the cohort of patients with index
shunts, the underlying etiology of hydrocephalus do not make a difference in terms of
the mean shunt adjustments made per PSV. In addition, it is noted that patients whose
hydrocephalus is tumor-related have their shunts adjusted more frequently compared to
PSV patients secondary to other etiologies (2.3 mean adjustments per PSV; SD ± 1.6 versus
1.1 mean adjustments per PSV, SD ± 1.5; p = 0.107). Next, patients with PSV inserted
during shunt revisions due to CSF over-drainage are adjusted more frequently than PSV
implanted as shunt revisions for other causes (3.7 mean adjustments per PSV, SD ± 2.1
compared with 1.7 mean adjustments per PSV, SD ± 1.7; p = 0.231). Overall, analyses do
not demonstrate statistical significance in the mean number of opening pressure adjust-
ments made in our study cohort for the following comparisons: patients with index versus
revision PSV shunts, between patients with different underlying etiologies for their index
shunts; and those with CSF over-drainage secondary to a FPV and subsequently revised to
a PSV. (Table 3).
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Table 3. Summary of comparison between subgroups of PSV patients.

Comparison between Subgroups of
PSV Patients

Mean Number of
Adjustments per PSV p-Value

Revision shunts versus index shunts 2.2; SD ± 1.9
1.7; SD ± 1.6 p = 0.488

Tumor-related versus other etiologies
2.3; SD ± 1.6

p = 0.107
1.1; SD ± 1.5

Previous CSF over-drainage shunts
versus all other shunt revisions

3.7; SD ± 2.1
p = 0.231

1.7; SD ± 1.7

4. Discussion

Optimal management of pediatric hydrocephalus remains contentious [26,27]. Pub-
lished literature cites the failure rate of VPS can be up to 40% in the first year; and sub-
sequent VPS revision rates lie between 40 and 60% [13,28]. For affected children with
immature, developing brains, they bear the long-term risk of shunt-related surgeries
throughout their lifetimes [29]. Traditionally, FPVs have been shown to be effective in
the majority of patients [30]. Nonetheless, the chosen FPV for an individual patient may
suboptimal, leading to CSF over-drainage due to siphoning effect or conversely, under-
drainage—both potentially life-threating conditions [30]. Other longer-term risks include
the development of slit-ventricle syndrome, loss of cerebral compliance [31–33], and oc-
casionally, cranio-cephalic disproportion [34]. Inevitably, the selection of ideal working
pressure of shunts remains challenging in children. The perfect shunt valve has yet to be
designed, and no well-defined guidelines have been established for the selection of type of
VPS [35].

4.1. Is There a Therapeutic Role for PSV in Pediatric Hydrocephalus?

The PSV is designed as part of efforts to avoid complications encountered in FPV [2].
Its key objective is to help regulate CSF flow and drainage better, in hopes of reducing
the number of proximal shunt-related failures. These include slit ventricle syndrome,
CSF under- and over-drainage [2]. Theoretically, the option of a PSV in situ provides
the advantage of reducing the number of shunt revision procedures due to CSF drainage
issues, as the shunt valve opening pressure can be adjusted non-invasively [6,36]. In
contrast, repeat surgery (e.g., ligation of shunt tubing, or change of shunt valve) is typically
necessary with the traditional use of FPV under such circumstances.

Although there are now more choices of PSV available by various manufacturers, there
is no large-scale, randomized controlled trials performed to definitively compare efficacy
between different types in children. Given the heterogeneity between them, neurosurgeons
must rely on their own knowledge of the product, its theoretical benefits, and individual
features to make a choice of the PSV used for their own patients. Specific to the pediatric
population, preference is often given to the PSV that have the option of smaller sizes. This
is because smaller-sized valves allow for the creation of smaller subcutaneous pockets that
result in less overlying skin tension and lower rates of skin necrosis.

Extrapolating these factors in our institutional practice, our consensus is to consider
the use of PSVs only in selected cases of pediatric hydrocephalus. As reflected in our study
population, the main indications are uncertainty regarding the patient’s opening pressure,
and or individuals who are expected to have changes in CSF dynamics over time. Examples
of such include patients with slit ventricle syndrome, post-infectious hydrocephalus, those
at risk of CSF over-drainage, or previously failed ETV. Following that, the choice of PSV is
based on personal preference of each neurosurgeon. Deciding factors include the safety
profile of the chosen PSV, physical size of PSV valves—in relation to cosmesis and wound
healing in small children; the range of opening pressures and ability to ‘fine-tune’ pressure
adjustments and level of MRI resistance.
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In addition, our data compares favorably with reported data relating to shunt failure
with 40% of children requiring intervention for shunt failure within the first 2 years after
placement [37]. This is congruent with published results from previous studies whereby
it has been demonstrated that the type of shunt valve used has no effect on shunt failure
rates [13,38], with consensus guidelines not favoring any particular shunt valve type [18,39].

4.2. Quantifying Adjustments in PSV—Has Our Use Been Appropriate?

In our study population, the indication for adjustment of opening pressure was due
to either a clinical indication (i.e., signs or symptoms suggestive of CSF under- or over-
drainage), radiological findings of an interval change in the size of the ventricles (e.g.,
ventriculomegaly or slit-like ventricles). As part of our patient management, caregivers are
routinely provided with detailed shunt education so they can remain vigilant on the signs
and symptoms of drainage issues, especially in younger children. For the older, school-
going patients who can report their own symptoms, their PSV settings may be adjusted on
the basis of clinical findings and symptoms without the need for repeat neuroimaging. Our
shunt adjustment data analyses suggest that the use of PSV at our institution has become
more appropriate with time. More importantly, this subset of patients benefitted from the
use of PSV, avoiding issues of repeated shunt revision surgery, in comparison to being
implanted with FPV.

We note that the MEDTRONIC™ Strata valve is the most commonly used PSV in
the early years of our practice. Over time, newer types of PSV that offer a wider range of
opening pressure settings and higher MRI resistance become more popular. It has been
shown that the PSV limits shunt dependent flow of CSF as the upgraded pressure activates
the regular circulation of the CSF. Theoretically, this leads to cerebral development, and
shunt removal will consequently be possible [40]. Takahashi et al. demonstrated that
it is possible to remove the shunt systems in 50% or more of pediatric hydrocephalus
cases in which PSV valves are used. This is achieved through careful control of the valve
pressure [40]. Of interest, we observed that our threshold for PSV adjustments seemed
to be lower after 2016. Upon reflection, the following changes are noted in recent years:
firstly, closer surveillance of PSV patients; and there are more MRI brain scans ordered
for individual patients, either by the primary clinician or co-managing subspecialists for
various reasons. In this modern era of targeted treatment, we have encountered effective
shrinkage of brain tumors within a short period of time [41,42]. Conversely, there are some
instances whereby there is temporary brain tumor swelling during radiation therapy that
cause symptoms of raised intracranial pressure. Under such circumstances, adjustments
of the PSV alleviate the symptoms of these patients. Another example is the neonatal
group whose head circumferences need to be monitored as their craniums are still actively
growing. For these patients, we are cognizant their opening pressures are at risk of
changes. Concurrently, the allowance of the ‘fine-tuning’ effect by the CODMAN™ Certas
and MIETHKE™ ProGAV PSVs provides a gradual adjustment in suitable patients more
confidently. This is especially so for those we hope that can achieve shunt independence
eventually. As there are currently no established guidelines on the best approach to help
children with PSV to wean off their shunts, we work closely with the patients and their
caregivers to keep them on the qui vive.

4.3. Limitations of the PSV

Despite their versatility, there are complications unique to PSVs that are noteworthy.
For example, the PSV contain intrinsic magnetic components that enable valve pressure to
be changed using an external magnetic adjustment device [43]. These newer valves include
locking systems that reduce the risk of unintentional changes to valve setting during MRI
scans [44]. Among the 3 most commonly inserted PSV used by our unit, the CODMAN™
Certas and MIETHKE™ ProGAV shunts are deemed to be MRI-resistant by their manufac-
turers up to 3 Tesla [22,23]. Without this feature, the concern is that a patient’s PSV opening
pressure setting may be adjusted inadvertently post-MRI exposure [44,45]. Even though all
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patients with PSV undergo MRI only in a 1.5 Tesla machine, it is our institutional protocol
to still check their settings after every MRI is performed. Nonetheless, our preference has
evolved to prefer the use of the newer valves with higher MRI resistance. At the time of
PSV insertion surgery, each patient and their caregivers are given an instructional session
on the product’s information. Reading material and personal shunt cards indicating the
PSV settings and dates of shunt checks/ setting changes are also provided for them.

Following that, we are also aware that PSVs create artifact distortion that hamper the
examination of brain structures [43,46,47]. An important disadvantage of such artefacts
is that visible tumor may be obscured if the valve is placed too close by. In contrast, FPV
have no risk of having the opening pressures being changed after exposure to magnetic
fields, and do not require checking of the shunt settings after MRI scans. They also have
minimal interference with MRI images [29]. Other problems associated with PSV reported
in the literature include breakage secondary to minor head trauma [48], and malfunction
due to in vivo wear and tear on the valve itself [5].

4.4. Study Limitations and Future Directions

At this point, the authors acknowledge that this is a study that is unique in the
context of our local healthcare system. We are cognizant that equitable access to PSV
in other parts of the world may differ; and that our approach may not apply in other
countries where healthcare systems are different [49]. Following that, the close, long-
term nature of clinical and, when necessary, radiological surveillance among our patients
allow us to make pressure adjustments with greater confidence. Without corresponding
similarities in treatment options, the “best outcomes” achievable in one geographic context
may not necessarily apply in others [49,50]. Under such circumstances, we advocate an
‘individualized’ understanding of how patients may benefit from different shunt types
will allow us to optimize patient outcomes; and to tailor a more personalized approach to
managing pediatric hydrocephalus, rather than a ‘one-size-fits-all’ approach.

5. Conclusions

In summary, we describe our institutional experience of PSV use in pediatric hydro-
cephalus in a subset of patients whose opening pressures are uncertain and evolving. At the
time of this writing, the use of PSV demonstrates potential for these patients to avoid the
feared shunt-related complications of failure, over drainage and cerebral non-compliance.
As the way forward, the authors advocate ongoing collaboration with international experts
to seek better understanding of pediatric hydrocephalus, especially for selected patients
whereby the underlying pathophysiology mechanisms are complex.
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