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Cluster randomized trials evaluate the effect of a treatment on persons nested

within clusters, where treatment is randomly assigned to clusters. Current

equations for the optimal sample size at the cluster and person level assume that

the outcome variances and/or the study costs are known and homogeneous

between treatment arms. This paper presents efficient yet robust designs for cluster

randomized trials with treatment‐dependent costs and treatment‐dependent

unknown variances, and compares these with 2 practical designs. First, the

maximin design (MMD) is derived, which maximizes the minimum efficiency

(minimizes the maximum sampling variance) of the treatment effect estimator

over a range of treatment‐to‐control variance ratios. The MMD is then compared

with the optimal design for homogeneous variances and costs (balanced design),

and with that for homogeneous variances and treatment‐dependent costs (cost‐

considered design). The results show that the balanced design is the MMD if the

treatment‐to control cost ratio is the same at both design levels (cluster, person)

and within the range for the treatment‐to‐control variance ratio. It still is highly

efficient and better than the cost‐considered design if the cost ratio is within the

range for the squared variance ratio. Outside that range, the cost‐considered design

is better and highly efficient, but it is not theMMD. An example shows sample size

calculation for the MMD, and the computer code (SPSS and R) is provided as

supplementary material. The MMD is recommended for trial planning if the study

costs are treatment‐dependent and homogeneity of variances cannot be assumed.
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1 | INTRODUCTION

Randomized experiments are commonly seen as the best method for evaluating the effect of some new treatment in
public health and medicine. However, randomized assignment of individuals is neither always feasible nor always
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desirable. For instance, a healthy food program for restaurants in high schools can only be implemented at the school
level, and so we can randomly assign schools, but not pupils, to treatment or control. Further, even if randomization of
individuals is possible, this may be undesirable due to a risk of treatment contamination. For instance, it may be very
difficult for a life style counselor in family practice to switch between 2 methods of counseling when switching between
patients. Treatment contamination reduces the outcome difference between groups and the power to detect a difference.
For these reasons, cluster randomized trials,1,2 also known as group randomized trials,3 are frequently run. In such trials
organizational units (eg, schools or family practices), called clusters, are randomly assigned to treatment or control, and
all individuals within the same cluster receive the treatment to which their cluster was assigned. Cluster randomized
trials are thus a natural alternative to the randomized experiment when individuals are nested within organizations,
such as pupils in schools or patients in health centres. Some examples of cluster randomized trials are a smoking pre-
vention trial and a stress management trial, both run in primary schools with schools as unit of assignment,4,5 and the
assessment of COPD burden trial, run in primary and secondary care.6

However, cluster randomization gives a lower power and precision than individual randomization because outcome
variation between clusters within the same treatment group inflates the sampling variance of the treatment effect esti-
mator by a factor known as the design effect. This design effect can easily be as large as 2 or 3, depending on the so‐
called intraclass correlation (ICC), which is the ratio of outcome variance between clusters to total outcome variance,
and on the sample size per cluster.7 It is thus important to design a cluster randomized trial efficiently within con-
straints like feasibility and the budget for sampling, treating and measuring clusters and persons. In particular, the sam-
ple size at each design level (cluster, person) must be cost‐effective, that is, the power to detect a treatment effect of
interest must be maximized at minimum costs. Equations for the optimal sample size in a cluster randomized trial, tak-
ing into account outcome variance and costs at each level (cluster, person), have been published.8,9 These equations are
based on 3 restrictive assumptions, however: (1) homogeneity of outcome variance and costs between treatment groups,
at the cluster level and at the individual level, (2) a known ICC, and (3) an equal sample size per cluster.

The assumption of an equal sample size per cluster was relaxed by showing that the increased sampling variance of
the treatment effect arising from cluster size variation, can be approximated by a simple function of the coefficient of var-
iation (CV) of cluster size, and that this increase can often be compensated by sampling 10% to 20% more clusters.10,11

The assumption of a known ICC was recently dropped by the derivation of maximin designs (MMDs) which are
robust against misspecification of the ICC.12 Two other methods to handle the unknown ICC are the Bayesian approach
and group sequential trials.13-15 This leaves the assumption of homogeneous costs and variances to be relaxed, and there
are good reasons for relaxing that assumption.

With respect to costs, the growing literature on cost‐effectiveness cluster randomized trials16 testifies to the hetero-
geneity of costs between treatments. Some of the costs for running a trial may also differ between treatment arms, for
instance if one of the treatments is so new that the staff of the participating clusters needs to be trained into the proper
use of that treatment. With respect to outcome variance, substantial heterogeneity of variance, with variance ratios as
high as 8 or even 12, was found in some studies in clinical psychology.17 For cluster randomized trials in medical
and health care, no similar review is known to us. Going through all cluster randomized trials in a published review,18

and restricting ourselves to quantitative outcomes, we found only a handful of trials reporting the outcome variance or
SD per arm, and these suggest at least some heterogeneity. For instance, a control‐to‐treatment variance ratio of 3 was
reported for the outcome “confidence” in a trial on the effects of a training of general practitioners and nurses on
patient‐centered counseling and material use for Type 2 diabetes patients.19 Similarly, a variance ratio of 1.7 was found
for systolic blood pressure in a comparison between computer based clinical decision support and usual care for man-
agement of hypertension in primary care.20 Both variance ratios are significantly different from one according to the
classical F ‐test (no adjustment for clustering could be made because both publications only report the total variance
and not the ICC). Further, significant heterogeneity of variance, with a variance ratio of 1.35 for the outcome patient
satisfaction, was reported in a trial comparing nurse practitioners with general practitioners.21

For binary outcomes and count data, heterogeneity of variance is even bound to occur if treatments differ in mean
outcome. The present paper focusses on quantitative outcomes, but its general approach can also be applied to other
outcomes. For example, all equations in the next section have an equivalent for binary outcomes.22

Going back to the literature on optimal design and sample sizes, the homogeneity of variance assumption was
relaxed for randomized experiments without clustering by several authors,23-25 and for experiments with clustering in
1 treatment arm by Moerbeek and Wong.26 Heterogeneity of costs per cluster in a cluster randomized trial was consid-
ered by Liu,27 assuming homogeneous variances and sample size per cluster. Allowing heterogeneous costs and hetero-
geneous variances, Candel and Van Breukelen28 derived the optimal number of clusters per treatment arm, given a fixed
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instead of optimal cluster size, which was allowed to differ between treatment arms, however. Lemme et al29 derived the
optimal number of clusters as well as the optimal cluster size per treatment arm, but application of their result requires
the outcome variance per treatment arm per design level to be known in the design stage. Finally, Wu, Wong and
Crespi30 derived the optimal treatment to control allocation ratio for a cluster randomized trial with a binary outcome
and heterogeneous costs and ICCs, given a fixed instead of optimal sample size per cluster, which was restricted to be
the same for both treatment arms. Candel and Van Breukelen as well as Wu et al also discussed MMDs to handle depen-
dence of the optimal design on unknown parameters.

This paper extends the literature in 3 ways. First, both the number of clusters and the cluster size per treatment arm
of a cluster randomized trial are optimized as a function of treatment‐dependent costs and treatment‐dependent
variances at each design level, cluster and individual. In this respect it extends.27,28,30 Secondly, the problem that the
variances are unknown in the design stage is addressed by MMD, as in Candel and Van Breukelen28 and Wu et al30,
which only requires the user to specify a maximum for the ICC and a range for the treatment‐to‐control outcome
variance ratio. Within these ranges we derive robust and efficient designs. Third and last, we compare these designs
not only with the commonly used balanced design, which is optimal under homogeneity of variances and costs, but also
with the design that is optimal for heterogeneous costs but homogeneous variances. The latter design is a practical alter-
native to the balanced design because costs, unlike variances, can be known in the design stage.

The outline of this paper is as follows. First, the mixed model for analyzing a cluster randomized trial is specified and
the optimal sample size per level is given as a function of the ICC and the cluster‐to‐person cost ratio, for the case of homo-
geneous variances and costs (Section 2) and for the heterogeneous case (Section 3). Because costs can be known in the
design stage while variances cannot in general, we then derive the MMD (Section 4). This is the design with maximum
efficiency (minimum sampling variance) of the treatment effect in the worst case scenario, that is, in the case where the
treatment‐to‐control variance ratio is such that the efficiency is at its minimum (ie, that the sampling variance is at its max-
imum), hence the name MMD. We compare the minimum efficiency of this design with that of the balanced design, and
with that of the optimal design for heterogeneous costs and homogeneous variances. The comparison is made as a function
of the range for the treatment‐to‐control variance ratio, and of the treatment‐to‐control cost ratio. Throughout the paper, we
assume an equal sample size per cluster within treatment arms, but not between arms. Cluster size variation within arms
can be handled as in,10,11,31 which oftenmeans increasing the number of clusters per treatment armwith 10% or so. Further-
more, it is assumed that the data will be analysed with a statistical model that takes into account the nesting of subjects in
clusters and that allows for heterogeneity of variance at each design level. To help the reader keep track of all mathematical
symbols in this paper, Appendix A lists all symbols, with their meaning and the section where they are first used.
2 | OPTIMAL DESIGN UNDER HOMOGENEOUS COSTS AND VARIANCES

Let us start with the statistical model for the treatment effect on a quantitative outcome Y in a cluster randomized trial:

Yij = β0j + β1Xj + εij , where β0j = β0 + u0j , giving:

Yij ¼ β0 þ β1Xj þ u0j þ εij : (1)

Here, Yij is the outcome for subject i in cluster j, and X j is the treatment assigned to cluster j (1 = treatment, 0 =
control). Parameter β1 is the mean outcome difference between treated and control, that is, the treatment effect. The
intercept β0j is the sum of a fixed mean intercept β0 plus a random cluster effect u0j which is assumed to have a normal
distribution with mean zero and variance σ2

u0 . Finally,εij is the sum of subject and measurement error effects, with mean
zero and variance σ2εwithin each cluster. The outcomes of any 2 subjects i and i′ in the same cluster j are correlated due
to the shared cluster effect u0j, and this intraclass or intracluster correlation (ICC) is:

ρ ¼ σ2u0
σ2y

¼ σ2u0
σ2u0 þ σ2ε

; (2)

where σ2y is the total outcome variance within conditions.

Because the aim of a cluster randomized trial is to estimate the treatment effect β1 as precisely as possible and to
have a maximum power for testing this effect, a logical criterion for the design efficiency is the sampling variance of

the treatment effect estimator, Var bβ1Þ�
, which for model 1 and 50:50 treatment allocation is22:
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Var bβ1� �
¼ ½ n − 1ð Þρ þ 1 � ×

4 σ2y
n K

: (3)

Here, n is the sample size per cluster, K is the total number of clusters sampled, and so nK is the total number of
subjects sampled. The factor [ (n − 1) ρ + 1 ] is the design effect (DE) and indicates the sample size needed for a clus-
ter randomized trial relative to that for a classical trial with individual randomization. If ρ is zero, there is no outcome
variation between clusters, and cluster randomization is as efficient as individual randomization, as reflected by a DE of
one. In practice, the ICC is usually between 0.01 and 0.10 or 0.25, depending on the field of application,18,32,33 and so the

DE is larger than one and increases with the sample size per cluster, n. For large n, Var bβ1� �
approaches

4 ρσ2
y

K
, which

depends on the variance and sample size at the cluster level only.
We can increase the power of the trial by increasing n or K, and the latter is more effective because increasing n also

increases the DE, thus undoing part of the power gain. Unfortunately, increasing the sample size not only increases the
study power, but also the total study cost (money, time and effort), and the cost per cluster may be larger than the cost
per subject, raising the question of the optimal sample size per level (cluster, person). To answer this question, we need to
combine the optimality criterion in Equation 3 with a cost function relating study costs to sample size. Following,8,9 we
assume a fixed cost c per cluster and cost s per subject, where c and s are in the same currency (eg, US$ or Euro). The total
budget B needed for K clusters of n subjects each, ignoring all study costs that do not depend on the sample size, then is:

B ¼ c K þ s n K ¼ K c þ snð Þ; (4)

where (c + sn) is the total cost per cluster including the cost per subject within the cluster. The optimal design now min-

imizes Var bβ1� �
in Equation 3 as a function of n and K, given the constraint in Equation 4. Assuming ρ ∈ (0, 1), this

gives8,9:

n* ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ
ρ

� �
c
s

� �s
; K* ¼ B

c þ sn*ð Þ : (5)

where the superscript * indicates the optimal design. So, the optimal sample size per cluster, n*, increases with the cluster‐

to‐subject cost ratio c/s, and with the subject‐to‐cluster variance ratio
1−ρ
ρ

� �
. The optimal number of clusters, K*, then

follows from the budget constraint in Equation 4. Note that the total budget B only affects the optimal number of clusters
K*, but not the optimal sample size per cluster n*. So, if the budget is increased to gain power, then the extra budget must
be spent on more clusters rather than on more subjects per cluster. Further, the optimal design in Equation 5 clearly
depends on the ICC, which is usually unknown in the design stage. So, the design is locally optimal only, that is, optimal

for 1 specific value of the unknown ICC. Combining Equations 3 and 5 gives Var* bβ1� �
for the optimal design, which is

the smallest possible Var bβ1� �
, yielding the largest possible power and precision, given our budget, costs, and outcome

variance and ICC:

Var* bβ1� �
¼ 4 g ρð Þσ2Y

B
; where: g ρð Þ ¼ ffiffiffiffiffi

ρc
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρð Þ s

p� � 2
: (6)

So the smallest possible sampling variance of the treatment effect estimator increases with the costs c and s, in a way

which depends on the ICC. Further, g (ρ) increases with the ICC to a maximum g(ρ) = c + s, attained if ρ ¼ c
cþ s

.

This last case gives a sample size n*= 1 per cluster by Equation 5, so that the design is no longer nested and Var bβ1� �
no

longer depends on ρ, see Equation 3. So, Equations 5 and 6 only apply if 0 < ρ <
c

cþ s
, which is a reasonable assump-

tion given that the ICC is typically between 0.01 and 0.25,18,32,33 and that c > s will almost always hold. If Var* bβ1� �
in

Equation 6 is still too large for sufficient power and precision, the only solution is to increase the budget B, and spend
the extra money on sampling more clusters, see Equation 5. A simple equation for computing the number of clusters

needed for a given effect size d (defined as d ¼ β1
σy
, analogous to Cohen's d for non‐nested trials,34) power, type I error

rate α, cost ratio c/s, and ICC, is given in Van Breukelen and Candel.7
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3 | OPTIMAL DESIGN UNDER HETEROGENEOUS COSTS AND VARIANCES

Equations 1 to 6 assume that the outcome variances and the costs are homogeneous between treatment arms. The
assumption of homogeneous costs is unrealistic for expensive or time‐consuming treatments and was relaxed by
Liu.27 The assumption of homogeneous variance is not realistic either, because a treatment which affects the outcome
mean will also affect its variance, unless the treatment effect is the same for all clusters and all subjects. The optimal
design results thus need to be generalized to heterogeneous costs and variances. In terms of Equation 1 this means that

σ2u0 and σ2ε and thus also the total outcome variance σ2y and the ICC ρ can differ between treatment arms. In terms of

Equation 4, the costs c and s can likewise differ between arms.

Now, the treatment effect estimator bβ1 is the difference between 2 independent sample means: that of the treated clus-

ters, and that of the control clusters.27 So Var bβ1� �
is under heterogeneity of variance equal to:

Var bβ1� �
¼ ½ nt − 1ð Þρt þ 1 � σ2Yt

nt Kt
þ nc−1ð Þρc þ 1½ � σ2Yc

ncKc
; (7a)

for any design (nt,Kt,nc,Kc). Here, ρt is the ICC, σ2Yt is the total outcome variance, nt is the sample size per cluster, and
Kt is the number of clusters, in the treated arm, and likewise ρc ,σ2Yc, nc and Kc in the control arm. The minimum of

Var bβ1� �
is found in 2 steps: First, assume a given budget Bt for the treated arm and Bc for the control arm, and min-

imize Var bβ1� �
in Equation 7a subject to the same budget constraint as in Equation 4, but now per treatment arm.

Secondly, given this minimum Var bβ1� �
as a function of the budgets Bt and Bc, let B denote the total budget for both

treatment arms and let f denote the fraction of that budget which is spent on the treated arm, so Bt = f B and Bc =

(1 − f )B . Then, find that f which minimizes Var bβ1� �
as obtained in step 1. Below these 2 steps are elaborated. Step 1

gives as optimal design for the treated arm respectively the control arm:

n*t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρt
ρt

� �
ct
st

� �s
; Kt ¼ Bt

ct þ st n*tð Þ ; (7b)

n*c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρc
ρc

� �
cc
sc

� �s
; Kc ¼ Bc

cc þ sc n*c
� � ; (7c)

Here, ct is the cost per cluster, and st is the cost per subject, in the treated arm, and likewise cc and sc in the control
arm. Note that the optimal sample size per treated cluster, n*t , does not depend on the budget for the treated arm, Bt,
and n*c does not depend on Bc. Only the numbers of clusters per arm, Kt and Kc , depend on the budgets and are not
optimal yet. Substituting Equations 7b and 7c into Equation 7a gives upon rewriting:

Var bβ1� �
¼ gt ρtð Þσ 2

Yt

Bt
þ gc ρcð Þσ 2

Yc

Bc
; (7d)

for the design n*t ;Kt;n*c;Kc
� �

as specified by Equations 7b and 7c, with

gt ρtð Þ ¼ ffiffiffiffiffiffiffiffi
ρt ct

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρtð Þ st

p� � 2
∈ Min st; ctð Þ; Sum st; ctð Þ½ � and

gc ρcð Þ ¼ ffiffiffiffiffiffiffiffiffi
ρc cc

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρcð Þ sc

p� � 2
∈ Min sc; ccð Þ; Sum sc; ccð Þ½ �.

Note that Equation 7a reduces to Equation 3 if σ2Yt ¼ σ2Yc, ρt = ρc, nt = nc and Kt = Kc = K/2 hold, and
Equation 7d reduces to Equation 6 if additionally ct = cc and st = sc and Bt = Bc hold.

In step 2 of the design optimization, substitute in Equation 7d Bt = f B and Bc = (1 − f )B, where f is the fraction
of the budget B that is spent on the treatment arm, and then minimize Equation 7d as a function of f , given B. This
gives as optimal split of the budget between the treated and control arm:
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f *

1−f *
¼ σYt

ffiffiffiffiffiffiffiffiffiffiffi
gt ρtð Þp

σYc
ffiffiffiffiffiffiffiffiffiffiffiffi
gc ρcð Þp : (8)

The optimal number of treated clusters, K*
t , then follows from Equation 7b by letting Bt = f *B, and likewise the

optimal number of control clusters, K*
c follows from Equation 7c by letting Bc = (1 − f *)B. Combining Equation 7d

with Equation 8 results in the following minimum variance of the treatment effect estimator under heterogeneity:

Var* bβ1� �
¼ σYt

ffiffiffiffiffiffiffiffiffiffiffi
gt ρtð Þ

p
þ σYc

ffiffiffiffiffiffiffiffiffiffiffiffi
gc ρcð Þ

q� �2

= B; (9)

which reduces to Equation 6 if the costs and the variances are homogeneous. In the latter case, the optimal design is

balanced, that is, K*
t = K*

c and n*t ¼ n*c .

Another special case is that of homogeneous variances but heterogeneous costs, giving
f *

1−f *
¼

ffiffiffiffiffiffiffiffiffiffi
gt ρð Þpffiffiffiffiffiffiffiffiffiffi
gc ρð Þp . We refer to

this as the cost‐considered (cc) design. The optimal design of Liu27 is a special case of the cc design in that Liu assumes

nt = nc. This is optimal only if
ct
st

¼ cc
sc
, see Equations 7b and 7c. Given homogeneity of variances and

ct
st

¼ cc
sc
,

implying n*
t ¼ n*c, the optimal budget allocation ratio is

f *

1−f *
¼

ffiffiffiffi
ct
cc

r
, and the optimal cluster allocation ratio is

K*
t

K*
c

¼
ffiffiffiffi
cc
ct

r
, which depends on the costs per cluster only. However, it can be shown that this cluster allocation ratio

is also optimal if
ct
st

≠
cc
sc
, provided the variances are homogeneous and nt , nc are optimized with Equations 7b and

7c instead of letting nt = nc.
4 | SOLVING THE PROBLEM OF LOCAL OPTIMALITY: MAXIMIN DESIGN

As Equations 7b, 7c, and 8 show, the optimal budget split between the treated and control arms, and the optimal sample
size per design level (cluster, subject), depend on the costs and variances per design level, per arm, making the optimal
design locally optimal only. But while the costs can be known in the design stage, the variances cannot, and so the opti-
mal design is vulnerable to misspecification of the variances. A solution is the MMD. Maximin design consists of 4 steps,
and each is elaborated after this list:

1. Specify the parameter space, that is, the region containing all plausible values of the unknown parameter vector
σ2Yt; ρt; σ

2
Yc; ρc

� �
on which the optimal design depends;

2. Specify the design space, that is, the set of all candidate designs (nt,Kt,nc,Kc);
3. For each design in the design space find its worst case, here: the maximum of Var bβ1� �

, denoted as maxVar bβ1� �
,

as a function of the unknown parameter vector σ2Yt; ρt; σ
2
Yc; ρc

� �
;

4. Finally, select the design with the smallest maxVar bβ1� �
, denoted asminmaxVar bβ1� �

, or equivalently, the design
with the maximum minimum efficiency. This is the MMD, denoted as nm

t ;K
m
t ; n

m
c ;K

m
c

� �
, which is robust against

misspecification of the unknown parameters in that it optimizes the worst case.

Concerning step 1, some constraints are needed on the parameter space, because Equation 7a implies that Var bβ1� �
is an increasing function of the variance in each treatment arm for any given design(nt,Kt,nc,Kc), and Equation 9

implies the same for Var* bβ1� �
of the optimal design. A finite maximum is therefore imposed on the (unknown) sum

of the outcome variances, σ2Yt þ σ2Yc ≤ Vmax, to prevent an infinitely largeVar bβ1� �
as the worst case in step 3. Further,

assume a bounded SD ratio
σYt
σYc

∈
1
u

; u

	 

, where u (u ≥ 1) is based upon prior knowledge and determines the possible

amount of heterogeneity of variance, with u = 1 giving homogeneous variance, and u → ∞ allowing extremely hetero-
geneous variance. This section focusses on 2‐sided intervals for the SD ratio, but Section 6 covers 1‐sided intervals. Com-

bining
σYt
σYc

∈
1
u

; u

	 

with σ2Yt þ σ2Yc ≤ Vmax gives σ2Yt ∈

Vmax

1þ u2
;

u2Vmax

1þ u2

	 

and likewise for σ2Yc . Finally, in step 1 we

assume a common maximum possible value ρmax for the unknown ICC in each arm, but allow the actual ICC to differ
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between arms. This ρmax may depend on the field of application, for instance 0.10 in primary care,18,32 or 0.25 in edu-

cation,33 and is assumed to satisfy 0 < ρmax < min
ct

ct þ st
;

cc
cc þ sc

� �
for reasons given in Section 2 below Equation 6.

Concerning step 2, restrict the design space to all designs satisfying the following constraints: nt ≥ 1 , Kt ≥ 1 ,
nc ≥ 1 , Kc ≥ 1 and Kt (ct + ntst) + Kc (cc + ncsc) = B, where B is the total study budget for all costs that depend
on the sample size. Without the budget constraint, step 4 would give an infinitely large sample size as the best design.

Concerning step 3, note that Var bβ1� �
is an increasing function of the ICC and of the variance in each arm, see

Equations 7a and 7d and the text below Equation 6. Therefore, given any design (nt,Kt,nc,Kc), Var bβ1� �
is maximized

(worst case) by letting ρ = ρmax and σ2Yt þ σ2Yc ¼ Vmax in Equation 7a or 9;
Finally, concerning step 4, note that for any given parameter vector σ2Yt; ρt; σ

2
Yc; ρc

� �
, including those from step 3,

Var bβ1� �
is minimized by taking the optimal design. So the MMD can be derived from Equation 7d instead of Equa-

tion 7a. To begin with, this gives as maximin sample size per cluster nmt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ct
st

� �
1−ρmax

ρmax

� �s
in the treated arm,

and likewise nmc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cc
sc

� �
1−ρmax

ρmax

� �s
in the control arm, and as worst case the following sampling variance for the

treatment effect:

maxVar bβ1� �
¼ gt ρmaxð Þσ2Yt

f B
þ gc ρmaxð Þ Vmax−σ2

Yc

� �
1− fð ÞB ¼ gc ρmaxð Þ

B
p2 σ2Yt
f

þ Vmax−σ2Yt
1− f

� �
(10)

where p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gt ρmaxð Þ
gc ρmaxð Þ

s
, which is a function of the costs c and s in each treatment arm, and of ρmax. As a special case,

ct
st

¼ cc
sc

gives p ¼
ffiffiffiffi
ct
cc

r
¼

ffiffiffiffi
st
sc

r
.

It is important to note that, once the costs and ρmax and Vmax have been specified by the user, maxVar bβ1� �
in Equa-

tion 10 depends on 2 unknowns only: the total outcome variance in the treatment arm, σ2
Yt , and the fraction of the

budget B spent on the treatment arm, f . So we can first maximize Equation 10 as a function of σ2Yt within its constraint

σ2Yt ∈
Vmax

1þ u2
;

u2Vmax

1þ u2

	 

, and then minimize that maximum as a function of the budget split. This gives the maximin

budget ratio
f m

1−f m
, and the corresponding minmaxVar bβ1� �

shown in Table 1 (for detailed derivations, see Appendix B).

The MMD nm
t ;K

m
t ; n

m
c ;K

m
c

� �
itself is not given in Table 1, but is obtained by filling in Equations 7b and 7c, using the

budget per arm as given in Table 1, and the known costs for that arm, and the maximum ICC, ρ = ρmax.

As Table 1 shows, the maximin budget ratio depends on whether p is within the range
1
u

; u

	 

for the SD ratio or

not. If p is within this range, the budget ratio and minmaxVar bβ1� �
do not depend on that range. If p > u, then

treatment is more expensive than control (p > 1) and costs are more heterogeneous than variances. Consequently, more
TABLE 1 Maximin budget split and maximum variance of the treatment effect for heterogeneous costs and variances given a fixed max-

imum total variance Vmax and a fixed total budget B, as a function of the relation between u (square root of maximum treated‐to‐control

variance ratio) and p (square root of treated‐to‐control cost ratio)

Relation of p to u
Budget Split

f m

1−f m Maximum Var bβ1� �
for the Maximin Design

Equation nr for
Referencing

1
u
≤ p≤ u

p2 gc ρmaxð Þ Vmax

B
× 1þ p2ð Þ (11)

p > u pu gc ρmaxð Þ Vmax

B
×

puþ 1ð Þ2
u2 þ 1ð Þ

(12)

p<
1
u

p
u

gc ρmaxð ÞVmax

B
×

pþ uð Þ2
u2 þ 1ð Þ

(13)



FIGURE 1 Maximin budget ratio treatment‐to‐control, based on the minimum efficiency ( maxVar bβ1� �
) criterion, as a function of the

range
1
u

; u

	 

for the treatment‐to‐control SD ratio, for p = 2, 3, 4, 5 (p = √ of treatment‐to‐control cost ratio if c/s is homogeneous)
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budget is allocated to treatment than to control ( pu > 1). Likewise, p <
1
u
implies that treatment is cheaper than con-

trol (p < 1) and that costs are more heterogeneous than variances, resulting in a higher budget for control (
p
u

< 1).

Figure 1 plots the maximin budget ratio
f m

1−f m
against u from 1 to 5 (implying a range from 0.04 to 25 for the variance

ratio), for p from 2 to 5 (implying a cost ratio from 4 to 25 in the case
ct
st

¼ cc
sc
). If p < 1 (treatment cheaper than

control), then Figure 1 applies in that it then shows the control‐to‐treatment budget ratio.
5 | COMPARISON WITH THE BALANCED DESIGN AND THE COST ‐

CONSIDERED DESIGN

This section compares the MMD with the balanced design (which is optimal for homogeneous costs and homogeneous
variances) and the cc design (which is optimal for homogeneous variances but heterogeneous costs). It does so by

considering the relative efficiencies of all designs, as defined by the ratios of their maxVar bβ1� �
’s.
5.1 | Relative efficiency of balanced design versus MMD

Consider first the case
ct
st

¼ cc
sc
(homogeneous cluster‐to‐subject cost ratio), so that nt = nc holds for both designs (see

Equations 7b and 7c with ρ = ρmax), and p2 ¼ gt ρmaxð Þ
gc ρmaxð Þ ¼ ct

cc
¼ st

sc
, the treatment‐to‐control cost ratio. Balanced

allocation Kt = Kc then implies
f bal

1−f bal
¼ p2, that is, the budget allocation ratio equals the cost ratio. This is the

MMD if p ∈
1
u
; u

	 

, that is, if costs are more homogeneous than variances, see Equation 11 in Table 1.

If p > u, the relative efficiency (RE) of the balanced design versus the MMD is the ratio of maxVar bβ1� �
in Equa-

tion 12 to that in Equation 11 in Table 1. If p <
1
u

, the RE is the ratio of maxVar bβ1� �
in Equation 13 to that in
FIGURE 2 Relative efficiency of the balanced design versus the MMD as a function of the range
1
u

; u

	 

for the unknown SD ratio, for

various p (assuming homogeneity of c/s)
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Equation 11. In both cases, the RE increases in u, and RE > 0.95 if p ∈
1
u2
; u2

	 

. Far outside these boundaries, the

balanced design can be inefficient, with a minimum of RE → 0.50 for u → 1 and p → ∞ (homogeneous variances,
expensive treatment), and for u → 1 and p → 0 (homogeneous variances, expensive control). To show this, Figure 2
plots the RE of the balanced design versus MMD against u for various p.

For
ct
st

≠
cc
sc
, the RE of the balanced design is obtained as follows: First, compute the design with Equation 5, assum-

ing ρ = ρmax and c ¼ ct þ cc
2

and s ¼ st þ sc
2

. Then, compute maxVar bβ1� �
for this design using Equation 3,

assuming ρ = ρmax and letting σ2
Y ¼ σ2

Yt þ σ2Yc
2

.

5.2 | Relative efficiency of cost‐considered design versus MMD

Because the balanced design is inefficient for very heterogeneous costs, and costs can be known in the design stage, an
alternative to the balanced design is the cc design, which is optimal for heterogeneous costs (p ≠ 1) and homogeneous

variance (u = 1). Following Equation 8, the cc design has the budget allocation ratio
f cc

1−f cc
¼ p (see the definition of p

below Equation 10). This is the limiting case of the MMD for u → 1 (homogeneous variances). If
ct
st

¼ cc
sc
, we get

p ¼
ffiffiffiffi
ct
cc

r
¼

ffiffiffiffi
st
sc

r
. However, the RE of the cc design versus the MMD as discussed below is not restricted to this special

case.

Using
f cc

1−f cc
¼ p, with p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gt ρmaxð Þ
gc ρmaxð Þ

s
, and using Equation 10, we get maxVar bβ1Þ�

for the cc design if the

variance is actually heterogeneous:

maxVar bβ1� �
¼ gc ρmaxð Þ 1þ pð Þ

B
× Vmax þ p−1ð Þσ2Yt

� �
: (14)

If p = 1, Equation 14 does not depend on σ2Yt and gives the same result as Equation 11 in Table 1. But the design is
balanced only if

ct
st

¼ cc
sc

which, for p = 1, implies homogeneity of costs.

If p > 1 (treatment more expensive than control), then Equation 14 is maximized by maximizing σ2Yt within the con-

straint σ2Yt ∈
Vmax

1þ u2
;

u2Vmax

1þ u2

	 

of Section 4, giving σ2Yt ¼ u2Vmax

1þ u2

� �
, and the resulting worst case, maxVar bβ1� �

, is

shown in Equation 15 in Table 2.
If p < 1 (treatment cheaper than control), then Equation 14 is maximized by minimizing σ2Yt within the same con-

straint, giving σ2Yt ¼ Vmax

1þ u2

� �
and as worst case Equation 16 in Table 2. Note that, under homogeneity of variances

(u = 1), Table 1 and 2 give the same results.
TABLE 2 Cost‐considered budget split and maximum variance of the treatment effect for heterogeneous costs and variances given a fixed

maximum total variance Vmax and fixed total budget B, as a function of the range of p (square root of treated‐to‐control cost ratio)

Range of p (a) Budget Split
f cc

1−f cc
Maximum Var bβ1� �

for the

Cost‐Considered Design
Equation nr for
Referencing

p = 1 p gc ρmaxð Þ 2Vmax

B
‐

p > 1 p gc ρmaxð Þ Vmax 1þ pð Þ
B

×
pu2 þ 1
u2 þ 1

� �
(15)

p < 1 p gc ρmaxð Þ Vmax 1þ pð Þ
B

×
p þ u2

u2 þ 1

� �
(16)

aThe cost‐considered design assumes homogeneous variances and so its budget split does not depend on the SD ratio parameter u (square root of maximum
variance ratio). But the maximum (worst case) Var bβ1� �

of the cost‐considered design does depend on the actual heterogeneity of variance as expressed by
u, except if p = 1.



FIGURE 3 Relative efficiency of the cost‐considered versus the MMD as a function of the range
1
u

; u

	 

for the unknown SD ratio, for

various p (without assuming homogeneity of c/s)
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The relative efficiency (RE) of the cc design versus the MMD with respect to the optimality criterion maxVar bβ1� �
now follows from Equations 11 to 16, for instance, as the ratio of maxVar bβ1� �

in Equation 11 to that in Equation 15 if
1 < p < u. Figure 3 plots the RE of the cc design versus the MMD as a function of u for various p. The results can be
summarized thus:

If p ∈
1
u

; u

	 

, the RE of the cc design is a decreasing function of u, with a minimum of 0.83 if u → ∞ and

p ≈ 2.41 or p ≈ 0.41, and a maximum of 1 if u → p and (p → 1 or p → ∞), or if u→
1
p
and (p → 1 or p → 0).

If p ∉
1
u

; u

	 

, the RE of the cc design again decreases in u, but now with a minimum of 0.89 if u → p and

p ≈ 3.73, or if u→
1
p
and p ≈ 0.27, and a maximum of 1 if either p → ∞ or p → 0 or u → 1. So the RE of the cc design

compared with the MMD design, using as criterion maxVar bβ1� �
, is always above 0.80.
5.3 | Relative efficiency of balanced versus cost‐considered design

Finally, if
ct
st

¼ cc
sc

(homogeneous cluster‐to‐person cost ratio), the RE of the balanced versus the cc design follows

from Equations 11, 15, and 16 in Tables 1 and 2 and is plotted in Figure 4. Ifp ∈
1
u2

; u2
� �

, the balanced design is more

efficient. If p ∉
1
u2
; u2

	 

, the cc design is more efficient. At the interval boundaries, both designs are equally efficient.

Comparing all 3 designs, MMD, balanced and cc, we get for the case
ct
st

¼ cc
sc

:

For p ∈
1
u

; u

	 

balanced is optimal and cc is fairly efficient, with a minimum RE of 0.83;

For p ∈ [u , u2] and for p ∈
1
u2

;
1
u

	 

, balanced is more efficient than the cc design, which in turn has a min-

imum RE of 0.89 once p is outside the interval
1
u

; u

	 

;

FIGURE 4 Relative efficiency of the balanced versus the cost‐considered design as a function of the range
1
u

; u

	 

for the unknown SD

ratio, for various p (assuming homogeneity of c/s)
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For p outside the interval
1
u2

; u2
	 


, the cc design is more efficient than the balanced design, and highly efficient due

to its minimum RE of 0.89. The balanced design becomes inefficient if u → 1 while p moves away from 1, for instance,
RE < 0.80 if u = 1 and p > 3 or p < 1/3, meaning a homogeneous variance and a cost ratio above 9 or below 1/9.
5.4 | Relative efficiency of the MMD if the variances turn out to be homogeneous

Up to now, the variance was assumed to be heterogeneous and so the MMD was always at least as efficient as, and usu-
ally more efficient than, the balanced and the cc design, which both assume homogeneous variances. But how efficient
is a MMD based on heterogeneous variance (u > 1 assumed) if the variance turns out to be homogeneous (u = 1 actu-
ally) in the analysis? Consider again the 3 cases in Equations 11 to 13.

If
1
u

≤ p ≤ u is assumed in the design stage, the MMD is balanced, at least for
ct
st

¼ cc
sc
(Section 5.1). Its RE com-

pared with the cc design if u = 1 (homogeneous variances) turns out to be the case, then follows from Section 5.3 and
Figure 4 with u = 1;

If p > u is assumed, the maximin budget ratio
f m

1−f m
¼ pu . Because p > u > 1, this budget split is in‐between

that for the cc design,
f cc

1−f cc
¼ p, and that for the balanced design,

f bal

1−f bal
¼ p2 . The MMD itself is obtained by filling

in the budget and costs per treatment arm in Equations 7b and 7c, which depend on u only through the budget, and so
the MMD is in‐between the balanced design and the cc design. It then follows from Figure 4 with u = 1 that, if the vari-
ances are actually homogeneous, the MMD is always more efficient than the commonly used balanced design, and less
efficient than the cc design. The differences between the 3 designs are small for p up to 2, and still acceptable for p up
to 3, implying a treated‐to‐control cost ratio up to 4, respectively up to 9, in the case where

ct
st

¼ cc
sc
. Finally, the case

p <
1
u

becomes the case p > u by switching the 2 treatment arms, thus giving the same RE results as the case p > u.
6 | MAXIMIN DESIGN FOR ONE ‐SIDED INTERVALS FOR THE VARIANCE
RATIO

Sometimes, a 1‐sided interval may perhaps be assumed for the SD ratio, for instance if we know from other studies that
treatment always increases outcome variance (or always decreases it). This gives the following result (for details, see
appendix B):

If
σYt
σYc

∈ 1 ; u½ � and p < 1, or if
σYt
σYc

∈
1
u

; 1

	 

and p > 1, then the budget split for the MMD is

f m

1−f m
¼ p,

which is the budget split for the cc design. The maxVar bβ1� �
is then obtained from Table 1 or 2 by filling in u = 1

(see Appendix B, and note that Tables 1 and 2 give the same results if u = 1). In all other cases the MMD and

maxVar bβ1� �
are the same as for the 2‐sided case in Table 1. So if the more expensive arm has the smaller variance,
TABLE 3 Maximin budget split
f

1− f
for heterogeneous costs and variances as a function of the relation between u (maximum SD ratio)

and p (square root of treated‐to‐control cost ratio), for 2‐ and 1‐sided intervals for the SD ratio (note: Budget split p gives the cost‐considered

design; budget split p2 gives the balanced design if
ct
st

¼ cc
sc
)

Relation of p to u
p<

1
u

1
u
≤p≤1

1 ≤ p ≤ u u < pRange for SD ratio

1
u

; u

	 
 p
u

p2 p2 pu

[ 1 , u] p p p2 pu

1
u

; 1

	 
 p
u

p2 p p
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then the MMD for 1‐sided intervals for the SD ratio is the cc design. But if the more expensive arm has the larger var-
iance, then the MMD for 1‐sided intervals for the SD ratio is the same as for 2‐sided intervals. The MMD for the various
cases in this and the preceding sections are summarized in Table 3. It follows from this table that the maximin budget
split is always between p (the cc budget split) and p2 (the split for the balanced design if

ct
st

¼ cc
sc
).
7 | POWER AND SAMPLE SIZE CALCULATION

It has been shown how the MMD depends on 2 factors: p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gt ρmaxð Þ
gc ρmaxð Þ

s
, which is a function of the costs in each

treatment arm and of the maximum ICC, and
1
u

; u

	 

, which is the range for the SD ratio

σYt
σYc

. It has also been shown

how efficient the balanced and cc design are relative to the MMD with respect to their minimum efficiency (maximum
sampling variance). For practical use, these results must be translated into a procedure for computing the sample size
needed per treatment arm to have sufficient power to detect a treatment effect of given size. This procedure consists of

the following 5 steps for the MMD (the cc design is obtained by choosing
1
u

; u

	 

¼ 1; 1½ �, and the balanced design is

obtained by additionally letting ct = cc, st = sc):

1. First, specify the costs ct, st, cc, sc and choose plausible values for ρmax, Vmax,
1
u

; u

	 

and the treatment effect β1.

Instead of specifying Vmax and β1, one can also specify a smallest clinically relevant effect size d ¼ β1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vmax=2

p
(a generalization of Cohen's d to heterogeneous variances, see the end of Section 2). Because the maximin sample
size per cluster depends on neither Vmax nor β1 (see step 3 below), and the maximin number of clusters per
treatment depends on them only through d (see steps 2 and 4 below), one can also, without loss of generality,
specify d;

2. Second, compute the sampling variance that gives the desired power level (1 − γ), for a given type I error rate α and
true treatment effect β1, with the following equation:

Var bβ1� �
¼ β1

z1−α=2 þ z1−γ

� �2

: (17)

Here, zp denotes the p‐th percentile of the standard normal distribution. For 1‐tailed testing, replace z1 − α/2 with
z1 − α . Note that Equation 17 is also used for the classical RCT with individual randomization;

3. Third, compute the maximin sample size per treated cluster,nmt , with Equation 7b, using as costs ct, st and as ICC
ρ = ρmax, and the maximin sample size per control cluster, nmc , using as costs cc, sc and as ICC ρ = ρmax, and

compute the functions gc(ρmax) and gt(ρmax) in Equation 7d and the ratio p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gt ρmaxð Þ
gc ρmaxð Þ

s
;

4. Fourth, compute the maximin budget ratio
f m

1−f m
from p and

1
u

; u

	 

, the plausible range for the SD ratio, using

Table 1. Then compute the total budget B by equating maxVar bβ1� �
as given in Table 1, with Var bβ1� �

as computed

in step 2 with Equation 17, and compute the budget per treatment arm as Bm
t ¼ f m B and Bm

c ¼ 1−f mð ÞB;
5. Fifth and last, compute the number of clusters per treatment arm asKm

t ¼ Bm
t

ct þ st nmtð Þ, and the number of clusters

per control arm as Km
c ¼ Bm

c

cc þ sc nmc
� �, following Equations 7b and 7c, and round both numbers upward to ensure

sufficient power. The budget B will increase a bit by this.

This procedure is easily implemented in standard statistical software, and an implementation in SPSS and in R is
available as supplementary material. Two additional remarks are needed, however. First, we do not round off the sam-
ple sizes per cluster,nmt andnmc , for 2 reasons: (1) to ensure that all further computations can use the equations in this
paper without modification, and (2) because unplanned variation in sample size per cluster always occurs in practice,
and so the average sample size per cluster will rarely be an integer anyway. Such unplanned variation leads to some
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power loss which can be restored by increasing the number of clusters with a percentage that depends on the CV of clus-
ter size, and an increase of the number of clusters with 10% respectively 20% is often a reasonable respectively very safe
adjustment.10 This adjustment is not included into the presented syntax, because the user may prefer another percent-
age, depending on the expected CV. Of course the user can choose to roundnm

t andnmc upward after step 5 to guarantee
sufficient power, and this will lead to some increase of the study budget that is needed.

Secondly, step 2 of the procedure above assumes that the test statistic for the treatment effect, t ¼ bβ1=SE, has a stan-
dard normal distribution under the null hypothesis, and that bβ1−β1� �

=SE has a standard normal distribution under the

alternative hypothesis, where SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var bβ1Þ�r

. This ignores the fact that SE is a function of the unknown variances

and must be estimated. The correct reference distribution is the Student t‐distribution. This follows from the equivalence
of mixed regression analysis of individual data following Equation 1 with the unpaired t‐test of treatment versus control
using clusters as units of analysis and cluster means as outcome.35 Under heterogeneity of variance of the cluster means,
the degrees of freedom for this t‐test obey an expression due to Welch and Satterthwaite,36,37 which reaches a minimum
df = MIN(Kt − 1 , Kc − 1) if the variance ratio goes to zero or infinity, and a maximum df = SUM(Kt − 1 , Kc − 1) if
TABLE 4 Maximin design nmt ;K
m
t ; n

m
c ;K

m
c

� �
and budget Bmneeded to detect a treatment effect of medium size (d = 0.50) with a power of

90% using 2‐tailed testing with α = 0.05, as a function of the range for the SD ratio
1
u

; u

	 

, the maximum ICC ρmax, and the study costs per

cluster and per subject in the treated arm ct , st, and control arm cc, sc

Input Parameters Maximin Budget Split, Maximin Design, Total Budget (a)

1
u

; u

	 

ρmax ct , st cc , sc p

f m

1−f m nm
t nmc Km

t Km
c Bm

[1,1] 0.10 200,10 200,10 1.00 1.00 13.42 13.42 14.04 14.04 11361.58

360,10 40,10 1.80 1.80 18.00 6.00 9.81 29.42 9680.00

200,18 200,2 1.46 1.46 10.00 30.00 13.45 13.45 10240.00

360,18 40,2 3.00 3.00 13.42 13.42 9.36 28.09 9289.76

0.20 200,10 200,10 1.00 1.00 8.94 8.94 24.33 24.33 15629.91

360,10 40,10 2.00 2.00 12.00 4.00 16.81 50.44 13360.00

200,18 200,2 1.33 1.33 6.67 20.00 23.54 23.54 14560.00

360,18 40,2 3.00 3.00 8.94 8.94 16.22 48.66 12851.26

[0.50,2] 0.10 200,10 200,10 1.00 1.00 13.42 13.42 14.04 14.04 11361.58

360,10 40,10 1.80 3.24 18.00 6.00 12.61 21.01 10500.00

200,18 200,2 1.46 2.14 10.00 30.00 15.97 10.93 10220.00

360,18 40,2 3.00 6.00 13.42 13.42 13.11 19.66 11094.25

0.20 200,10 200,10 1.00 1.00 8.94 8.94 24.33 24.33 15629.91

360,10 40,10 2.00 4.00 12.00 4.00 22.42 33.62 14880.00

200,18 200,2 1.33 1.78 6.67 20.00 26.90 20.17 14800.00

360,18 40,2 3.00 6.00 8.94 8.94 22.71 34.06 15166.80

[0.33,3] 0.10 200,10 200,10 1.00 1.00 13.42 13.42 14.04 14.04 11361.58

360,10 40,10 1.80 3.24 18.00 6.00 12.61 21.01 10500.00

200,18 200,2 1.46 2.14 10.00 30.00 15.97 10.93 10220.00

360,18 40,2 3.00 9.00 13.42 13.42 14.04 14.04 11361.58

0.20 200,10 200,10 1.00 1.00 8.94 8.94 24.33 24.33 15629.91

360,10 40,10 2.00 4.00 12.00 4.00 22.42 33.62 14880.00

200,18 200,2 1.33 1.78 6.67 20.00 26.90 20.17 14800.00

360,18 40,2 3.00 9.00 8.94 8.94 24.33 24.33 15629.91

aThe number of subjects per cluster, nmt and nm
c , is not rounded for reasons discussed in the text. The number of clusters per arm, Km

t and Km
c , has to be rounded

upward and increased with 2. The budget is based on the thus adjusted numbers of clusters.
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the variance ratio goes to one. The df determine the percentiles t1 − α/2 and t1 − γ, to be used in step 1 instead of z1 − α/2 and
z1 − γ respectively, and thus also the budget and sample size needed, as these are proportional to (t1 − α/2 + t1 − γ)

2. The
case df → ∞ gives the standard normal distribution, but the Student t‐distribution is close to that for df = 60 or so. For
smaller df, ccalculations in28,38 show that, at least if the number of clusters per arm is 8 or more, the power loss due to finite
df is compensated by having 2 extra clusters per arm if α = 0.05 two‐tailed, or 4 extra clusters per arm if α = 0.01 2‐tailed.
With less than 8 clusters in a given arm, add 3 instead of 2 clusters to that arm if α= 0.05, and 4 if α= 0.01. This holds for a
planned power of 80% or 90%, and under strong heterogeneity of variance. This adjustment is included into the computer
code. Not included into the code for simplicity, but stated here for completeness, is the following exception: Under com-
plete homogeneity of variance and costs the MMD becomes balanced, and if there are at least 8 clusters per arm we then
need to add only 1 (if α = 0.05) or 2 (if α = 0.01) clusters per arm.38 This only holds under complete homogeneity of vari-
ance, however, not if heterogeneity is allowed but the MMD happens to be balanced as discussed in Section 5.1. Having
said this, let us now consider an example of MMD.
7.1 | Example

Strong heterogeneity of outcome variance has been found in randomized trials in clinical psychology, with variance
ratios up to 12 or even 16,17 but results from cluster randomized trials in health care are scarce and suggest mild het-
erogeneity, such as a variance ratio of 3.19 Further, study costs per cluster and per subject are rarely reported. As an
exception, Moerbeek et al reported a cluster‐to‐subject cost ratio c/s = 26 in a smoking prevention trial in primary edu-
cation, but gave no information on the costs per arm.39

Our example therefore makes the following assumptions in step 1 of the sample size calculation: Let u = 1 or 2 or 3
(homogeneous variances, respectively a treatment‐to‐control SD ratio between 0.50 and 2, or between 0.33 and 3). Fur-
ther, the maximum ICC is ρmax= 0.10 or 0.20.18,32,33 Finally, the costs are homogeneous at each level (cluster, subject),

or heterogeneous at the cluster level (with
ct
cc

¼ 9), or at the individual level (with
st
sc

¼ 9), or at both levels (with

ct
cc

¼ st
sc
¼ 9), and the cluster‐to‐subject cost ratio

ct
st
¼ cc

sc
¼ 20 in case of homogeneity at both levels or of heteroge-

neity at both levels. These scenarios assume that treatment is at least as expensive as control. The reverse case gives the
same designs apart from switching Km

t and Km
c and, except if

ct
st
¼ cc

sc
, also switching nmt and nm

c (see Sections 3 and 4 for
technical details).

Combining the input parameters above gives 3*2*4 = 24 different scenarios for the MMD. For each scenario we let

β1 = 5 and Vmax= 200, so that the standardized treatment effect size d = 0.50,34 where d ¼ β1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vmax=2

p which, under

homogeneity of variance reduces to d ¼ β1
max σy

. Remember that β1 and Vmax do not affect either the maximin

sample sizes per cluster, nmt ; nmc (see step 3 of the sample size calculation above), or the budget allocation ratio

(see Table 1), or the cluster allocation ratio
Km

t

Km
c
(steps 4 and 5 above). Instead, β1 and Vmax only affect the total budget

and the total number of clusters needed. This completes step 1 of the maximin sample size calculation. Next, in step 2,
let α = 0.05 two‐tailed and let the desired power be 90%. This gives as maximum allowable sampling variance for the
treatment effect, Var bβ1Þ�

= 2.3815 by Equation 17. Following the steps 3‐4‐5 of the sample size calculation procedure
above for each of the 24 scenarios then gives the maximin sample sizes in Table 4, with a separate row per scenario. To
better see the relation between the input parameters and the resulting MMD, neither nm

t ; nmc nor Km
t ; Km

c have been
rounded off. As explained above, nm

t ; nmc need not be rounded off anyway in view of unplanned variation in sample
size per cluster in practice, and Km

t ; Km
c both need to be rounded upward and then increased by 2. The total budget in

the last column of Table 4 is based on the thus adjusted Km
t ; Km

c .

In the first 8 rows, the variances are homogeneous and so the MMD reduces to the cc design, as shown by the fact

that the budget ratio
f m

1−f m
¼ p (see Section 4 or appendix B for the definition of p). If the cluster‐to‐subject cost ratio

is homogeneous, so
ct
st
¼ cc

sc
, then the sample size per cluster is homogeneous, that is, nmt ¼ nm

c (rows 1, 4, 5 and 8). If

the cluster cost is homogeneous, so ct = cc, then the number of clusters is homogeneous, that is,Km
t ¼ Km

c (rows 1, 3,
5 and 7). This only holds under homogeneity of variance, however (see the end of Section 3). Finally, if the costs are
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completely homogeneous, so ct = cc and st = sc both hold, then the MMD is balanced at each design level, that is,
nmt ¼ nm

c and Km
t ¼ Km

c (rows 1 and 5), in line with Tables 1 and 2 (noting that p = 1).
Rows 9 to 16 show the same cost scenarios but now for heterogeneity of variance with as range for the SD ratio

σYt
σYc

∈
1
2
; 2

	 

. Again, homogeneity of the cluster‐to‐subject cost ratio gives homogeneity of the sample size per cluster

(rows 9, 12, 13, 16), and complete homogeneity of costs gives a balanced design at each level (rows 9 and 13), in line

with the case p = 1 in Table 1. Also in line with Table 1, the budget allocation ratio is p2 as long as p∈
1
u

; u

	 

, and

is pu else (given that p < 1 does not occur in Table 4).
Finally, rows 17 to 24 show the same cost scenarios for heterogeneity of variance with as range for the SD ratio

σYt
σYc

∈
1
3
; 3

	 

. Homogeneity of the cluster‐to‐subject cost ratio now gives a balanced design at each level (rows 17, 20,

21, 24) because, in these rows, the budget allocation ratio p2 equals the treatment‐to‐control cost ratio, which is 9 at each
design level in rows 20 and 24, and 1 at each level in rows 17 and 21.
8 | DISCUSSION

Optimal sample sizes per level (cluster, subject) of a cluster randomized trial have been published, based on the assump-
tions that costs and variances at each level are (1) homogeneous between treatments, and (2) known in the design
stage.8,9 Liu27 extended this to the case of treatment‐dependent costs, still assuming known and homogeneous
variances. This assumption is problematic for 2 reasons. First, a treatment which affects the mean of an
outcome variable can also be expected to affect its variance, making the assumption of homogeneity of variance
realistic only under the null hypothesis. Secondly, trials are run to test hypotheses about the unknown mean outcome
difference between treatments, making the assumption of known variances untenable. Unfortunately, optimal design
strongly depends on the 4 variances involved, and misspecification of these variances can lead to an inefficient design.

Similar to Candel and Van Breukelen28 and Wu et al,30, but extending their results to optimal instead of fixed sample
sizes per cluster, this paper addressed these problems by deriving a MMD which allows for heterogeneity of variances,
and is robust against misspecification of the variances by maximizing the minimum efficiency over a range of plausible
values for the unknown variances. The MMD was compared with the balanced design, which is optimal under homo-
geneity of costs and variances, and with the cc design, which is optimal under heterogeneity of costs and homogeneity of
variances. The results can be summarized as follows: First, if the costs are less heterogeneous than the variances (more
precisely, if u−1 ≤ p ≤ u), then the MMD allocates budget to each treatment arm proportionally to the costs as
expressed by the function g(ρmax) for that arm, see Equations 8 and 11. If the cluster‐to‐person cost ratio c/s is further-
more the same in both arms, then the MMD is balanced. Secondly, if the costs are more heterogeneous than the vari-
ances, then the budget allocation to each arm increases with the costs and variance in that arm. Compared with the
MMD, the balanced design is still highly efficient (RE > 0.95) if u−2 ≤ p ≤ u2 (at least if c/s is homogeneous). The
balanced design is inefficient outside that range, that is, if costs are very heterogeneous. Compared with the MMD,
the cc design is never optimal (unless u = 1, ie, homogeneous variances), but always fairly to highly efficient, with a
minimum RE of 0.83. Compared with the balanced design, the cc design is less efficient if u−2 ≤ p ≤ u2, but more
efficient else. Further, if it is known that σYt/σYc ≥ 1 and p < 1, or that σYt/σYc ≤ 1 and p > 1 (ie, treatment arm
ordering by variances is opposite to ordering by costs), then the cc design is the MMD. In view of these results, the
practical recommendation is to use the MMD (which is balanced in some cases). As the preceding section shows, sample
size calculation is simple for the MMD, and the computer code for such calculations in SPSS respectively R is provided
as supplementary material.

No study is without limitations, and here we mention a few of the present study. First of all, although the derivations
for the maximin and cc designs and their comparison allowed the cluster‐to‐person cost ratio c/s to be treatment‐depen-
dent, the comparison of both with the balanced design was limited to the case of a homogeneous cost ratio. This was
done to reduce the relative efficiencies (REs) to functions of 2 parameters only, u and p, and thus to get a better under-
standing of how these REs depend on the heterogeneity of variance, u, and the heterogeneity of costs, p. In Section 5, we
explained how the RE of the balanced design can be obtained without assuming a homogeneous cost ratio.

Another limitation is that this study assumes a quantitative outcome. Wu et al derived the MMD for binary out-
comes, but they assumed a fixed and homogeneous sample size per cluster.30 Extending their work to optimal and
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heterogeneous sample sizes per cluster is thus a potential topic for future work, as is the extension of MMD to
multicentre/multisite trials, for which optimal designs under homogeneity of variance and costs are given by
Raudenbusch and Liu and by Moerbeek et al,9,40 and under heterogeneity of variances and costs by Lemme et al.41
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APPENDIX A

LIST OF SYMBOLS USED
Symbol Interpretation
Introduced in
section nr

β1 The treatment effect of interest 2

σ2u0 Residual variance at the cluster level 2

σ2ε Residual variance at the individual level 2

σ2Y Total residual variance 2

ρ Intraclass correlation 2

K Total number of clusters sampled 2

n Number of individuals sampled per cluster 2

Superscript * for any design factor Optimal design value of that factor 2

c Cost per cluster 2

s Cost per subject 2

B Budget for the study 2

g(ρ) Shortcut for
ffiffiffiffiffi
ρ c

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρð Þ sp� � 2 2

Subscript t for any symbol In the treated group 3

Subscript c for any symbol In the control group 3

f Fraction of the study budget spent on the treated arm 3

f /(1‐f) Budget allocation ratio 4

ρmax Maximum plausible intraclass correlation 4

u and 1/u Maximum and minimum for the SD ratio
σYt
σYc

4

V Shortcut for σ2Yt þ σ2
Yc 4

Vmax Maximum plausible V 4

p
Shortcut for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gt ρmaxð Þ
gc ρmaxð Þ

s
4

Superscript m, bal, cc for f/(1‐f) Maximin, balanced, cost‐considered 4,5
APPENDIX B

DERIVATION OF THE MAXIMIN DESIGN

This appendix derives the Maximin design from Equation 10 in Section 4:

maxVar bβ1� �
¼ gc ρmaxð Þ

B
p2 σ2

Yt

f
þ Vmax−σ2Yt

1− f

� �
;withp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gt ρmaxð Þ
gc ρmaxð Þ

s
: (B1)

Equation B1 will first be maximized as a function of the unknown σ2Yt within the joint constraints

σ2Yt þ σ2Yc ¼ Vmax and
σYt
σYc

∈
1
u

; u

	 

, implying σ2Yt ∈

Vmax

1þ u2
;
u2Vmax

1þ u2

	 

.

That maximum will then be minimized as a function of the budget ratio
Bt

Bc
¼ f

1− f
.

The derivative of (B1) with respect to σ2Yt is 0, or <0, or >0 if
f

1− f
=p2, or >p2, or < p2, respectively. To find the

MMD, consider each case in turn.
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First, for
f

1− f
¼ p2, the derivative of B1 with respect to σ2

Yt is zero, giving

Var bβ1� �
¼ gc ρmaxð ÞVmax 1þ p2ð Þ

B
; (B2)

which does not depend on the SD ratio
σYt

σYc
∈

1
u

; u

	 

anymore.

Second, for
f

1− f
> p2, the derivative of B1 is negative, so B1 is maximized by letting

σYt
σYc

¼ 1
u
, which by substitution

into B1 gives max Var bβ1� �
¼ gc ρmaxð ÞVmax

B u2 þ 1ð Þ
p2

f
þ u2

1− f

� �
; which is minimized by

f
1− f

¼ p
u
, giving

max Var bβ1� �
¼ gc ρmaxð ÞVmax

B
pþ uð Þ2
u2 þ 1ð Þ; (B3)

provided that
1
u

> p, so that
f

1− f
¼ p

u
is compatible with

f
1− f

> p2.

Equation B3 is always smaller than B2, except if
1
u

¼ p, in which case they are equal.

Third and last, for
f

1− f
< p2, the derivative of B1 is positive, so B1 is maximized by letting

σYt
σYc

¼ u, which by

substitution into B1 gives

max Var bβ1� �
¼ gc ρmaxð ÞVmax

B u2 þ 1ð Þ
p2u2

f
þ 1

1− f

� �
; which is minimized by

f
1− f

¼ pu, giving

max Var bβ1� �
¼ gc ρmaxð ÞVmax

B
puþ 1ð Þ2
u2 þ 1ð Þ ; (B4)

provided that u < p, so that
f

1− f
¼ pu is compatible with

f
1− f

< p2.

Equation B4 is always smaller than B2, except if u = p, in which case they are equal.
In short:

If
1
u

≤ p ≤ u, the MMD is
f

1− f
¼ p2 and maxVar bβ1� �

is given by B2.

If
1
u

> p (implying p < 1), the MMD is
f

1− f
¼ p

u
and maxVar bβ1� �

obeys B3.

If u < p (implying p > 1), the MMD is
f

1− f
¼ pu and maxVar bβ1� �

obeys B4.
If the interval for the SD ratio is 1‐sided, the following modifications apply

First, for
σYt
σYc

∈ 1 ; u½ � the only change is when
f

1− f
> p2, so that the derivative of B1 is negative. Now B1 is max-

imized by letting
σYt

σYc
¼ 1, which by substitution into B1 gives

max Var bβ1� �
¼ gc ρmaxð ÞVmax

2B
p2

f
þ 1

1− f

� �
, which is minimized by

f
1− f

¼ p, giving

max Var bβ1� �
¼ gc ρmaxð ÞVmax

B
pþ 1ð Þ2

2
; (B5)

provided that p < 1, so that
f

1− f
¼ p is compatible with

f
1− f

> p2.

Note that Equation B5 can be obtained from Equation B3 by letting u = 1 in B3.
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Secondly, for
σYt
σYc

∈
1
u

; 1

	 

the only change is when

f
1− f

< p2, so that the derivative of B1 is positive. Now

B1 is maximized by letting
σYt
σYc

¼ 1, which by substitution into B1 and minimization gives Equation B5 again, provided

p > 1, so that
f

1− f
¼ p is compatible with

f
1− f

< p2. Note that Equation B5 can be obtained from Equation B4

by letting u = 1 in B4.


