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Identification of homologous proteins provides a basis for protein annotation. Sequence alignment tools reliably identify
homologs sharing high sequence similarity. However, identification of homologs that share low sequence similarity remains
a challenge. Lowering the cutoff value could enable the identification of diverged homologs, but also introduces numerous
false hits. Methods are being continuously developed to minimize this problem. Estimation of the fraction of homologs in a set
of protein alignments can help in the assessment and development of such methods, and provides the users with intuitive
quantitative assessment of protein alignment results. Herein, we present a computational approach that estimates the amount
of homologs in a set of protein pairs. The method requires a prevalent and detectable protein feature that is conserved
between homologs. By analyzing the feature prevalence in a set of pairwise protein alignments, the method can estimate the
number of homolog pairs in the set independently of the alignments’ quality. Using the HomoloGene database as a standard
of truth, we implemented this approach in a proteome-wide analysis. The results revealed that this approach, which is
independent of the alignments themselves, works well for estimating the number of homologous proteins in a wide range of
homology values. In summary, the presented method can accompany homology searches and method development, provides
validation to search results, and allows tuning of tools and methods.
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INTRODUCTION
Homology detection is a key step in predicting the function of

newly discovered proteins. Different methods for homology

detection are currently available, and can be divided into

sequence-based and structure-based methods. Sequence-based

methods rely on estimated evolutionary models that aim at

reconstructing the evolutionary courses that relate the protein

sequences. The structure-based approach uses protein structure

data and allows searching for similar proteins over a structure

classification database using structure alignment methods.

An elementary biological dogma states that the 3D structure of

a protein determines its function. Data of protein structure is

therefore a superior representation of proteins over sequence data.

While sequence alignment works best for closely-related homol-

ogous proteins, i.e. proteins sharing at least 40% of their amino

acid residues, structure alignment produces a significant alignment

even between highly diverged homologous proteins [1]. Public

databases offer classifications of protein structures [2], e.g. SCOP

database, which contains manually inspected structures that are

classified in a hierarchical manner [3]. Several methods for

searching against such databases were developed [4–7], and may

detect homologous proteins unrecoverable in regular sequence-

based searches. However, although the amount of solved protein

structures grows rapidly, it lags behind sequence data. To date, the

protein data bank [8] holds structure data of less than 40,000

proteins and protein fragments, while Swiss-Prot knowledgebase

holds above 200,000 sequences [9].

High level of sequence conservation is a strong indication for

homology. Therefore, sequence alignment methods are frequently

used when searching for homologous proteins. These methods use

different heuristic algorithms for maximizing the alignment, return

a score per alignment of two proteins, and the statistical

significance of the pairing [10,11]. Using such methods to align

closely-related homologous proteins often produces a significant

long sequence alignment. For distantly-related proteins, however,

both the sequence similarity and the alignment length are often

reduced, resulting in a decreased statistical significance of the

alignment. Moreover, distantly-related homologs might not be

included in search results due to stringent default parameters. In

such cases, lowering the cutoff value could allow the extraction of

distant homologs, but would also amplify the background noise of

randomly paired proteins.

Advanced approaches, which are being continuously developed,

offer improved homology detection and a reduced background

noise in alignment results [12–15]. Nevertheless, there is no single

superior solution that fits for all homology analyses. Different

protein alignment tools, and different configurations of those tools,

provide varying results for the same query and subject protein sets.

An external independent method that will allow assessment and

comparison of homology detection techniques is required.

Herein, we present a computational method for estimating the

amount of homologous proteins in a set of protein pairs – the Fhom

Estimator (Fraction of HOMologs Estimator). The method per-

forms a probabilistic analysis for a set of protein pairs and

estimates the fraction of homologs in it. Previously, the method

was used for guiding the development of a new scoring function

that improved identification of novel viral piracy events [16]. In
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the current study, we established the reliability of the method using

a well-accepted standard of truth dataset of homologous proteins,

and demonstrated that the method has a wide dynamic range, that

goes down to as low as 0.01% of homologs. Most importantly, we

confirmed that our method neither depends on the alignment

itself, nor on the level of sequence identity. This approach allows

quality assessment of homology search results.

RESULTS

A method to estimate the amount of homologous

proteins in a set of protein pairs
We developed a computational method to estimate the amount of

homologous proteins in a set of protein pairs (e.g. alignment hits).

The estimator requires two protein sets, and a protein feature X,

which is prevalent in both sets, and conserved among homologous

proteins. Ideally, this feature will always be conserved among

homologs, i.e., for a given pair of homologs, if a protein has X, so

will its homolog, and if a protein lacks X its homolog will not have

X as well. In contrast, not every pair of proteins that possess X are

homologs, or else we could infer homology by simply observing the

conservation of X. Of course, the ability to reliably detect the

feature X is essential. Our method estimates the results of any

procedure that aims at pairing homologous proteins from two sets

of proteins. The prevalence of the protein feature X enables us to

estimate the amount of random pairs in the results. Subtracting the

estimated random pairs yields the estimated amount of real pairs

of homologs in the results - Fhom. The rest of this section describes

the method in detail, and illustrates it using a hypothetical

example.

Protein pairs can be classified into one of four subgroups

according to the presence (or absence) of the feature X in them.

Proteins that have the feature X are labeled Y, and proteins that

lack this feature are labeled N. Accordingly, protein pairs where

both proteins have (or lack) the feature X, correspond to the YY

(or NN) subgroup, while protein pairs where one protein has (or

lacks) the feature X, but the other protein lacks (or has) it,

correspond to the YN (or NY) subgroup.

To exemplify, let us assume a hypothetical set of 1000 aligned

protein pairs. Such a set may be the result of pairing the proteins

of two sets, a query set and a subject set. Let us define these protein

sets to have protein feature X prevalence of 15% and 20%,

respectively. In addition, let us assign an observed distribution of

100, 50, 75 and 775 in the four subgroups YY, YN, NY and NN,

respectively. The expected distribution can be calculated accord-

ing to the prevalence of the feature X as follows:

ExpRandom(YY ; YN; NY ; NN)~QX � SX ;

QX � (1{SX ); (1{QX ) � SX ; (1{QX ) � (1{SX )
ð1Þ

Where, QX (SX) is the fraction of proteins in the query (subject)

dataset possessing the protein feature X.

According to the prevalence of the feature X in the query and

subject protein sets, the expected distribution of 1000 protein pairs

is 30, 120, 170, 680 in the four subgroups YY, YN, NY, NN.

Each of the four observed subgroups is comprised of randomly

paired proteins, and pairs of homologs. Our objective is to

estimate the amount of homologs among these 1000 protein pairs.

Of course, the fraction of randomly paired proteins may vary

between the four subgroups of the observed distribution. This

noise distribution of randomly paired proteins, which resides

hidden in the observed distribution, must comply with the

relations between the expected distribution subgroups. Since both

the noise and expected distributions are random distributions, the

noise distribution is actually a smaller version of the expected

distribution. Therefore, dividing the YY subgroup by the YN

subgroup of the noise distribution, for example, should yield the

same result that one would get by dividing the YY subgroup by the

YN subgroup of the expected distribution.

Revealing the fraction of random protein pairs in one of the

subgroups will enable the calculation of the fraction of random

pairs in the remaining subgroups, according to the ratio of

30:120:170:680 between the expected subgroups. Towards this

end, we first define the observed subgroup having the smallest

observed-to-expected ratio (scaling subgroup), as consisting only of

randomly paired proteins. This definition is likely to be incorrect,

thus we overestimate the random pairs in this subgroup. In our

hypothetical example, subgroup YN is selected for having the

smallest ratio (50/120,75/170,775/680,100/30). Hence, we

define all 50 protein pairs in the YN subgroup to be random ones.

In practice, the scaling subgroup would typically be either the YN

or the NY subgroups, as most homologs reside in the NN and YY

subgroups, which are therefore usually larger than expected in

random. Using the scaling subgroup, and the ratio between the

four subgroups in the expected distribution (30:120:170:680), it is

possible to estimate the number of random pairs in the remaining

three subgroups. The number of random pairs in the observed YY

subgroup is 30*(50/120) = 12.5, in the NY subgroup it is 170*(50/

120) = 70.8, and in the NN subgroup it is 680*(50/120) = 283.3.

Next, dividing the sum of random pairs by the total number of

protein pairs yields the total fraction of random pairs; its

complementary fraction is our estimate of the fraction of homologs

of the whole set, Fhom, as shown in Eq. (2) and (3). In our example,

Fhom~1{ 12:5z50z70:8z283:3ð Þ=1000~0:583, or directly

Fhom~1{ 50=120ð Þ~0:583:

Fhom~1{

P
i~YY ,YN,NY ,NN ( Obsm

Expm
� Expi)

N
ð2Þ

Fhom~1{Obsm=Expm ð3Þ

Where, Expi is the number of protein pairs in subgroup i according

to the expected distribution, Expm and Obsm are the expected and

observed number of pairs in the subgroup having the smallest

observed-to-expected ratio (scaling subgroup), and N is the total

number of protein pairs.

The assumption that all pairs in one of the subgroups are

random ones is strict, and the actual fraction of random pairs is

typically lower. Thus, this method yields an underestimation of the

real number of homologous protein pairs. It is important to note

that the fraction of random protein pairs of the whole set cannot

be larger. If this were the case, the scaling subgroup would have to

be larger than it is. This is in order to comply with the larger

fraction of random protein pairs. Hence, the fraction of random

protein pairs is bounded by the size of this subgroup.

Finally, since we assume that homologous proteins perfectly

conserve the presence of the protein feature X, the ratio between

the YN and NY subgroups in the observed distribution, should be

equal to the ratio in the expected distribution. Practically, as

illustrated in our hypothetical example, an observed distribution

may display a ratio that differs from the expected ratio (50/75 for

the observed, and 120/170 for the expected). This indicates that

the assumption of perfect conservation is not accurate. However,

pairs of homologous proteins in which the protein feature was not

Homology Estimator
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conserved may only lead to further underestimation of Fhom, but

never leads to an overestimation of Fhom. In summary, we present

a method that provides an underestimation of the fraction of

homologs in a set of protein pairs. The next sections describe

implementation of this method, and its verification.

Signal peptide as a feature suitable for Fhom

estimation
The signal peptide is an abundant protein feature, encompassing

about 20% of the human proteome. The signal peptide is a 15 to

40 long amino acid sequence, recognized by the signal recognition

particles (SRP). The SRP leads the nascent protein to the

endoplasmic reticulum, where the signal peptide is cleaved and

removed. The new protein is then secreted from the cell or

becomes transmembranal. SignalP is a reliable state-of-the-art tool

for detection of signal peptides [17,18]. Hence, the prevalence of

signal peptides in the proteome of each organism in our analyses

was determined by running the SignalP predictor on the curated

RefSeq proteins of the organism. The results revealed that the

signal peptide prevalence in the proteomes of human, mouse (Mus

musculus), fruit fly (Drosophila melanogaster), and Caenorhabditis elegans is

about 0.22, 0.22, 0.19 and 0.19, respectively.

We hypothesized that the presence of a signal peptide feature

is conserved among homologous proteins. In order to test our

hypothesis, sets of reliable homologous proteins were used as

a standard of truth. We extracted human/mouse, human/fruit fly,

and human/C. elegans homologous proteins from the Homo-

loGene triplets database. These organisms were selected to

represent homology of different sequence divergence. In a random

distribution, the expected proportion of protein pairs, in which

both have or lack a signal peptide (YY+NN subgroups), is about

0.66, 0.67, and 0.67 for human/mouse, human/fruit fly, and

human/C. elegans homologs, respectively (Figure 1, black

columns). The observed proportion is clearly enriched in pairs of

proteins that have the same signal peptide prediction (Figure 1,

gray columns). Hence, the signal peptide feature is suitable for our

estimation method. If homologous proteins would always have the

same SignalP prediction, we expect the proportion to be 1. The

actual value is below 1, meaning that not all homologous proteins

have the same SignalP prediction. One explanation is that the

SignalP tool is not perfect [17]. Hence, it is possible for some

homologous proteins, although both have or lack a signal peptide,

to be assigned opposite predictions. Another reason why the

proportion is smaller than 1, could be the fact that not all

homologous proteins have identical topology, or are secreted in

non-classical pathways [19]. Nevertheless, there is a clear tendency

for homologs to conserve the signal peptide.

One could argue that the reason SignalP assigns similar

predictions to homologous proteins is because those proteins are

very close in sequence; hence, SignalP, which uses the sequence as

an input, will have similar predictions. To examine whether the

signal peptide feature allows our method to be sequence alignment

independent, HomoloGene protein pairs of the four selected

organisms were divided into five groups according to their

alignment identity, and the Fhom was estimated for each identity

group (Figure 2). All of the groups comprise over 1000 protein

pairs. Had our method been dependent on the alignment score

values, one could expect a strong decrease in the homology

estimates as a function of the decrease in the identity level. As

revealed in Figure 2 this is not the case: our method estimates high

values of homology (,80%) even for the group of diverged

homologous proteins that share less than 40% of their amino acid

residues. In other words, the alignment itself has little effect on the

homology estimation. Therefore, the method can be considered

alignment independent, and the use of the signal peptide feature is

applicable even where sequence alignment deteriorates consider-

ably.

Robustness of the Fhom Estimator
In order to test the dynamic range of Fhom, we estimated the

HomoloGene Human/Mouse Fhom for a start. Next, we artificially

added random protein pairs, while maintaining the original

prevalence of signal peptides. Figure 3 revealed that Fhom

estimates well the real fraction of homologs for fractions between

0.01 and 1. The regression curve supports that the estimator

always underestimates the real fraction of homologs, and that the

Fhom Estimator has a wide dynamic range of homology.

Sample size effect
The accuracy of the method can be impaired when small sets of

protein alignments are being assessed. To evaluate the sample size

Figure 1. Signal peptide is a conserved feature of homologous
proteins. Homologous proteins of human/mouse, human/fruit fly, and
human/C. elegans were extracted from HomoloGene triplets. The
proportion of matching protein pairs, in which both proteins have or
lack a signal peptide, was calculated for each pair of organisms (gray
columns). For comparison, the expected proportions (black columns), is
calculated under the assumption that signal peptide is not conserved
between homologs, using the prevalence of proteins having signal
peptides in each organism.
doi:10.1371/journal.pone.0000113.g001

Figure 2. Alignment independence of the Fhom Estimator. Homo-
loGene homologous protein pairs were divided into five groups
according to the identity level of their alignment. The organisms used
are human, mouse, fruit fly and C. elegans. The figure reveals that the
fraction of homologs estimation (Fhom) is applicable for both closely-
related and distantly-related protein pairs.
doi:10.1371/journal.pone.0000113.g002

Homology Estimator
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effect on the accuracy of the Fhom Estimator, we aligned the

Swiss-Prot protein sequences of fruit fly and human using Blastp,

with expectation value (E-Value),100 cutoff. Signal peptides were

removed from the protein sequences prior to the alignment. The

results were sorted by their E-Value, and divided into 10 equal

sized subsets of ,54,400 pairs. A subset that had E-Values between

0.052 and 1.7 was chosen arbitrarily, divided into the four

subgroups, and was estimated to comprise 52% homologs. Next,

we used the proportions of these observed subgroups to simulate

the observed distributions for 9 different sample sizes ranging from

10,000 to 75. Each simulation was repeated 1000 times. For each

sample size, the average Fhom, the Fhom standard deviation, and

the average size of the scaling subgroup were calculated. To

further validate the results, more subgroups of fruit fly/human

alignments, having Fhom estimation between 83% and 10%, were

used as a model for additional simulation. The size of the scaling

subgroup directly affects the susceptibility of the method to

statistical noise. It is more informative than the total sample size,

which ignores possible differences in the protein feature preva-

lence. Figure 4 shows two simulation results for two sets of protein

pairs having 52% Fhom and 10% Fhom, and their power regression

curves. In both curves the standard deviation behaves like an N2K

function, where N is the size of the scaling subgroup. However, as

the Fhom of the subgroup decreases, the coefficient multiplying the

N2K increases. Thus, to be on the safe side, it is recommended to

make an upper bound to the standard deviation estimation by

using the formula derived from a subgroup with very low Fhom:

STDƒ

0:37
ffiffiffiffi
S
p ð4Þ

Where S is the size of the scaling subgroup, and STD is the

standard deviation. If STD of less than 0.05 is required, the scaling

subgroup should be larger than 55. If STD may be as large as 0.1,

a scaling subgroup as small as 14 is enough.

DISCUSSION
We have developed a computational method for estimating the

fraction of homologs in a set of protein pairs. The method is simple

and robust. The method is based on the assumption that

homologous proteins either both have or lack a protein feature.

For proteome-wide analyses, the presence of signal peptide, which

tends to be conserved among homologs (Figure 1), was found to be

a feature suitable for the method (Figure 2). For more focused

analyses (e.g. sub-clustering of a protein family) a different feature

may be more suitable.

For each pairwise alignment, sequence alignment methods

calculate the E-Value, i.e. the number of different alignments that

are expected to occur in a database search by chance, with scores

equivalent to or better than the score of that specific alignment.

This is an important measure, and indeed, alignments of most

closely-related protein sequences have very low E-Values. This way,

it is possible to distinguish between closely-related homologous

proteins and other protein pairs.

When looking for distantly-related protein sequences, a relatively

high threshold on the E-Value should be used. This, of course, adds

noise to the results, i.e. randomly paired proteins will mistakenly

be recognized as homologs. The Fhom Estimator, which is

independent of the alignment itself, enables estimating the amount

of noise added, and is therefore beneficial for the E-Value threshold

fine tuning. Furthermore, we found that the Fhom Estimator works

well in cases of high as well as low signal to noise ratio (Figure 3).

An alignment E-Value depends on database size and composi-

tion, so it is impractical to define a universal cutoff, above which

most data consists of random alignment pairs. The Fhom Estimator

helps determine a specific E-Value cutoff for a particular set of

alignment hits, above which the number of homologs is negligible.

Therefore, the Fhom Estimator may be beneficial to assess sequence

and structural alignment methods and fine tune their parameters.

In Kim & Kliger [16], we used the Fhom Estimator for the

verification of a new scoring function (CTS) that facilitates the

identification of viral piracy events [20]. A set of viral/human

protein sequence alignments having low identity levels (10% to

35%) was divided into two subsets according to their CTS scores.

The Fhom Estimator revealed that the subset of high CTS scores was

enriched in homologs in comparison with the low-CTS-score

subset.

In estimating Fhom, Eq. (1) is used for calculating the expected

random distribution. The calculation is based on the fraction of

Figure 3. Robustness of the Fhom Estimator. Fhom was estimated to
be 94% for HomoloGene human/mouse pairs. Next, random protein
pairs were added according to the original signal peptide prevalence of
these organisms. A linear regression curve and the coefficient of
determination (R2) confirm that the Fhom Estimator has a wide dynamic
range, and is robust to variation in signal-to-noise ratio.
doi:10.1371/journal.pone.0000113.g003

Figure 4. Size effect of scaling subgroup on the Fhom Estimator
accuracy. Two sets of protein pairs of fruit fly and human Swiss-Prot
proteins were estimated to have Fhom of 52% and 10%. Both alignment
sets were used separately for the sample size simulation. Each set of
pairs was divided into the observed subgroups. The proportions of the
observed subgroups were used for simulating observed distributions of
9 different sample sizes ranging from 10,000 to 75. Each simulation was
repeated 1000 times, and the average Fhom, Fhom standard deviation,
and the average size of the scaling subgroup were taken. The power
regression curves of the 52% homologs (lower left curve) and the 10%
homologs (upper right curve) describe the correlation between the
mean size of the scaling subgroup and the standard deviation of Fhom,
with high coefficients of determination.
doi:10.1371/journal.pone.0000113.g004
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proteins in the query and subject datasets possessing the protein

feature X. It should be verified that the homology search method

in use pairs non homologs as expected by chance, and not in a bias

manner. In Kim & Kliger [16] such a verification was performed

for Blastp. Proteins of dsDNA viruses were paired with human

proteins using Blastp. A subset of pairs having an E value.5, which

is considered statistically insignificant homology, was used as the

set of non homologs protein pairs. We verified that Blastp pairing

follows the expected random distribution, by comparing the

fraction of pairs having the same signal peptide prediction

(YY+NN subgroups divided by the total number of pairs) in the

E value.5 subset, to the fraction expected by chance. Indeed,

those fractions were similar. Hence, random pairing by Blastp, did

not introduce a significant bias to the expected random

distribution. Since we confirmed in Kim & Kliger that there is

no bias in non homologs pairing by Blastp, we did not repeat this

verification procedure in the current study. In general, to avoid

random pairing bias, we recommend removing the protein feature

sequences from the proteins’ sequences, before executing the

homology search. In our studies, we discarded the signal peptide

sequences before running Blastp between the protein sets.

It is noteworthy that paralogs and orthologs are handled

differently. Orthologous proteins are generally believed to have the

same function in different organisms. Therefore, it is quite

reasonable to assume that orthologous proteins will either both

have or lack a signal peptide. However, the situation is more

complex for paralogs. For example, there are intracellular and

extracellular proteases that probably derived from the same

protein ancestor. Therefore, choosing the presence of signal

peptide as the feature for Fhom estimation might be problematic

when dealing with distantly related paralogs. In summary,

matching the right feature to the data is a crucial step for

obtaining reliable results. In this study, pairs of paralogs had only

a minute effect of further underestimating Fhom (data not shown),

hence, they were included in all analyses.

An additional analysis of RefSeq protein sequences was

performed. RefSeq proteins can be divided to manually inspected

proteins and merely predicted proteins, which are assigned ‘NP_’

and ‘XP_’ accession prefixes, respectively. We found that the Fhom

estimate of human/mouse XP/XP homologs (57%) is much lower

than the Fhom estimate of NP/NP homologs (94%). Thus, the

reliability of XP proteins in human and mouse is questioned.

While in newly sequenced genomes most proteins are predicted

and were not yet curated, in well-curated genomes (e.g. human,

mouse, fruit fly and C. elegans genomes) we assume that many of

the remaining predicted XP proteins might not represent real

proteins (e.g. false products of pseudo-genes or fused genes). For

that reason, we used only NP proteins of well-curated genomes in

this study.

In conclusion, the Fhom Estimator is a simple and beneficial

method to analyze the results of protein alignments. It can be used

in quality assessments of homology search methods, which may

share any level of sequence similarity, as being commonly done in

bioinformatic analysis of proteins.

METHODS

Data preparation
Homo sapiens (human), Mus musculus (mouse), Drosophila melanogaster

(fruit fly), and Caenorhabditis elegans curated reference protein

sequences (RefSeq build 11) were downloaded from NCBI’s ftp

web site [21,22].

Swissprot [9] protein sequences of human and fruit fly were

downloaded from NCBI Blast databases ftp web site (ftp://ftp.

ncbi.nih.gov/blast/db/) on 21-June-06.

Defining Homologs
HomoloGene triplets database of NCBI (Build 43.1) was used as

the standard of truth for homologous proteins. HomoloGene

databases contain pairs of homologous proteins from studied

eukaryotic organisms that have a complete sequenced genome. In

HomoloGene triplets database, each pair belongs to a group of at

least three homologous proteins, and is considered highly reliable

[22].

Signal peptide prediction
Predicting whether a protein has a signal peptide was performed

using the SignalP 3.0 prediction tool [18]. SignalP consists of two

predictors - a neural network (NN) based predictor, and a hidden

Markov model (HMM) based predictor. Proteins having contra-

dicting predictions assigned by the two predictors were discarded.
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