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Abstract: Hepatocellular carcinoma (HCC) is a severe disease that accounts for 80% of liver cancers.
Chemotherapy is the primary therapeutic strategy for patients who cannot be treated with surgery
or who have late-stage HCC. Cy-ceramide is an effective reagent that has been found to inhibit the
growth of many cancer types. The metabolism of C,-ceramide plays a vital role in the regulation of
cell death/cell survival. The phenoxyphenol compound 4-{2,3,5,6-tetrafluoro-4-[2,3,5,6-tetrafluoro-4-
(4-hydroxyphenoxy)phenyl]phenoxy}phenol (diTFPP) was found to have a synergistic effect with
Cy-ceramide, resulting in considerable cell death in the HA22T HCC cell line. diTFPP/C;-ceramide
cotreatment induced a two- to threefold increase in cell death compared to that with C2-ceramide
alone and induced pyknosis. Annexin V/7-aminoactinomycin D (7AAD) double staining and West-
ern blotting indicated that apoptosis was involved in diTFPP/Cj-ceramide cotreatment-mediated
cell death. We next analyzed transcriptome alterations in diTFPP/C,-ceramide-cotreated HA22T
cells with next-generation sequencing (NGS). The data indicated that diTFPP treatment disrupted
sphingolipid metabolism, inhibited cell cycle-associated gene expression, and induced autophagy
and reactive oxygen species (ROS)-responsive changes in gene expression. Additionally, we assessed
the activation of autophagy with acridine orange (AO) staining and observed alterations in the
expression of the autophagic proteins LC3B-II and Beclin-1, which indicated autophagy activation
after diTFPP/C,-ceramide cotreatment. Elevated levels of ROS were also reported in diTFPP/C;-
ceramide-treated cells, and the expression of the ROS-associated proteins SOD1, SOD2, and catalase
was upregulated after diTFPP/Cy-ceramide treatment. This study revealed the potential regulatory
mechanism of the novel compound diTFPP in sphingolipid metabolism by showing that it disrupts
ceramide metabolism and apoptotic sphingolipid accumulation.
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1. Introduction

Liver cancer is the fourth most common cause of cancer-related death worldwide,
resulting in over 700000 deaths in 2018 [1,2]. Due to the development of medical science,
the mortality rates of other major cancers, namely, prostate, breast, and colorectal cancer,
have declined, but the mortality rate of liver cancer has rapidly increased [1,3]. Hepato-
cellular carcinoma (HCC) is derived from hepatocytes, which account for approximately
80% of primary liver cancers [4]. Chemotherapy is one of the most critical therapeutic
procedures against advanced HCC, and it acts by inducing programmed cell death (PCD),
especially apoptosis [5,6]. However, many HCCs are chemotherapy resistant [7]. Therefore,
resensitizing cancer cells to chemotherapy drugs is a potential strategy for the development
of chemotherapy.

Ceramide is a sphingolipid and structural molecule of the cell membrane that regu-
lates fluidity [8]. Ceramide was first reported to induce cell apoptosis in leukemia 30 years
ago [9]. The anticancer potential of ceramide has been found against many cancer types,
such as nonsmall-cell lung carcinoma [10,11], head and neck squamous cell carcinoma [12],
breast cancer [13], and multiple myeloma [14]. The metabolism of sphingolipids regulates
the fate of the cell. Sphingolipids are roughly divided into prosurvival sphingolipids
and apoptotic sphingolipids [15]. Sphingosine and ceramide are considered apoptotic
sphingolipids, inducing cell death by regulating the apoptotic pathway, including extrin-
sic and intrinsic pathways [16]. The metabolites of ceramide and sphingosine, such as
ceramide-1-phosphate (C1P), sphingosine-1-phosphate (S1P), or glucosylceramide, are con-
sidered prosurvival sphingolipids that prevent the cell from undergoing apoptosis [17-19].
Ceramides have been reported to play an essential role in the crosstalk of protective
autophagy and apoptotic autophagy [15].

Autophagy is a catabolic procedure that degrades biological waste, misfolded proteins,
or damaged organelles [20]. As indicated in our previous studies, autophagy plays a role
in many anticancer drug treatments and leads to cell death or cell survival [10,21-23]. As
a double-edged sword for apoptosis, autophagy blocks the caspase cascade or removes
damaged organelles, releasing apoptotic signals to prevent apoptosis [24,25], but in some
cases, autophagy acts as the caspase activation platform triggering apoptosis [26,27]. Re-
active oxidative species (ROS) are free radical or nonradical oxygen species, including
superoxide anion and hydrogen peroxide, that lead to oxidative stress and many diseases.
ROS are also involved in autophagy, apoptosis, and apoptotic cell death regulation. In our
previous study, ROS were shown to be associated with chemotherapeutic drug treatment
and apoptosis.

4-{2,3,5,6-Tetrafluoro-4-[2,3,5,6-tetrafluoro-4-(4-hydroxyphenoxy)phenylsphenoxy} phe-
nol (diTFPP) is a kind of phenoxyphenol that contains 1 more tetrafluorobenzene than
4-[2,3,5,6-tetrafluoro-4-(4-hydroxyphenoxy)phenoxy]phenol (TFPP, Figure 1A). It has been
shown to exert a synergistic effect with camptothecin (CPT) and induce apoptosis [28]
In our previous study, phenoxyphenol compounds were observed to either induce cell
apoptosis [29] or sensitize cells to chemotherapeutic agents [28]. Therefore, in this study;,
we revealed the role of diTFPP in sensitizing HCC to Cy-ceramide by activating the
ROS/autophagy pathway.
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Figure 1. diTFPP and Cj-ceramide cotreatment induced cell death of HCC cells. (A) The structure of phenoxy phenol
compounds, TFPP, and diTFPP. (B) Cell viability of HA22T cells after diTFPP and/or Cp-ceramide treatment for 24 h. n =3,
**p <0.01, *** p < 0.0001 compared with the control and 0 uM diTFPP groups. ## p < 0.01 compared with the C-ceramide
with no diTFPP treatment group; all data are presented as the mean £SD of three independent experiments. (C) HA22T cell
morphology after Cp-ceramide and/or diTFPP treatment for 24 h. Magnification: 100x.
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2. Materials and Methods
2.1. Cell Culture

HA22T/VGH (HA22T, #60168) cells were purchased from the Bioresource Collec-
tion and Research Center (BCRC, Hsinchu, Taiwan) and maintained in a 3:2 mixture of
Dulbecco’s modified Eagle medium and Ham’s F-12 Nutrient Mixture (DMEM/F12, 3:2;
HIMEDIA, Mumbeai, India) supplemented with 8% fetal bovine serum (FBS; ThermoFisher,
Waltham, MA, USA) and 1% penicillin-streptomycin-amphotericin B (P/S/A; #03-033-1B,
Biological Industries, Beit-Haemek, Israel). Cultures were grown in a 37 °C incubator with
an atmosphere containing 5% CO,. Hematoxylin staining was utilized to visualize the cell
nucleus. The treated cells were fixed with 4% paraformaldehyde (PFA) for 10 min and
stained with hematoxylin (#GHS3, Sigma-Aldrich, St. Louis, MO, USA) for 5 min.

2.2. Cell Viability

The viability of HA22T cells was measured by trypan blue exclusion assay [23]. Briefly,
the cells were resuspended in 0.05% trypsin (#TCL034, HIMEDIA, Mumbai, India) and
exposed to 0.2% trypan blue reagent. Trypan blue dye did not stain the viable cells. Then,
the viable cells were counted with a hemocytometer.

2.3. Measurement of Apoptotic Cells

Apoptotic HA22T cells were assessed by annexin V/7AAD double staining. An
apoptosis detection kit (Strong Biotech Corporation, Taipei, Taiwan) and 7AAD (#11397,
Cayman Chemicals, Ann Arbor, MI, USA) were used for annexin V/7AAD staining, and we
replaced propidium iodide with 7AAD reagent. The procedure was performed according
to the manufacturer’s instructions. Briefly, the treated cells were harvested and stained
with annexin V/7AAD, analyzed with an LSR II flow cytometer (BD Biosciences, San Jose,
CA, USA) and visualized with Flow]Jo 7.6.1 software (TreeStar, Inc., Ashland, OR, USA).

2.4. Western Blotting

Protein expression was measured by Western blot analysis. Briefly, the treated cells
were harvested and lysed with lysis buffer, and the protein concentration was measured
with a bicinchoninic acid (BCA) protein assay kit (Pierce, Rockford, IL, USA). An equal
amount of protein (30 ug) was separated by SDS-polyacrylamide gel electrophoresis (SDS-
PAGE) and electrotransferred to polyvinylidene difluoride (PVDF) membranes (Merck
Millipore Ltd., Burlington, MA, USA) for one hour. The membranes were blocked with 5%
nonfat milk in TBS buffer containing 0.1% Tween 20 (TBS-T buffer) and incubated overnight
with primary antibodies targeting Bax (#50599-2-ig, Proteintech, Wuhan, Hubei, China),
caspase-9 (#9508S, Cell Signaling Technology, Danvers, MA, USA), caspase-8 (#1R99-409,
IReal Biotechnology, Hsinchu, Taiwan), PARP-1 (#5C-8007, Santa Cruz Biotechnology,
Dallas, TX, USA), LC3B (#2775S, Cell Signaling Technology, Danvers, MA, USA), Beclin-
1 (#3738, Cell Signaling Technology), SOD2 (#06-984, Merck, Darmstadt, Germany), 3-
actin (Sc-47778, Santa Cruz, Dallas, TX, USA), or glyceraldehyde-3-phosphate (GAPDH,
#MAB374, EMD Millipore, Billerica MA, USA). Horseradish peroxidase (HRP)-conjugated
secondary antibodies were then hybridized with the membrane for 1 h, and HRP activity
was detected with an enhanced chemiluminescence (ECL) detection kit (PerkinElmer Inc,
Waltham, MA, USA).

2.5. Next-Generation Sequencing Analysis

RNA library construction and sequencing were commissioned by Tools Biotech
(BIOTOOLS, Taipei, Taiwan). The mRNAs of HCC cells will be randomly fragmented in a
fragmentation buffer, and then cDNA synthesis will be performed using random hexamers
and reverse transcriptase. After the first strand synthesis, a custom second strand synthesis
buffer (Illumina, San Diego, CA, USA) and dNTPs, RNase H, and E. coli polymerase I
were added to form a second strand. After purification, repair of the terminal, A-tailing,
sequence adaptor ligation, size selection, and PCR enrichment, the final cDNA library was
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prepared for completion. Next, the cDNA size will be checked in the library adaptors at
both ends and quantified to higher accuracy (library activity >2 nM) by quantitative PCR
(Q-PCR). RNA libraries were sequenced, and the sequencing data were processed. The
NGS data were clustered using Expander 7 software [30], and GO analysis was performed
with the Database for Annotation, Visualization, and Integrated Discovery (DAVID) web-
site (v6.8) [31]. The PCA and heat map were generated with the ClustVis website [32]. Gene
set enrichment analysis (GSEA) was utilized to analyze the biological process alterations in
the Cp-ceramide and Cj-ceramide/diTFPP groups. The gene set was obtained based on
false discovery rate (FDR) <0.25 and p < 0.05.

2.6. AVO Staining

The assessment of autophagy will use flow cytometry-based acidic vesicular organelle
(AVO) staining. Briefly, the cells were grown in 6-well plates at a density of 5 x 10* cells per
well, cultured for 24 h, and then treated with the indicated concentration of diTFPP (from 5
to 10 uM) combined with C,-ceramide for 24 h. The cells were collected and then stained
with 1 pug/ml acridine orange (AO) at room temperature for 15 min. After the staining
solution was removed, the cells were washed with phosphate-buffered saline (PBS) and
immediately analyzed in an LSR II flow cytometer using 488-nm bandpass blue excitation
filters and 515 nm (green) and 650 nm (red) barrier filters supported by the Center for
Research Resources and Development of Kaohsiung Medical University, Taiwan.

2.7. ROS Detection

DHE was utilized to detect intracellular ROS formation. The cells were incubated
with 1 uM DHE for 20 min and washed with PBS after incubation. The stained cells were
visualized with an inverted fluorescence microscope.

2.8. Statistics

The comparison of two different groups was analyzed at least in triplicate by one-
way analysis of variance (ANOVA), and the comparison between pairs was analyzed by
Student’s t-test. A p-value < 0.05 was considered statistically significant.

3. Results
3.1. diTFPP Sensitizes Hepatocellular Carcinoma Cells to C-Ceramide

Cy-Ceramide is a ceramide with a methyl group on the R chain, and it contributes to
apoptosis in cancer cells [10-12,33]. The human hepatocellular carcinoma cell line HA22T
was observed to have resistance to Cp-ceramide, which led to a cell death rate of less than
35% at a 20 pM dose (Figure 1B). Treatment with the phenoxyphenol compound diTFPP
and 20 uM C,-ceramide led to a 70% cell death rate with no toxicity when diTFPP was used
alone (Figure 1B). Cell morphology was also observed; treatment with diTFPP induced
considerable cell death when coadministered with 20 pM C;-ceramide (Figure 1C). Next,
we stained the cells with hematoxylin and observed pyknosis. Interestingly, the number of
pyknotic cells increased after cotreatment with diTFPP/C,-ceramide (Figure S1).

3.2. The diTFPP/C;-Ceramide Cotreatment Triggers Apoptosis

Apoptosis is a well-known intercellular process associated with homeostasis, au-
tophagy, and anticancer mechanisms, resulting in programmed cell death (PCD) [34,35].
Apoptosis is related to many chemotherapy drugs, such as irinotecan and fluorouracil
(5-FU) [36-38]. To determine whether apoptosis is associated with the role of diTFPP/C;-
ceramide-induced cell death, we analyzed the cells by annexin V /7-aminoactinomycin D
(7AAD) double staining by flow cytometry. The cells in quadrants I (Qy) and IV (Qyy) were
considered early-stage and late-stage apoptotic cells, respectively. The data indicated that
cotreatment with diTFPP and Cp-ceramide increased the percentage of annexin V-positive
cells, suggesting that the synergism of diTFPP and Cp-ceramide amplified apoptotic activity
in HA22T cells (Figure 2A,B).
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Figure 2. diTFPP promotes Cy-ceramide-mediated cell death via apoptosis. (A) Annexin V/7AAD double staining indicated
cell death in response to 24 h of diTFPP/C;-ceramide treatment. Treatment with 10 uM CPT was considered the positive
control. (B) Quantification of (A). n =3, ** p < 0.01, *** p < 0.001 compared with the control; # p < 0.05 compared with
the Cp-ceramide only group. (C) Western blot analysis of apoptotic protein expression after diTFPP and C,-ceramide
(Cy-cer.) treatment. Cleaved caspase-9 and Bax expression indicated intrinsic apoptosis, cleaved caspase-8 indicated
extrinsic apoptosis, and cleaved PARP-1 indicated the hallmark of apoptosis. GAPDH and (-actin as internal controls. The
fold changes of cleaved caspases were normalized with their internal control.

On the other hand, we also measured the expression alteration of apoptotic proteins
by Western blot analysis. The extrinsic apoptotic protein caspase-8 was cleaved after
diTFPP/Cj-ceramide treatment but not in the other treatment groups. (Figure 2C). In
addition, diTFPP/C,-ceramide cotreatment also induced the expression of caspase 8 down-
stream and the pro-apoptotic protein Bax as well as the cleavage of caspase-9 (Figure 2C).
Poly (ADP-ribose) polymerase-1 (PARP-1) is associated with DNA repair, rescuing cells
from cell damage. During the activation of apoptosis, PARP-1 is cleaved and deactivated,
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resulting in DNA double strain breakage and apoptosis [39]. Cleaved PARP-1 was up-
regulated significantly after diTFPP/C;-ceramide cotreatment (Figure 2C). Alterations in
the percentage of annexin V-positive cells and the levels of proapoptotic protein markers
indicated that the potential synergism of diTFPP and Cj-ceramide plays a vital role in the
activation of apoptosis.

3.3. Transcriptomic Analysis Reveals the Role of diTFPP/C,-Ceramide Treatment in
Hepatocellular Carcinoma

Apoptosis was found to play a critical role in diTFPP/Cj-ceramide-induced cell
death, but the apoptotic mechanism of diTFPP/Cj-ceramide is still unknown. Thus,
we investigated alterations in the transcriptome after diTFPP/Cy-ceramide treatment
by next-generation sequencing (NGS). The results showed that the expression of over
20,000 genes was altered after 24 h of treatment with diTFPP, Cy-ceramide, or diTFPP/C;-
ceramide. Principal component analysis (PCA) was utilized to analyze the similarity of
the transcriptome after the treatments. The cotreatment with the diTFPP/C;-ceramide
group was found to be an immense distance from the other groups, suggesting that the
cotreatment resulted in considerable alterations to the transcriptome in the other groups
(Figure 3A). The expression of ceramide metabolism genes was investigated from NGS
data. Cp-ceramide treatment upregulated most of the ceramide metabolic genes, but cells
cotreated with diTFPP with C,-ceramide showed an expression map distinct from that
of those treated with Cy-ceramide only. The results revealed alterations in sphingolipid
metabolic genes (Figure 3B,C). Ceramides can be categorized as prosurvival or proapoptotic
ceramides. Ceramide and sphingosine are associated with the proapoptotic function that
induces endoplasmic reticulum stress, which activates the unfolded protein response and
ultimately results in apoptosis [40,41]. On the other hand, the prosurvival class of ceramides
usually comprises metabolites of ceramide and sphingosine, such as glucosylceramide
(GlcCer), ceramide-1-phosphate (C1P), or sphingosine-1-phosphate (S1P), all of which
inhibit caspase activation and induce autophagy to prevent apoptosis and induce cell
proliferation [8,18,19,42]. Therefore, the balance of ceramides is critical in the initiation
of apoptosis and regulation of cell fate [8]. The expression of genes that catalyze pro-
apoptotic ceramides into prosurvival ceramides, such as SPHK1, SPHK?2, CERK, and
UGCG, was upregulated after Cp-ceramide treatment (Figure 3B). However, the changes
in response to Cp-ceramide treatment were subverted by cotreatment with diTFPP. In
contrast, the expression of the genes ASAH1 and ASAH2, which mediate sphingosine
catalysis into ceramide, was upregulated (Figure 3B). These alterations in the expression
of ceramide metabolic proteins suggested that the potential mechanism of diTFPP/C;-
ceramide treatment is apoptosis activation. To investigate the potential role of diTFPP in this
process, we analyzed the NGS data of Cy-ceramide and Cp-ceramide/diTFPP treatment
with gene set enrichment analysis (GSEA) and found that the combined treatment of
diTFPP and C,-ceramide decreased the gene sets enriched in DNA replication and cell
cycle transition pathways (Figure 3D,E), suggesting that diTFPP treatment induces cell
cycle arrest.

Additionally, we clustered the NGS data by gene expression level and found 1986
downregulated genes and 2240 upregulated genes (Figure 3EH). Gene ontology (GO)
analysis was utilized to analyze the upregulated and downregulated genes. Downregulated
genes were found to be primarily associated with the cell cycle and mitosis, suggesting that
cotreatment with diTFPP/C,-ceramide results in cell cycle and mitosis arrest (Figure 3G).
On the other hand, upregulated genes were found to be associated with protein transport,
ROS homeostasis, and autophagy (Figure 3I).
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Figure 3. NGS analysis of diTFPP/C;-ceramide treatment indicating the alteration of sphingolipid metabolism and the
potential regulatory mechanisms. (A) PCA of the four treatment groups. (B) The expression of sphingolipid metabolic
genes after 24 h of 10 uM diTFPP and/or 20 uM C2-ceramide (Cp-cer.) treatment. (C) Schematic diagram of sphingolipid
metabolic alteration. (D and E) GSEA of differences in the biological processes (BP) between C,-ceramide (Class A)-
and Cy-ceramide/diTFPP (Class B)-treated cells. (F) Alterations in the expression pattern of downregulated genes after
diTFPP/C2-ceramide treatment, with average expression set as 0 and the standard deviation set as 1. (G) GO term analysis
of downregulated genes after diTFPP/C2-ceramide treatment. (H) The expression alteration of upregulated genes after
diTFPP/C2-ceramide treatment, with average expression set as 0 and the standard deviation set as 1. (I) GO term analysis
of upregulated genes after diTFPP/C2-ceramide treatment.
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3.4. The Autophagy Regulatory Mechanism Plays a Critical Role in diTFPP/C;-Ceramide-
Induced Apoptosis

Autophagy plays a role in the apoptotic pathway, and the fate of cells—either cell
survival or cell death—depends on the regulatory mechanism [43]. From the NGS data,
autophagic genes were found to be upregulated, suggesting that autophagy plays an essen-
tial role in diTFPP/C,-ceramide-induced cell apoptosis. Acidic vesicular organelle (AVO)
staining was utilized to detect the generation of autophagosomes to verify the activation of
autophagy. The results indicated an increase in AVO signaling after diTFPP/Cy-ceramide
cotreatment (Figure 4A,B). Nevertheless, microtubule-associated protein 1A /1B light chain
3B (LC3B) was modified to LC3B-I and LC3B-II and showed an additive effect after diTFPP
or Cy-ceramide treatment. Additionally, the expression of Beclin-1, a protein associated
with autophagosome formation, increased. The alterations in protein expression reflect
autophagy activation (Figure 4C). Additionally, we treated the cells with the autophagy
inhibitor 3-MA before treatment with C,-ceramide and diTFPP and observed that the levels
of the apoptotic marker cleaved PARP-1 were significantly decreased in the 3-MA-treated
group (Figure S2).
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Figure 4. Autophagy is involved in diTFPP/Cj.ceramide treatment. (A) AO staining after 24 h of diTFPP/Cy.ceramide
treatment. The x-axis indicates green fluorescence, and the y-axis indicates red fluorescence (AVO-positive cells).
(B) Quantification of (A). ns, no significant p>0.05, ** p < 0.01, *** p < 0.001 compared with the control groups. #### p < 0.0001
compared with the C;-ceramide alone group; all data are presented as the means £SD of four independent experiments.
(C) Western blot analysis of autophagic proteins after 24 h of diTFPP/Cy_ceramide treatment. GAPDH as an internal control.
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3.5. ROS Formation Is Involved in diTFPP/C,-Ceramide-Induced Cell Death

The NGS data also demonstrated that genes related to the response to HyO; and
cell redox homeostasis were upregulated, suggesting that ROS play a role in diTFPP/C;-
ceramide treatment. ROS formation in the cell was measured with dihydroethidium (DHE),
which is a superoxide-targeting red fluorescence reagent. The results indicated that com-
bined treatment with diTFPP and C,-ceramide significantly induced the formation of ROS
(Figure 5A,B). Additionally, ROS-associated proteins such as catalase were found to increase
after diTFPP/Cy-ceramide treatment. The superoxide dismutase 1 (SOD1)-to-superoxide
dismutase 2 (SOD2) "switch" phenomenon occurred, which was also observed in our previ-
ous study and was associated with autophagic apoptosis (Figure 5C). Mitochondria are the
major source of ROS production [44]. We observed the generation of mitochondrial ROS
with MitoSOX red and found that the Cp-ceramide/diTFPP combined treatment induced
considerable mitochondrial ROS production in HA22T cells (Figure S3). In addition, the
ROS inhibitor NAC was utilized to inhibit the formation of ROS to observe the effect of
ROS on C;-ceramide/diTFPP-induced apoptosis. The results indicated that pretreatment
with NAC blocked the formation of cleaved PARP-1 and consequently inhibited apoptosis
(Figure S2).
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5 10 "
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E
8=
c8 104
g =
<8
N i ﬁ
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Figure 5. ROS plays a role in diTFPP/C;,-ceramide-mediated cell death. (A) DHE staining with red fluorescence indicated
ROS production in diTFPP/C;-ceramide-treated HA22T cells. (B) The quantification of (A). ** p < 0.01, *** p < 0.001
compared with the control groups. (C) Western blot analysis of ROS metabolic protein expression after diTFPP/Cp-ceramide

treatment. GAPDH as an internal control.
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4. Discussion

HCC is a severe disease that was responsible for over 700,000 deaths in 2018 [1,2]. The
results presented in this study indicated the apoptotic role of C,-ceramide and diTFPP
cotreatment in the HA22T HCC cell line. The cells treated with C,-ceramide exhibited
pyknosis, which is a cellular process that reduces cellular and nuclear volume and is
considered a characteristic of apoptosis or necrosis [45,46]. Although both cell death
processes can involve pyknosis, annexin V/PI staining and the expression of apoptotic
proteins revealed the apoptotic role of Cp-ceramide/diTFPP treatment.

The assessment of sphingolipid metabolism provided evidence that the disruption
of ceramide metabolism induces cell apoptosis or survival. Sphingolipid metabolites
show two different mechanisms: some induce cell apoptosis, while others promote cell
survival [40]. Treatment with C,-ceramide upregulated most of the ceramide metabolic
genes, catalyzing apoptotic ceramide into glycosylceramide, ceramide-1-phosphate, and
sphingosine-1-phosphate, which are known for cell survival (Figure 3B), to maintain
healthy homeostasis from exogenous ceramide administration. UGCG is a glucosylce-
ramide synthase that catalyzes the formation of glucosylceramide from ceramide [47].
UGCG has been reported to be a regulator of Akt activation and a promoter of cell prolifer-
ation [48]. Salustiano and Previato also discovered that UGCG is involved in multidrug
resistance [49]. The synthesis of ceramide-1-phosphate (C1P) and sphingosine-1-phosphate
(51P) is associated with ceramide kinase (CERK) and sphingosine kinase (SPHK), which
phosphorylate ceramide and sphingosine, respectively [50]. C1P and S1P play a role in cell
survival by regulating members of the Bcl family to inhibit apoptosis [51]. Sphingosine and
ceramide are sphingolipids with pro-apoptotic functions [40]. Akt, c-Myc, and Bcr-Abl are
oncogenes that have been reported to be suppressed by the regulatory mechanisms of ce-
ramide and sphingosine synthesis [52-54]. Ceramide has also been reported as a necessary
mediator of caspase-3 cleavage in response to radiation [55]. The disruption of Cy-ceramide
signaling indicated the potential pathway by which diTFPP induces apoptosis.

In this study, ROS played a vital role in diTFPP/C,-ceramide-induced cell death.
According to the alteration of sphingolipid metabolism, we assumed that ROS production
is associated with sphingolipid disturbance. In our previous study, Cg-ceramide induced
lung cancer apoptosis by producing ROS and disrupting superoxide dismutase (SOD)
expression [11]. Knupp and Chang indicated that mutant-induced sphingolipid accumu-
lation led to mitochondrial dysfunction and ROS production [56]. The study provided
a view of sphingolipid-induced ROS production associated with the dysregulation of
mitochondria. In an early study, exogenous ceramide was found to inhibit the activity of
mitochondprial respiratory chain (MRC) proteins and induce the production of ROS [57-59].
The NGS data also showed that mitochondrial (mt)-proteins were all upregulated after
diTFPP/Cy-ceramide treatment (data not shown). The alteration of mt-protein expression
might compensate for MRC inhibition by ceramide accumulation.

Autophagy also plays a vital role in apoptosis, regulating the fate of cells from survival
to death [60]. The crosstalk of apoptosis and autophagy has been reported to be associated
with sphingolipid metabolism [15]. As mentioned before, ceramide inhibits Akt protein
kinase via pyrophosphatase protein 2A (PP2A), resulting in the activation of mammalian
target of rapamycin (mTOR)-mediated autophagy [61,62]. Ceramide is also associated
with the transcription and lipidation of LC3, an autophagic protein associated with au-
tophagosome generation during lipidation [63]. Sun and Zhu reported that ceramide
treatment mediated JNK activation and the phosphorylation of c-Jun and was associated
with the transcription and lipidation of LC3 [63]. We also observed the upregulation of
endoplasmic reticulum (ER) stress response proteins, indicating that ceramide-mediated
ER stress regulates the activation of autophagy [15] (data not shown). These results indicate
that diTFPP/C,-ceramide-mediated cell death is multifactorial and is associated with au-
tophagy, mitochondrial dysfunction, ROS production, and ER stress-mediated responses.
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5. Conclusions

The results indicated that diTFPP disrupts Cy-ceramide metabolism, leading to the
activation of autophagy, which results in the formation of ROS and ultimately induces cell
apoptosis in HA22T hepatocellular carcinoma (Figure 6).
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Figure 6. The potential regulatory mechanism of diTFPP in Cy-ceramide-mediated cell death. Endogenous sphingolipid
metabolism favors the conversion of exogenous Cp-ceramide to prosurvival sphingolipids and causes the attenuation of C,-
ceramide-induced anti-HCC effects, including anti-proliferation and apoptosis induction in HCC cells. In contrast, cotreat-
ment with Cy-ceramide and diTFPP promotes the switching of sphingolipid metabolism from prosurvival to proapoptosis,
enhances ROS production and autophagic stress, and eventually sensitizes HCC cells to Cp-ceramide-induced apoptosis.
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Supplementary Materials: The following data are available online at https://www.mdpi.com/
2076-3921/10/3/394/s1: Figure S1. The morphology of HA22T cells with hematoxylin staining
after diTFPP/Cy-ceramide treatment. The red arrows indicate pyknotic cells. Figure S2. Western
blot analysis of PARP-1 expression after Cp-ceramide and diTFPP treatment. Figure S3. Mitochon-
drial ROS generation in Cp-ceramide- and diTFPP-treated HA22T cells based on MitoSOX Red
(red), MitoTracker Green (green), and Hoechst (blue) staining. Red arrows indicate accumulated
mitochondrial ROS.
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