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Clinical Relevance. Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) including aspirin are of intensive use nowadays.These drugs
exert their activity via the metabolism of arachidonic acid (AA) by cyclooxygenase inhibition. Though beneficial for health in
some instances, both unspecific and specific cyclooxygenase inhibitor activity interfere with AA metabolism producing also
proinflammatory lipids that may promote cancer. Materials and Methods. This review is based on available literature on clinical
uses, biochemical investigations, molecular medicine, pharmacology, toxicity, and epidemiology-clinical studies on NSAIDs and
other drugs thatmay be used accordingly, which was collected from electronic (SciFinder,Medline, Science Direct, andACS among
others) and library searches of books and journals. Results. Relevant literature supports the notion that NDSAID use may also
promote proinflammatory biochemical events that are also related to precancerous predisposition. Several agents are proposed that
may be employed in immediate future to supplement and optimize treatment with NSAIDs. In this way serious side effects arising
from promotion of inflammation and cancer, especially in chronic NSAID users and high risk groups of patients, could be avoided.

1. Introduction

1.1. Inflammation Route via Arachidonic Acid Metabolism.
Inflammation is driven by complex metabolic pathways, with
arachidonic acid (AA) as one important molecule of origin.
AA metabolism is fundamental for both promotion and
inhibition of inflammatory processes. Several enzymes are
involved in this regulation of inflammation, cyclooxygenases
1 and 2 [1], lipoxygenases [1], cytochrome P 450 (CYP)
epoxygenases and 𝜔-hydroxylases [2], and also the nonen-
zymatic processes of AA metabolism like the free radical-
catalyzed peroxidation [3]. Nonsteroidal Anti-Inflammatory
Drugs (NSAIDs) have been designed to decrease above all
the classical symptoms of pain and tumefaction, but in
the meantime it is known that they cause proinflammatory
effects, too. Aspirin targets the COX-1 pathway, whereas
the classical NSAIDs target mainly the COX-2 pathway by
inhibiting prostaglandin E

2
(PGE
2
) formation [4]. The anti-

inflammatory effect is due to the inhibition of vasodilatation

and to the shortening of mast cell and other immune cells
recruitment. Aspirin however acetylates also the COX-2
isoenzyme but due to slight sequence variations this evidently
consumes less binding energy for arachidonic acid to become
bound and be further metabolized [5].

1.2. Cyclooxygenase (COX) Activity. Early findings on aspirin
inhibitory mode of action on prostaglandin (PG) synthesis
led to the initial discovery of cyclooxygenase (COX) [6, 7].
This enzyme, now called COX-1, is central to AA catabolism
to end up producing PGI

2
, also known as prostacyclin,

with clear antithrombogenic [8, 9] and cytoprotective to
gastric mucosa [10, 11] physiological functions. In 1991, a 64%
sequence homologue to COX-1 enzyme was discovered [12,
13] that was inducible in a number of cells to certain proin-
flammatory stimuli [11] and inhibited in its expression by
corticosteroids [7]. This is the enzyme now termed as COX-
2. In this area, the variation of severity of side effects caused
by different anti-inflammatory drugs including aspirin was
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puzzling. Particularly, stomach side effects by aspirin led to
the development of safer drugs like meloxicam, nimesulide,
and etodolac, which are now well accepted as selective COX-
2 inhibitors [7]. Although both COX isoenzymes catalyze the
oxygenation of arachidonate, COX-2 shows a more diverse
substrate selectivity compared to COX-1. For example, COX-
2 apart from arachidonic acid oxygenates in the same
efficiency 2-arachidonylglycerol (endocannabinoid) [14].The
most evident difference between COX isoenzymes is in
their expression in tissue distribution. Unlike COX-1, which
is ubiquitous and constitutively expressed throughout the
gastrointestinal system, the kidneys, the vascular smooth
muscle, and the platelets, COX-2 is constitutively expressed in
endothelial cells, brain, and kidneys and is variably induced in
its expression by distinct inflammatory stimuli and neoplastic
conditions [15, 16]. Unexplained antipyretic and analgesic
effects of acetaminophen, phenacetin, and dipyrone, without
evident COX-1 or COX-2 inhibition, were made clear by the
discovery of yet another COX isoenzyme termed COX-3 that
when expressed showed selective inhibition to these agents
[17].

1.3.HowNSAIDsMayCause Side Effects. NSAIDs, by inhibit-
ing cyclooxygenase enzyme activity, even by different means,
may all share to a greater or lesser extent a similar kind
of side effects [7]. However, these side effects may be both
(a) specific to the NSAID type and (b) cell type specific.
Side effects depend on the specific inhibition of prostanoid
synthesis due to the agent inducing the COX inhibition and
the type of targeted tissue [15]. Prostanoid synthesis alteration
contributes to disturbance of homeostasis [7] that may be
cell specific, giving an end organ specific toxicity [18–22]
(Figure 1).

1.3.1.TheMechanisms byWhichAspirin Induces Proinflamma-
tory Effects. Acetylation of serine (Ser-530) of COX-1 even
by low aspirin concentrations and in a few minutes results
in the inhibition of prostaglandin E

2
(PGE
2
) formation and

the inhibition of platelet function (anticoagulant activity)
[23]. This acetylating reaction irreversibly inactivates COX-
1 activity [24]. As a consequence, related tissue and blood
pressure homeostasis depending on PGE

2
formation may be

affected [7, 25]. An example is the kidney normal function
that depends on PGE

2
synthesis. Renin is secreted by PGE

2

formation and angiotensin II stimulation is mainly mediated
by PGE

2
production by COX-1, but also by COX-2 [25].

Acetylation by aspirin is also occurring on the COX-2
isoform in almost the same manner due to the structural
homology between COX-1 and COX-2 isoenzymes. Tyrosine
residues (tyr-385) to a greater extent and (tyr-348) to a lesser
extent are critical for this acetylation event of COX-2 by
aspirin [26]. These tyrosine residues constitute a hydrogen
binding network that is critical for the precise positioning
and the relative reactivity rendering the closeness of Ser-
530 with the acetyl group of aspirin feasible. Arginine 120
(Arg-120) just below Ser-530 in the active sites of COX,
however, makes the difference of arachidonic acid binding
ability between COX-1 and COX-2 isoenzymes (Figure 2). In
the COX-1 case of binding of arachidonic acid, an ionic bond

Speci�c drug induced
inhibition 

Cell-dependent inhibition of
prostanoid synthesis

NSAID inhibition of COX

Functional alterations of homeostasis

(1) Altered eicosanoid synthesis

(2) Free phosphorylated arachidonic acid

(3) Increase of LOX activity

Cell-dependent proinflammatory conditions

Figure 1: Levels of possible side effects of NSAIDs [18]. Drug-
and cell-specific inhibition of COX isoenzymes [15] and respective
prostanoids results in alteration of homeostasis [7] and in promotion
of proinflammatory conditions [18–22].

is formed between Arg-120 and the carboxylate of arachi-
donate. In COX-2 case however, instead of an ionic bond,
a hydrogen bond is formed with Arg-120 and arachidonate
thus conferring less to the binding energy needed for the
molecule to become bound [27, 28]. During the acetylation
event in COX-1, the arachidonic acid is irreversibly inhibited
from binding when Arg-120 makes the Ser-530 acetylation
efficient by forming aweak ionic bondwith the carboxylate of
aspirin. Conversely, the acetylation event in COX-2 does not
irreversibly inhibit its activity but just lowers the arachidonic
acid binding ability to the enzyme’s active site (Figure 2).

The acetylation event by aspirin, shown to produce also
the aspirin-triggered lipotoxins by transcellular (cell-to-cell)
interactions [29, 30], is also supported by clinical evidence.
Direct clinical evidence shows that among the derived
eicosanoids produced by aspirin acetylation are the lipoxin
A
4
(LXA

4
), which is vasodilatory, and the leukotrienesC

4
and

D
4
(LTC
4
, LTD

4
), which are potent vasoconstrictors. These

eicosanoids have been shown to be generated under aspirin
treatment in the atherosclerotic lumen of blood vessels [31].
Also, in aspirin intolerance, excessive amounts of LTC

4
have

been isolated from nasal secretions and bronchial biopsies
[32]. These leukotrienes produced are implicated to severe
gastrointestinal [33] and severe cardiovascular side effects
[34] as they constitute important mediators of inflammation,
ischemia [35], and bronchoconstriction [36].

1.3.2. The Transcellular Biosynthesis of Eicosanoid Deriva-
tives: Crossover Pathways. The transcellular biosynthesis of
lipoxins requires interactions between LOX isoenzymes
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Figure 2: (a) Aspirin acetylation of COX-1 irreversibly inhibits arachidonic acid to become bound, whereas (b) acetylation of COX-2 leads
to the formation of lipoxins [27–30, 37].

(LOX-LOX interactions) and can promote generation of
leukotrienes (LTs) by endothelial cells [37]. When COX-2
is acetylated by aspirin, interaction with 5-lipoxygenase (5-
LOX) occurs that triggers the transcellular biosynthesis of 15-
R epimers of lipoxins [29, 38]. The derived eicosanoids by
the acetylation of COX-2 in close association with 5-LOX
are of the type of “S” conformation [39, 40]. Hereby, it has
to be emphasized that in all cases arachidonic acid is first
transformed to unstable precursor intermediate molecules
ending up to many “S” conformations after aspirin treated
COX-2 [30, 41].Therefore, even 15-S-HETE formation cannot
be excluded even by aspirin-induced specific 15-R-HETE
formation as it may occur also in a nonenzyme dependent
fashion [41]. During aspirin-triggered lipoxin synthesis, the
precursor LTA

4
(that is also of “S” conformation) may be

formed by 5-LOX and serve as substrate for leukotriene
synthesis of LTB

4
that is formed prior to LTC

4
and LTD

4

[35] (Figure 3(a)). Apart from the absolute belief of 15-R-
HETE being a sole product, as derived by the acetylation of
COX-2, the presence of the double dioxygenated product, 5S-
12S-DiHETE isolated in vivo, suggests further transcellular
metabolic events that show further eicosanoid synthesis by
5- and 12-LOX interactions [31]. Research during that time
may have identified generation of byproducts via enzymatic

conversion of LTA
4
[30, 42, 43]. Similar latter results indicate

the possibility of 5S-15S-DiHETE to be formed in vivo by the
acetylated COX-2 activity and 5-LOX-15-LOX interactions
having 5S-hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-S-
HETE) as a substrate [44]. As LOX activity is not inhibited
by aspirin, through the unstable intermediate formed by the
acetylated COX-2, LOX isoenzymes continue the eicosanoid
synthesis to produce active compounds [30, 40]. Further,
all S-conformations produced during COX-2 acetylation and
interaction with lipoxygenases can be relatively good sub-
strates for 5-hydroxyeicosanoid dehydrogenase (5-HEDH) to
produce 5-OXO-ETE [45]. Thus, another important proin-
flammatory mediator may be also formed (Figure 3(a)).
Under oxidative conditions 5-HEDH transforms (5-S-HETE)
to 5-OXO-ETE [46] as under normal conditions 5-HEDM
is inactive because it requires NADP+ as a cofactor. Under
stress conditions, however, NADPH oxidase activity has been
described for its serious role in mediating inflammation [47].

5-S-HETE is on its own a potent proinflammatory
mediator [48] to induce stress conditions together with
potent proinflammatory leukotrienes LTB

4
and the cysteinyl

leukotrienes LTC
4
and LTD

4
. The metabolic tendency of 5-

LOX to produce the 5-OXO-ETE derivative coupled with
LTB
4
is important for inflammation and cancer [48, 49],
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Figure 3: Metabolic events that follow acetylation of COX-2 and further transcellular activities: (a) eicosanoid production by crossover
pathways of acetylated COX-2 and LOX isoenzymes [31, 35, 37–44]. (b) Eicosanoid production by free arachidonic acid [3, 44–46, 53, 54, 61].
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which has not been linked adequately as a serious proinflam-
matory condition due to NSAID use.The 5-S-HETEmetabo-
lite, when accumulating, is a potent neutrophil activator [50].
The 5-OXO-ETE derivative, however, has been shown to be a
100 times more potent neutrophil activator than its precursor
[51]. As synthetic 5-OXO-HETE derivatives prove to be even
more potent than 5-OXO-ETE, the native derivatives also
traced in vivo may be further implicated in the promotion
of chronic inflammation and cancer [49, 52]. 5-OXO-HETE
acts proinflammatorily via the OXO-ETE receptor that is
known to promote eosinophil and other inflammatory cells
migration [48]. 5-OXO-ETE is formed in neutrophil micro-
somes under the presence of NADP+- and Ca2+- dependent
translocation of 5-LOX to the nuclear membrane to act on
arachidonic acid bound by the nuclear membrane accessory
protein 5-LOX activating protein (FLAP). The neutrophil
microsomes under reduced conditions prefer, as well as the
5-S-HETE, to produce the 5-OXO-ETE derivative lipid using
the 6-transanalogue of LTB

4
as a substrate [46].

Free activated arachidonic acid not bound to COX-2
may be also used by 5-LOX to produce leukotrienes during
inflammation in vivo [42]. Furthermore, it may be utilized
by the P450 metabolism to produce 20-HETE [53] and by
nonenzymatic conversion to form PGF

2
isoprostanes [3, 54]

(Figure 3(b)).

2. Materials and Methods

The literature study was conducted from scientific journals
and books and electronic sources such as SciFinder, Science
Direct, Medline, and Google Scholar, covering the period
from January 1945 to the end of December 2016.

3. Results

3.1. Nonaspirin NSAIDs

3.1.1. Traditional NSAID Clinical Side Effects. Traditional
NSAIDs during clinical practice vary on the degree of
causing vascular side effects. Increased risk is noticed by
high doses of diclofenac and ibuprofen due to the increased
myocardial infarction events recorded, whereas increased
doses of naproxen have substantially smaller risk [55], sug-
gesting differential inhibition of activity of COX-2. Acute
myocardial infarction risk is potentiated in patients with
coronary artery disease by high and low doses of diclofenac
and rofecoxib and other NSAIDs, but not with naproxen even
when administered in high doses [34]. The risk for renal dis-
ease development is tightly correlated with acetaminophen
overuse [56]. Acetaminophen provides a unique example of
cell-specific COX inhibition that may negatively affect the
prostanoid synthesis in tumor cells by altering the levels
of PGE

2
[57, 58]. Upon NSAID inhibition of COX activity

by traditional COX-2 inhibitors like diclofenac, an alternate
housekeeping COX-1-like activity, of a third COX isoenzyme
may be also inhibited by concurrent use of acetaminophen
[28]. Also, this drug’s specific COX-2-like inhibition may
affect homeostaticmechanisms of the central nervous system,
the gastrointestinal system, and the renal system [15].

3.1.2. Proinflammatory Mechanisms Caused by Traditional
NSAIDs. In general, for traditional nonselective COX inhib-
itors, the mechanism of drug generated myocardial pathol-
ogy [34] may be due to prostacyclin and other prostanoid
inhibition that depends on the degree of COX-2 inhibi-
tion [7]. The constitutive COX-2 isoenzyme that is inhib-
ited plays an important role in the regulation of salt,
volume, and blood pressure maintenance [59] by provid-
ing the appropriate prostaglandins to regulate the renin-
angiotensin system [60]. Apart from prostanoid synthesis
diminishment, free hydrolyzed arachidonic acid from c
Phospolipase A

2
(cPLA

2
)may be utilized by LOX isoenzymes

to produce increased amounts of proinflammatory leuko-
trienes [61] and toxic metabolites like 5-S-HETE and 5-OXO-
ETE as seen with the aspirin acetylation of COX-2 [45, 46]
(Figure 3(b)).

3.2. “More Selective” COX-2 Inhibitors

3.2.1. Proinflammatory Mechanisms by “More Selective” COX-
2 Inhibitors. The clear distinction between COX-1 and COX-
2 inhibitors cannot be defined fully [62]. The term selective
COX-2 inhibitor requires further examination as it is over-
simplified and therefore the term “more selective” is used
in this article. To identify proinflammatory effects caused
by COX-2 more selective inhibitors, the interrelationships
between COX-1 and COX-2 catalytic functions have to be
taken into account. COX-1 and COX-2 have similar binding
sites for NSAIDs other than aspirin that block arachidonic
acid metabolism. Naproxen, for example, due to its smaller
molecular size occupies easily the hydrophobic COX-1 bind-
ing site of arachidonic acid where an isoleucine is at position
523. Celecoxib is a larger molecule that naproxen cannot
occupy the COX-1 binding site for arachidonic acid. Instead
it occupies in an easier manner the COX-2 binding site where
a smaller valine instead of isoleucine is at position 523 [63].
Thus due to small structural differences between the two
COX isoenzyme active sites NSAIDs show greater or lower
selectivity for COX-1 and COX-2 resulting in greater or lower
relative inhibition of arachidonic acid metabolism. Relatively
increased inhibition of COX-2 activity results in relative
diminishment of prostacyclin inhibition which is a known
cardioprotective prostanoid [64]. Recent epidemiologic stud-
ies come to directly associate the use of a large number of
individual NSAIDs with hospital administration for heart
failure [65]. Looking at a different metabolic pathway, more
selective COX inhibitory NSAIDs may block the metabolism
of 20-HETE to PGF

2𝛼
and other mediators during P450

metabolismof arachidonic acid thereby resulting in increased
accumulation of 20-HETE [53] (Figure 3(b)). 20-HETE has
also been shown to be a serious promoter of renal hyper-
tension and to be implicated in an increased risk for renal
[33] and cardiovascular diseases [34] such as myocardial
infarction, hypertension, and heart failure that have also
been observed but in a smaller scale with the administration
of nonaspirin traditional NSAIDs [6, 7, 34] (Figure 3(b)).
Arachidonic acid that remains not bound and oxygenized by
COX isoenzymes may be used by p450 and 5-LOX depen-
dent, as well as enzyme independent, metabolic pathways
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to produce proinflammatory metabolites [45, 46, 61] like
LTB
4
, LTC
4
, and 5-OXO-ETE as in aspirin acetylation’s case

(Figure 3(b)).

3.2.2. “More Selective” COX-2 Inhibitor Clinical Side Effects.
Withdrawal of rofecoxib (a similar agent to celecoxib with
increased vascular side effects) from clinical use is perhaps
the best example to account for side effects by amore selective
COX-2 inhibitor [53, 66]. Clearly, increased myocardial
infarction events are associated with more selective COX-2
inhibitor use although nonselective inhibitors of cyclooxyge-
nase are not excluded from being potent risk factors for the
development of cardiovascular episodes [34, 62, 67].

Coadministration of aspirin in clinical practice is recom-
mended for certain groups of patients taking vast amounts
of NSAIDs as a thrombolytic agent for cardioprotection
[63]. These patients are at increased risk from thrombotic
events by taking selective COX-2 inhibitor NSAIDs to treat
inflammatory disorders [68]. Guidelines however state that
aspirin use may not always be an efficient protection [62]. As
for traditional NSAIDs, the more selective COX-2 inhibition
may also contribute to a subsequent surplus of arachidonic
acid that can be used by lipoxygenases (Figure 3(b)). As
already described 5-LOX may be an important mediator
enzyme for inflammation and cancer producing more proin-
flammatory leukotrienes LTC

4
[69], LTB

4
[46, 61, 70], and 5-

OXO-ETE [45, 49].

3.3. Hypersensitivity Response. Eosinophils among other
stimuli are also driven by LTC

4
, which is induced by NSAID

use (Figures 3(a) and 3(b)), and are essential mediator cells in
the production of allergic inflammation [71]. Various types
of NSAIDs are warranted for causing respiratory intolerance
[72]. By proinflammatory mediator generation they have
been implicated to produce allergic and inflammatory reac-
tions as well as ischemia at the level of lung mucosa leading
to asthma [73, 74]. NSAID-induced gastrointestinal injury is
mediated by increased LTB

4
synthesis, too. LTB

4
level is ele-

vated in arthritis treated with NSAIDs [75] (Figures 3(a) and
3(b)). Indomethacin may cause acute gastropathy, and the
induced overproduction of tumor necrosis factor 𝛼 (TNF𝛼)
has also been implicated in the pathogenesis of disease state
[76]. Complementarily, indomethacin to a greater extent
than ibuprofen causes renal dysfunctional abnormalities in
preterm neonates, and unfortunately both are the drugs of
choice for patent ductus arteriosus failure [77]. The immune
response in urticaria provides another good example for
NSAID driven side effect [78]. Urticaria is the clinical term
of a heterogenous group of diseases characterized by wheels
and flares of skin’s vascular inflammation. Aspirin and other
more selective to COX-2 NSAIDs (rofecoxib) and traditional
NSAIDs (nimesulide, acetaminophen) cause the aspirin acute
intolerant urticaria that in some cases may lead to the aspirin
chronic urticaria [79] that has a sound basis of autoimmunity
[78]. As it has been shown that in chronic cases of urticaria
a specific set of IgE autoantibodies directed against thyroid
peroxidase may constitute a novel pathogenetic mechanism,
this may be serious for chronic NSAID users [80]. Selec-
tive to COX-2 NSAIDs and aspirin have been reported

to be implicated in hypersensitivity responses and excess
of histamine release, and this may be extended to various
hypersensitivity immune disorders [81–83]. However, further
studies are needed to investigate the possible IgE elevation in
urticaria events that is caused by “more selective” NSAIDs.

4. Discussion

4.1. Alleviating NSAID Associated Proinflammatory Activity.
As already described, NSAID side effects occur primarily
due to the inhibition of cyclooxygenases that metabolize
arachidonic acid and synthesize prostaglandins with benefi-
cial activities under normal conditions [7, 62]. An example
of a current therapeutic way to overcome NSAID side effects
is the combination of aspirin coadministration in patients
receiving “more selective” COX-2 inhibitors in order to avoid
thrombotic vascular events, although this may not always
be sufficiently protective [62]. Scientific evidence remains
to be clarified by large epidemiological and meta-analysis
studies to establish safety standards for patients in high
risk of developing serious cardiovascular side effects [84].
This process is both time and cost demanding. For example,
results from large and recent epidemiologic studies in Europe
clarify that heart failure is associated with increased NSAID
usage. This increased risk of heart failure is dose dependent
and associated with traditional and more selective to COX-
2 inhibitors [65]. In all respects, the optimum selection of
NSAID coadministration requires deep scientific knowledge
to identify the bottom end of prostaglandin synthesis and
inhibition with subsequent imbalance of homeostasis (Fig-
ure 1).

Better chances to optimize treatment of NSAIDs with
relatively high and low COX-2 inhibitory activities can
perhaps be conferred by supplementary agents that may
interfere with COX in a different manner.

Arachidonic acid hydrolyzed by cPLA
2
(phospholipase

A
2
), if not metabolized by cyclooxygenases, remains an

available substrate to be used in other catabolic pathways:
(1) the lipoxygenase, (2) the P450 epoxygenase, and (3) the
nonenzymatic synthesis leading to isoprostane (Figure 3(b)).

It has been described that by inhibition of COX activity
the increase of cysteinyl leukotriene family (CysLT) potent
proinflammatory lipid mediators is feasible [63]. Human
studies on aspirin intolerance support this hypothesis. When
PGE
2
levels are decreased by inhibition of COX-1, altered

prostanoid production, combined with increased enzymatic
expression like the LTC

4
synthase expression, leads to

increased leukotriene synthesis producing the disease state
[32, 85, 86].

A way to circumvent proinflammatory leukotrienes
(LTB
4
and LTC

4
) production by an overwhelming 5-LOX

activity may be the already developed specific LOX inhibitors
[87, 88]. These may block the undesirable side effects of both
LTB
4
and LTC

4
(a cysteinyl derived leukotriene) [89]. Fur-

thermore, the use of selective agonists of cysteinyl leukotriene
receptor 1 (CysLTR

1
) is referred to circumvent leukotriene-

associated pathologies probably by inhibition of cytosolic
Ca2+ [90]. Also the inhibition of CysLTR by other agents
may provide suitable pharmacologic activity.Theuse of either
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leukotriene biosynthesis inhibitors or leukotriene receptor
antagonists [91] may also help to minimize NSAID side
effects. Since LTC

4
production is blocked by inactivation

of CysLT
1
receptor, selective CysLT

1
antagonists may be

applied [92]. Also, CysLT
1
receptor antagonists to reduce

eosinophilia may be of therapeutic value [91].
NSAIDs activity as already discussed (Figures 3(a)

and 3(b)) may favor 5-LOX to catalyze the formation
of LTA

4
and 5-S-hydroperoxy-6,8,11,14-eicosatetraenoic

acid (5-HpETE), which is rapidly reduced to 5S-hydroxy-
6E,8Z,11Z,14Z eicosatetraenoic acid (5-S-HETE). This met-
abolic intermediate is oxidized by 5-hydroxyeicosanoid
dehydrogenase (5-HEDH) to produce 5-OXO-ETE [46].
5-HEDH activity is inhibited by 5-hydroxy-fatty acids [45].
Recent advances in the formation of 5-OXO-ETE receptor
antagonists [93] may also help to prevent hypersensitivity
reactions by COX inhibitors. Conversion of 5-S-HETE into
5-OXO-ETE is highly reversible in the presence of NADPH
and alleviation of oxidant conditions.The use of antioxidants
may favor restoration of 5-OXO-ETE side effects via the
5-OXO-ETE receptor in asthma, cancer, and cardiovascular
conditions [48, 94].

Apart from LOX favored metabolism during COX inhi-
bition, oxidized arachidonic acid may sustain nonenzymatic
conversion to form prostaglandin F

2
compounds (PGF

2
-

isoprostanes). Isoprostanes are very readily formed in bio-
logical fluids [3] from oxidized arachidonic acid and through
endoperoxide intermediates [54]. Modulation of inflamma-
tion byNSAIDs as a natural way of treatment is a very natural
way of treatment is by the concurrent prolonged use of
naturally derived d-𝛼 tocopheryl acetate [95, 96]. Asthmatic
and atherosclerotic patients seem to benefit by natural-source
d-𝛼-tocopheryl acetate as this is shown to reduce allergen-
induced F

2
-isoprostane formation [95, 97].

Arachidonic acid, once liberated from membrane phos-
pholipases and not being metabolized further by cyclooxy-
genases due to NSAID inhibition, may be efficiently metab-
olized by isoforms of the cytochrome P450 (CYP) family to
form 20-hydroxyeicosatetraenoic acid (20-HETE) [98, 99].
20-HETE promotes coagulation of platelets, thus shortening
the time of bleeding, and its synthesis is being increased by
rofecoxib, suggesting serious cardiovascular side effects for
this drug [53].

In order to identify agents that may inhibit undesired
20-HETE synthesis by NSAID-COX inhibition, the exper-
imental model of spontaneous hypertensive rats provides
significant clinical information. Agents that induce heme
oxygenase reduce the renal formation of 20-HETE and also
decrease hypertension [100, 101]. In clinical research, heme
oxygenase inducers are of increasing interest to overcome
spontaneous reactions that lead to kidney failure [102].

Heme oxygenase-1 (HO-1), which is expressed in all
tissues, receives electrons from NADPH by P450 enzyme
fractions due to CRP microsomal protein mediator and
P450 protein-to-protein interactions [103]. This may prove
to be important clinically, since under severe hypoxia there
may be a way to circumvent 5-OXO-ETE accumulation by
expenditure of NADPH to NADP+ to reform 5-HETE [104]
and to deprive arachidonic acid reserves to form 20-HETE

by P450 enzymes at the same time [105] (Figure 6). In this
respect, attention is drawn on the induction of HO-1 by
naturally derived agents like the endogenous haloamines of
taurine, that is, N-chlorotaurine (NCT) and N-bromotaurine
(NBrT), also termed as small molecule NSAIDS [106, 107].
These haloamines have been shown to downregulate the
production of Cox-2 derived PGE

2
[108] in a way indepen-

dent of COX-2. NCT exerts its anti-inflammatory activity in
rheumatoid arthritis synoviocytes by inhibiting IL-𝛽 induced
production of PGE

2
by decreasing COX-2 isoenzyme expres-

sion leaving COX-1 expression unaltered [109]. However, at
lower cytotoxic concentrations bothNCT andNBrT decrease
PGE
2
synthesis without affecting COX-2 expression [108].

Haloamines of taurine (NBrT and NCT) at present state
can be administered locally in cases of cutaneous body
cavities and organ infection and inflammation to inactivate
microbes,minimize inflammation, and reduce pain andother
symptoms [110–113].

Another target for NSAID minimization of side effects
on the cardiovascular system may be the maintenance of
low levels of nitric oxide (NO) that are essential for car-
dioprotection [114] (Figure 4). NO at normal levels inhibits
thromboxane synthase and activates prostacyclin synthase
[115]. LOX activity leading to increased LTB

4
and LTC

4

formation may create a surplus of reactive oxygen species
(ROS) and especially superoxide [63]. In such a case, car-
dioprotective levels of nitric oxide may be consumed by
ROS to form peroxynitrite, a prostacyclin synthase inhibitor
and thromboxane receptor stimulator [116].The overall effect
caused by more selective COX-2 inhibitors is a low level
of prostacyclin and high levels TXA

2
[63], promoting a

platelet activating thrombosis event. Restoration of nitric
oxide levels is said to be achieved by consumption of certain
doses of taurine (2-aminoethanesulfonic acid), which may
act as an antioxidant on a diseased vascular state and as a
prooxidant in an otherwise normal vasculature being at risk
from NSAID use [117]. Also, taurine derivatives NCT and
NBrT are known to reduce excessive nitric oxide formation
[118]. Curcumin, a natural antioxidant consumption, may
also be of help for NSAID users, especially for those being
at risk. Curcumin modulates arachidonic acid release from
cellular membranes by blocking the hydrolysis event by
cytosolic phospholipase A

2
, and it inhibits the 5-LO catalytic

functions and nitric oxide synthase activity [119]. During
COX-1 and COX-2 inhibition by NSAIDs, generation of NO
and ROS is not suppressed under inflammatory stimulation,
whereas cPLA

2
activity is increased under inflammatory

conditions. A probable direct synergy with its function with
12- and 15-LOX isoenzymes to produce NO and ROS, via
a cPLA

2
. 12- and 15-LOX pathway are suggested [120]. The

use of 12-/15-LOX inhibitors may be beneficial, especially
in neurodegenerative diseases where NO activity is a major
proinflammatory mediator [120, 121].

Finally, recent scientific effort is focusing on the trials of
new cyclooxygenase inhibitors [122] in order to overcome
undesirable cyclooxygenase metabolism of arachidonic acid
in inflammation and cancer. These compounds have lower
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Figure 4: Possible target points of supplementary agent’s use to alleviate NSAID promotion of proinflammatory and cancerous conditions.

isoform selectivity to COX than the NSAID “more specific”
cyclooxygenase inhibitors (coxibs), which may result in
reduced side effects.

4.2. NSAIDs and Risk for Cancer

4.2.1. Studies with Clinical Evidence for Cancer Development.
Epidemiologic studies provide contradictory results on can-
cer risk development by NSAIDS that may be due to the cell-
specific activity of producing prostanoids and the specificity
on COX inhibition by a particular NSAID (Figures 1 and 2
and Table 1).

Subjects using certain types of NSAIDs are being pro-
tected from colorectal cancer [123]. Specifically, aspirin users
have better protection from the close to rectum and distal to
colon cancer development, whereas the nonaspirin NSAID
users are being more protected from the proximal to colon
cancer development [123–125]. It should be mentioned,
however, that anatomic locations in this type of cancer
development are also tightly associated with the age, gender,
and the race of patients [126]. Some studies indicate that
breast cancer development risk is also lowered by NSAID
use [127, 128], although this may be a small decrease of
relative risk [129]. Moreover, type of NSAID, specific dose,
and duration of treatment have not been yet identified
[130]. Other studies, however, indicate increased risk for
developing breast cancer irrespective of hormonal status
(estrogen/progesterone (ER/PR) receptor positive/negative)
and that the risk for developing ER/PR (−) breast cancer is
raised in long term daily use aspirin users [131, 132]. Tradi-
tional NSAID use (diclofenac, etodolac, and meloxicam) is

also associated with decreased risk in developing aggressive
skin cancers, whereas “more selective” to COX-2 inhibitors
were not found to be protective [133, 134]. Also, whilst aspirin
and other NSAIDS may protect from developing esophageal
and noncardia gastric carcinomas, these are nonprotective for
the development of cardia gastric carcinoma [135, 136].

Epidemiological studies are controversial regarding a
protective [137] or promoting [138] effect of NSAIDs for
prostate cancer. In prostate cancer, genetic variation in the
COX-2 gene is associated with increased risk [139]. Epi-
demiologic studies clearly indicate that acetaminophen and
nonaspirin NSAIDs are associated with a significant risk
of developing kidney cancer [140, 141]. Complementarily,
whilst aspirin and other NSAID users have lower risk for
developing hepatocellular carcinoma (HCC) [142, 143], men
only gain protection from intrahepatic carcinoma (IHC) by
taking aspirin and this did not account for any other NSAID
use [142]. Aspirin and other NSAID users are not protected
from developing brain tumors and the use of traditional and
“more selective” COX inhibitors seems to increase the risk for
developing meningiomas [144].

Although epidemiology data on cancer risk by NSAIDs
are controversial, by comparison of results important indica-
tionsmay be drawn (Table 1). Inhibition of prostanoid synthe-
sis due to aspirin acetylation on COX isoenzymes, although
in a different manner [7, 26], may be protective of a variety of
types of cancers. Acetylating of COX by aspirin was found to
be protective of prostate cancer development in a subgroup of
subjects having specific sequence variations within the COX-
2 genome [139]. Also, risk reduction for colorectal cancer
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Table 1: Cancer risk development from NSAID use as recorded from various epidemiology studies.

Type of cancer Aspirin Traditional nonaspirin NSAID More selective COX-2 inhibitor

Proximal colon∗ No effect on risk [123]
Decreased risk in women [124] Reduced risk [123] No data available (NDA)

Distal colon∗ Decreased risk [123]
No effect in women [124] Reduced risk [123] NDA

Rectum∗ Decreased risk [123]
No effect in women [124] No effect on risk [123] NDA

Nonmelanoma skin cancer
(NMSC)

Decreased risk for BCCa SCCb [133]
Slightly decreased risk for BCC SCC

[134]

Decreased risk for BCC SCC
[133]

Slightly decreased risk for BCC
SCC [134]

Decreased risk for BCC SCC
[133]

Stronger decreased risk for BCC
SCC [134]

Melanoma skin cancer
(MSC) Slightly decreased risk [133] Slightly decreased risk [133] No effect on risk [133]

Breast ER/PR (+)
Highly increased risk by aspirin-only

NSAID users [131]
No effect on risk [127]

No effect on risk by
acetaminophen [131]

Increased risk [131]
Decreased risk in HER2+

[127] ∗∗

Breast ER/PR (−)
Highly increased risk by aspirin-only

NSAID users [131]
Increased risk [132]

No effect on risk by
acetaminophen [131]

Increased risk [131]
Decreased risk in HER2+

[127] ∗∗

Brain glioma No effect on risk [144] No effect on risk [144] No effect on risk [144]
Brain meningioma No effect on risk [144] Slightly increased risk [144] Slight increased risk [144]
Hepatocellular Carcinoma
(HCC) Decreases risk [142, 143] Decreases risk [142] Decreases risk [142]

Intrahepatic
cholangiosarcoma (ICC)

Decreases risk in men [142]
No effect on risk in women [142]

No effect on risk by ibuprofen
[142] No effect on risk [142]

Prostate∗∗∗ No effect on risk [138]
Increased risk with

acetaminophen, even stronger
for metastatic type [138]

Increased risk, even stronger for
metastatic type [138]

Esophageal squamous cell
carcinoma (ESCC) Decreased risk [135, 136] Slightly decreased risk [135, 136] Slightly decreased risk [135, 136]

Esophageal
adenocarcinoma (EA) Decreased risk [135, 136] Slightly decreased risk [135, 136] Slightly decreased risk [135, 136]

Noncardia gastric
carcinoma Decreased risk [135, 136] Slightly decreased risk [135, 136] Slightly decreased risk [135, 136]

Cardia gastric carcinoma No effect on risk [135, 136] No effect on risk [135, 136] No effect on risk [135, 136]
∗Anatomic locations are associated with gender, age, and race of patients [126]. ∗∗Study indicates decreased risk in special subgroups of patients. ∗∗∗Genetic
predisposition may increase risk [139]. aBasal cell carcinoma. bSquamous cell carcinoma.

development with aspirin is related only to specific geno-
types near the IL-6 genome [145]. Thereby genetic variation
seems be an important parameter for the aspirin effect in
cancer development. By contrast, aspirin use increases the
risk for breast cancer development irrespective of hormonal
influence [131]. Cell-dependent prostanoid formation is also
another important serious parameter (Figure 1). Any given
prostanoid forming cell selects a particular prostanoid as
its major product [15]. Brain and mast cells, for example,
preferably produce PGD

2
, and its formation provides the core

for vital homeostasis mechanisms [146, 147].

4.2.2. What Are the Effects of NSAIDs on Cancer? Traditional
and “more selective” COX inhibitors preferentially bind on
arachidonic acid’s active site of respective isoenzymes. The

degree to which COX inhibitors cause inhibition of COX-
1, COX-2, or COX-3 depends on their selective preference
for COX active sites [62, 63]. Under normal conditions,
constitutive COX-1maintains prostacyclin and PGE

2
levels as

well as other prostanoids in all tissues, whereas COX-2, when
activated in an inducible way (i.e., during inflammation),
produces prostacyclin and other prostanoids in most, but not
all, organs [15]. From epidemiologic studies it is evident that
some groups of subjects benefit fromdeveloping certain types
of cancer by nonaspirin NSAIDs, for example, nonmelanoma
skin cancers [134], whereas the same use of NSAIDs elevates
the risk of developing someother types of cancer, for example,
in the kidney [141]. The differential inhibition of COX-
1, COX-2, and COX-3 isoenzymes results in differential
beneficial activities and side effects [15] (Figure 1). For cancer,
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the situation is even more complicated as it may also depend
on both the impact on COX and the subsequent synthesis
inhibition of protective prostaglandins.

4.3. Mechanisms of Promotion of Cancer by the AA System and
the NSAIDs. PGE

2
association with tumorigenesis has been

thoroughly investigated. Measurement of increased amounts
of PGE

2
in colorectal cancer has long been implicated to

contribute to tumorigenesis [148], where apparently COX-2
and not COX-1 is overexpressed [149], and COX-2 expression
is more essential for tumor development in the distal colon
[150]. Nowadays, inducible PGE

2
synthesis is implicated

in many types of cancers [58, 151]. However, it should
always be considered that PGE

2
is a major component of

tissue homeostasis under normal conditions [21, 58] and its
constitutive synthesis may be impaired by the frequent use of
all classes of NSAIDs [7].

Frequent use of NSAIDS leading to depletion of COX
activity may favor the metabolism of arachidonic acid by
the LOX pathways [15, 63] as discussed. There are several
human and animal studies finely reviewed to support this
hypothesis [18]. 5- and 12-LOX metabolic pathways are
linked to carcinogenesis [152], and altered COX and LOX
metabolism of arachidonic acid are a common factor in
malignancy [35]. One major metabolite of 5-LOX, the LTB

4
,

was shown to produce cancer predisposition by activating
transcriptional factor NF-kB in hepatoma cells [153]. The
cysteinyl leukotrienes (TLC

4
, LTD

4
, and LTE

4
) may also be

oversynthesized as increased amounts of LTC
4
and LTD

4
and

decreased amounts of PGE
2
are detected in nasal secretions

if patients with aspirin intolerance are treated with this medi-
cation [154] (Figure 3(a)). LTC

4
induces the phosphorylation

of NF-kB p65, activates the complex NF-kB p50-p66 [155],
and via the CysLT2 receptor induces the phosphorylation
of IkBa by involving protein kinase family enzymes [156].
Aspirin decreases the expression of Bcl-2 by blocking the
IL6-IL6R-STAT

3
signaling pathway [157]. The decreased

expression of Bcl-2 may cause apoptosis by tumor necrosis
factor apoptosis-inducing ligand and increased levels of
TNF𝛼 expressed [158]. However, overproduced TNF𝛼 may
not function proapoptotically but contribute to cell survival
(Figure 5). TNF𝛼 bound to the tumor necrosis receptor
1 (TNFR-1), apart from other causalities, recruits TNFR-
1-associated death domain protein (TRADD). TRADD in
turn has a dual activity. When TRADD recruits the receptor
interacting protein kinase- (RIPK-) and Fas-associated death
domain protein (FADD), this finally results in apoptosis
[159]. However, when TRADD recruits TNF receptor factor
2 (TRAF-2) and FADD, this results in activation of survival
transcription factor NF-kB [160–162]. TNF-𝛼 also results
in activation of the transcription factor AP-1 via the JNK
signaling cascade, which subsequently increases cellular pro-
liferation [163].

Furthermore, extensive 5-LOX activity from arachidonic
acid accumulating from NSAID inhibition of COX may also
lead to increased 5-OXO-ETE formation (Figures 3(a) and
3(b)). This may be of raised interest in oncology studies
as 5-OXO-ETE lipid molecules seem to be required for
cancer cell proliferation [48]. In prostate cancer cells, for

example, 5-OXO-ETE and the 12-LOX metabolism are also
important for tumor propagation [48, 88].Marked expression
of 5- and 12-LOX is being detected in prostate neoplasia in
contrast to normal and benign epithelia [88]. The platelet
12-LOX overexpression in prostate cancer is also said to be
a trigger for angiogenesis and tumor growth by enhancing
av𝛽3 and av𝛽5 integrin expression [15]. Complementarily, by
data drawn from a Gln261Arg polymorphism of the 12-LOX
gene meta-analysis study, clearly enough, this polymorphism
was shown to be a significant risk factor for increased
susceptibility to at least five types of cancer, including prostate
cancer, specifically in the Asian population [164].

4.4. Description of New Drugs and Their Possible Use for
Alleviation of Cancer Predisposition with NSAIDs. Lipoxyge-
nases are an emerging group of cancer targets as numerous
studies indicate that 5-LOX and 15-LOX-1 are associated
with the development of cancer via the NF-kB pathway [61].
Treatment with specific LOX inhibitors may be important as
therapeutic option in order to overcome LOX overexpression
[88]. Looking at the pathway of downstream production of
5-OXO-ETE, as a serious promoter of carcinogenesis, the
novel synthesis of 5-OXO-ETE receptor antagonists may be
another therapeutic option [93] (Figure 5). Recently we have
discovered that the taurine derivative NBrT is a significant
proliferative inhibitor leading to cell death among numerous
cancer cell lines. Antiproliferative activity is enhanced onPC3
(prostate cancer), A549 (lung cancer),HeLa (cervical cancer),
and MDA-MB231 (breast cancer) cell lines, (A. Kyriakopou-
los et al. unpublished data). It would be a future interesting
model to test the aspirin-induced proliferative ability of these
particular cell lines and subsequently the inhibitory effect by
the heme oxygenase inducers such as NBrT. The extensive
antiproliferative effect on numerous human cancer cell lines
by NBrT is in accordance with the recently demonstrated
effect of G cycle arrest of glucocorticoid resistant cancer
cells and the optimized concurrent anticancer effect of
cisplatin with NBrT. NBrT has been considered in studies
as a small molecule NSAID as it leads to decreased PGE

2

levels independently of COX expression [106, 108, 165]. As
cyclooxygenase [166] and lipoxygenase [61] metabolism have
long ago been associatedwith tumorigenesis, a possible thera-
peutic interventionwith heme oxygenase inducers (including
taurine derivatives) may be of significance and should be
tested in animal models. Stress conditions that may lead to
renal disease [33, 53, 103] (under hypoxic conditions [60])
and possible cancer predisposition enhancement may be
circumvented (Figure 6).

5. Conclusion

Only scarce previous studies in the past have been focused
on the avoidance of adverse effects of NSAID use [167].
Due to both older and recent research data on proinflam-
matory effects and cancer development in connection with
NSAIDs, selective therapeutic targets and newer agents like
the small molecule NSAIDs with an improved benefit-risk
ratio become of interest. By all means, a thorough investi-
gation of lipid metabolism under NSAID use is required,
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and this must be coupled with large scale epidemiological
studies to provide valuable clinical information. For example,
although accumulated data suggest a protective role of some
COX inhibitors in the development of certain types of cancer,
the predicted increased risk for other cancers by NSAID use
is also equally important. Alterations of AA metabolism by
NSAID, prompt further investigating the possible develop-
ment of inflammation and cancer.
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