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ABSTRACT

Accumulating evidence has demonstrated that
rewiring of metabolism in cells is an important hall-
mark of cancer. The percentage of patients killed by
metabolic disorder has been estimated to be 30%
of the advanced-stage cancer patients. Thus, a sys-
tematic annotation of cancer cell metabolism genes
is imperative. Here, we present ccmGDB (Cancer
Cell Metabolism Gene DataBase), a comprehensive
annotation database for cell metabolism genes in
cancer, available at http://bioinfo.mc.vanderbilt.edu/
ccmGDB. We assembled, curated, and integrated ge-
netic, genomic, transcriptomic, proteomic, biological
network and functional information for over 2000 cell
metabolism genes in more than 30 cancer types. In
total, we integrated over 260 000 somatic alterations
including non-synonymous mutations, copy number
variants and structural variants. We also integrated
RNA-Seq data in various primary tumors, gene ex-
pression microarray data in over 1000 cancer cell
lines and protein expression data. Furthermore, we
constructed cancer or tissue type-specific, gene co-
expression based protein interaction networks and
drug-target interaction networks. Using these sys-
tematic annotations, the ccmGDB portal site pro-
vides 6 categories: gene summary, phenotypic infor-
mation, somatic mutations, gene and protein expres-
sion, gene co-expression network and drug pharma-
cological information with a user-friendly interface
for browsing and searching. ccmGDB is developed
and maintained as a useful resource for the cancer
research community.

INTRODUCTION

Malignant cells exhibit specific metabolic signatures that
may be linked to both genetic and epigenetic alterations

(1). Many studies have demonstrated that rewiring of
metabolism in cells is another general hallmark of cancer
and can be used as a therapeutic target (2–4). The Warburg
effect (5,6) is a good example. Under stressful metabolic
conditions and hypoxic microenvironment, cancer cells re-
act to support the needs for survival and rapid proliferation
via glycolysis and metabolic pathway reprogramming (3).
The importance of cell metabolism control in cancer can
be estimated by the percentage of patients who are killed
by a metabolic disorder called cancer-associated cachexia
(CAC), rather than by the tumor itself; this percentage was
estimated to be up to 30% of advanced-stage cancer pa-
tients in a previous study (7). A large volume of cancer
genomic data generated from The Cancer Genome Atlas
(TCGA) project indicate that somatic alterations of cell
metabolism genes represent important genetic signatures
that may drive tumor initiation and progression and may
be related to anticancer drug responses (4). Several cell
metabolism genes like PKM (8), HK2 (9), IDH1 (10) and
HIF1A (11) have been proven to be promising targets in
molecular cancer therapy. Therefore, comprehensive anno-
tations of all cell metabolism genes may provide impor-
tant resources for researchers to better understand cancer
mechanisms and identify potential druggable cancer cell
metabolism targets (4).

During the past decade, many studies have reported
that cancer genes may mediate the reprogramming of cell
metabolism. In one article, 10 cell metabolism genes were
systematically reviewed for their mechanisms in oncogene-
sis as well as their potential as diagnostic markers and ther-
apeutic targets (12). Metabolism and oxidative stress have
been found to be connected when researchers examined the
ETS1 expression profile in ovarian and breast cancers (13).
A set of cancer metabolism pathways were inferred from a
list of genes overexpressed in cancer (14). Recently, the ex-
pression patterns of 1421 genes extracted from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) metabolic
pathways were examined using microarray gene expression
data (15). So far, there has not been a systematic collection
and curation of cancer cell metabolism genes. With the ex-
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ponential growth of cancer and other biomedical data, the
demand to develop a database to systematically explore the
global and specific features of cell metabolism genes in can-
cer has become especially urgent in the cancer research com-
munity.

In this paper, we describe ccmGDB (Cancer Cell
Metabolism Gene DataBase) and its website with several
applications. ccmGDB enables users to effectively browse
and systematically explore the genetic, genomic, tran-
scriptomic, proteomic and functional information of cell
metabolism genes in cancer. As the first database focusing
on cancer cell metabolism genes, ccmGDB provides useful
information for cancer cell metabolism studies and broad
biomedical research.

DATABASE OVERVIEW

ccmGDB contains over 2000 cell metabolism genes that are
annotated with 6 categories. (i) The gene summary category
provides basic gene information and diverse hyperlinks for
gene expression, protein annotation, ortholog information,
metabolism annotation, regulation and gene context infor-
mation. In addition, this category shows the manually cu-
rated articles for each cancer cell metabolism gene through
manually checking over 2000 PubMed articles by our ex-
perts. (ii) The phenotypic category allows user to explore
disease or phenotype related information such as the can-
cer gene databases including cancer cell metabolism genes
(ccmGene), disease related database links and mouse phe-
notype database links. (iii) The somatic alteration annota-
tion category presents different types of somatic mutations.
In the current version of ccmGDB, there are 151 238 so-
matic nucleotide variants (SNVs), 5916 small insertions and
deletions (indels), 6288 copy number variants (CNVs; 4504
copy number gain and 1784 copy number loss), and 1971
structural variants (SVs) that were extracted from COSMIC
and 102 399 SNVs that were obtained from TCGA. For
translocation or gene rearrangement information, we inte-
grated 4729 human chimeric transcripts for cell metabolism
genes (cmGenes) from Chitars2.0 (16). (iv) The expres-
sion category is based on the Cancer Cell Line Encyclo-
pedia (CCLE) (17), TCGA, and The Cancer Proteome At-
las (TCPA) data and provides cell-line specific and primary
cancer type specific gene expression patterns and cancer
type specific protein expression patterns. For example, 78%
(1632) of cmGenes had differential gene expression pat-
terns for 8 cancer types of TCGA data. (v) The gene–gene
network category provides the results for exploring differ-
ent pathway activities between tumor and normal samples
based on co-expressed protein interaction network derived
from 113 473 protein–protein interactions. (vi) The pharma-
cological annotation category offers drug-centric and gene-
centric networks to dynamically show the druggable fea-
tures of cancer cell metabolism targets using 4059 drugs.
Furthermore, ccmGDB offers a cross-referenced ID table,
which is primarily based on parsed Universal Protein Re-
source (Uniprot) data (18).

Table 1 summarizes the statistics for cmGenes and ccm-
Genes per each annotation category. The current database
includes 2071 cmGenes and 514 ccmGenes. Almost all
of these genes have mutation and gene expression infor-

mation derived from COSMIC and TCGA. Furthermore,
ccmGDB includes 946 drug related cmGenes, 1392 cm-
Genes having translocations and approximately 1500 unan-
notated cmGenes that are not well-studied in cancer. Such
data can be used to explore and predict cancerous features
and possible drug repurposing. All aforementioned entries
and annotation data are available to browse and search on
the ccmGDB website.

DATA INTEGRATION

Cell metabolism genes

Figure 1 shows an overview of ccmGDB. The current ver-
sion includes 2071 cell metabolism genes that were col-
lected from 42 KEGG (19) and 27 REACTOME (a knowl-
edgebase of biological pathways) (20) metabolic pathways.
These KEGG and REACTOME pathways included 922
and 1597 genes, respectively.

Annotation of cancer cell metabolism genes

We integrated cancer gene information from five different
cancer gene databases: Oncogene (21), TSGene (22), Cancer
Gene Census (CGC) (23), CancerGenes (21) and Network
of Cancer Genes (NCG4.0) (24). This integration strategy
is to annotate the well-studied metabolic targets for cancer
therapy based on a previous review article (4). We further in-
cluded cancer type-specific significantly mutated genes from
over 20 TCGA genome analysis projects and other pub-
lished data (25–41). Through gene ID mapping with all cm-
Genes, we extracted 514 ccmGenes. As a result, the ccm-
Genes data set is composed of 41 Oncogenes, 92 TSGenes,
50 CGC genes, 382 CancerGenes, 133 Network of Can-
cer Genes and 110 significantly mutated genes. In addition,
689 genes had candidate metabolic therapeutic vulnerabil-
ities based on homozygous deletions (42). Specifically, we
found three common genes among the five cancer gene sets
in the KEGG cell metabolic pathway: PTEN, AKT1 and
PIK3CA. The detailed information is shown in Supplemen-
tary Figure S1.

Manual curation of articles showing cancer cell metabolism
genes’ function

For 514 cancer cell metabolism genes and 10 impor-
tant metabolic genes not included in ccmGenes, we per-
formed a literature query of PubMed in September, 2015,
using the search expression that applied to each ccm-
Gene (using IDH1 as an example here): ‘((cancer cell
metabolism [Title/Abstract]) AND IDH1[Title/Abstract])
AND (‘2001/01/01’[Date - Publication] : ‘2015/09’[Date -
Publication])’. From these abstracts, we manually checked
over 2000 articles. We found 242 genes (∼47%) having lit-
erature evidence (492 articles), supporting the function of
these genes by regulating cell metabolism in cancer. Using
this curation, we created a classification system to introduce
reliability. Class A requires literature evidence and belong-
ing to the cancer gene. Class B requires only belonging to
the cancer gene and the other genes belong to Class C.
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Table 1. Annotation entry statistics for all cell metabolism genes

Data type # Entries # cmGenesa # ccmGenesb

Total 2071 (%) Total 514 (%)

Cancer genes # genes
Oncogenesc 41 41 (2.0%) 41 (8.0%)
Tumor suppressor genesd 92 92 (4.4%) 92 (17.9%)
Cancer Gene Censuse 50 50 (2.4%) 50 (9.7%)
Cancer genesf 382 382 (18.4%) 382 (74.3%)
Network of cancer genesg 133 133 (6.4%) 133 (25.9%)
Significantly mutated driver genesh 110 110 (5.3%) 110 (21.4%)
Pathway # pathways (# genes)
KEGGi 42 (922) 922 (44.5%) 210 (40.9%)
REACTOMEj 27 (1597) 1597 (77.1%) 406 (79.0%)
Interactionk # interactions
Physical interactionl 679 507 1968 (95.0%) 481 (93.6%)
Metabolic interactionm 21 353 1149 (55.5%) 245 (47.7%)
Signaling interactionn 78 548 1131 (54.6%) 361 (70.2%)
Expression # samples
CCLEo 1037 1893 (91.4%) 488 (95.0%)
TCGAp 4150 (tumor) 2061 (99.5%) 514 (100%)

461 (normal)
RPPAq 4775 24 (1.2%) 21 (4.1%)
Mutation # mutations
TCGAr 102 399 SNVss 2026 (97.8%) 508 (98.8%)
COSMICt 151 238 SNVs 2040 (98.5%) 510 (99.2%)

5916 Indelsu 1213 (58.5%) 340 (66.1%)
6288 CNVsv 1836 (88.6%) 461 (90.0%)
1971 SVsw 782 (37.7%) 225 (43.8%)

Chitars2.0x 4729 chimeric transcripts 1392 (67.2%) 392 (76.3%)
Molecule # molecules
DrugBanky 4059 drugs 946 (45.7%) 269 (52.3%)
UniProtz 2062 proteins 2069 (99.9%) 514 (100%)

aCell metabolism genes.
bCancer cell metabolism genes.
cOncogenes from Cancer Genes.
dTumor suppressors from TSGene.
eCancer genes from Census of human cancer genes.
fCancer genes from CancerGenes. gCancer genes from NCG4.0.
hSignificantly mutated genes per 18 TCGA cancer types from 12 articles.
iCell metabolism related pathway in KEGG.
jCell metabolism related pathway in REACTOME.
kPathwayCommons interaction.
lGenes having ‘interacts-with’, ‘reacts-with and neighbor-of’ interactions among PathwayCommons.
mGenes having ‘catalysis-precedes’ interactions among PathwayCommons.
nGenes having ‘controls-production-of’, ‘in-complex-with’, ‘controls-state-change-of’, ‘controls-phosphorylation-of’, ‘controls-transport-of’, ‘controls-
expression-of’, ‘consumption-controlled-by’, ‘controls-transport-of-chemical’ and ‘chemical-affects’ interactions among PathwayCommons.
oGene expression for cancer cell lines of 24 cancer types.
pRNA-seq data for primary tumor and normal samples.
qProtein expression values.
rMutations called for TCGA exome-seq data by TCGA investigators.
sSomatic nucleotide variations.
tAll types of variants collected in COSMIC.
uInsertions and/or deletions.
vCopy number variations.
wStructural variants.
xHuman chimeric transcripts.
yRelated drug with the cmGene.
zUniversal protein ID for the cmGene.

Mutation data integration

Somatic point mutations were collected from TCGA
(March, 2014). In addition, we collected point mutations,
indels, CNVs and SVs from the COSMIC v72 data sets
of GRCh37. To find more translocation or gene rearrange-
ment information, we downloaded 20 750 human chimeric
transcripts from Chitars2.0 (16) data and compared these
with cmGenes. Among them, 4729 chimeric transcripts

were related with 1392 cmGenes. In addition, we down-
loaded CNV data from TCGA (January, 2015) and ex-
tracted them using the R package in TCGA-Assembler. Us-
ing the ProcessCNAData function in the TCGA-Assembler
package, we obtained the gene-level CNV data calculated
as the average copy number of the genomic region of each
gene.
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Figure 1. Overview of ccmGDB. Cancer cell metabolism gene database is composed of 6 categorized annotations from the integration of genotypic data,
phenotypic data, pharmacological data and network analysis for all 2071 cell metabolism genes.

Expression data preparation

We downloaded gene expression data from TCGA (Jan-
uary, 2015). Normalized gene expression data from
RNASeqV2 were extracted using the R package TCGA-
Assembler (43). In addition, microarray gene expres-
sion data in over 1000 cancer cell lines was extracted
from CCLE (October, 2012) using gene-centric RMA-
normalized mRNA expression data. Differential gene ex-
pression visualization was done using the beanplot pack-
age in R. Reverse Phase Protein Array (RPPA) data were
extracted from TCPA (44). Normalized values based on
replicate-based normalization (RBN) were used to draw im-
ages. A total of 4032 images about gene expression were in-
cluded in the ccmGDB database.

Co-expressed protein interaction network (CePIN)

We used 113 473 unique protein–protein interactions con-
necting 13 579 protein-coding genes to construct a protein
interaction network (PIN) as done in our previous study
(45,46). We then calculated the Pearson Correlation Coeffi-
cient (PCC) for each gene–gene pair using the RNASeqV2
data and mapped the PCC value of each gene–gene pair
onto the above PIN to build a CePIN based on two previous
studies (45,47). Co-expressed network figures were drawn
using the igraph package in R. For each gene, the top 20
neighbors having the highest PCC values were used in the
network. The selection of 20 neighbors reflects the genetic
signals while controlling the subnetworks so as not to be too
large. The target gene was labeled in red while other cancer

cell metabolism genes in the same network were marked in
orange.

Drug–gene interaction network

We extracted drug-target interactions (DTIs) from three re-
sources: DrugBank (48), the Therapeutic Target Database
(TTD) (49) and the PharmGKB database (50). Drugs were
grouped using Anatomical Therapeutic Chemical (ATC)
classification system codes (51). All genes encoding drug
targets were mapped to their Entrez IDs based on the
National Center for Biotechnology Information (NCBI)
database (52). Duplicated DTI pairs were excluded. All
chemical two-dimensional structural images of drugs were
generated using the chemical toolbox, OpenBabel (v2.3.1)
(53).

Database architecture

The ccmGDB system is based on a three-tier architecture:
client, server and database. It includes a user-friendly web
interface, Perl’s DBI module and MySQL database. The
database of ccmGDB was developed on MySQL 3.23 with
the MyISAM storage engine.

WEB INTERFACE AND APPLICATIONS

Somatic mutation category

The mutation category presents SNVs, indels, CNVs and
SVs with cancer type-specific and sub categorized muta-
tion type-specific information, as shown in Figure 2. The SV
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Figure 2. Mutation category in ccmGDB. (A) Structural variants annotation for PTEN. A Circos plot based on chromosomes and detailed information
including cancer type specific statistics and fusion gene information is provided. (B) Copy number variations annotation for PTEN. Copy number gain
is colored in red and copy number loss in green. (C) Somatic single nucleotide variations and small insertions and deletions for IDH1 such as mutation
frequency per tissue and protein structure based representation.

part supports genomic rearrangements and structural vari-
ants related information using the data for 12 tissue types
from COSMIC. This information includes Circos plots and
tables for inter-chromosomal and intra-chromosomal rear-
rangements per tissue type as shown in Figure 2A. Through
integration and comparison with the database of human
chimeric transcripts and RNA-sequencing (Chitars2.0), we
could get 4729 chimeric transcripts for cmGenes. The CNV
part gives copy number variation information for 16 cancer
types from TCGA and variation types (GAIN or LOSS).
Figure 2B shows the copy number loss of tumor suppres-
sor gene PTEN in 10 cancer tissues. SNV information part
includes SNV loci and frequency information at amino-
acid sequence, SNV counts, percentage per cancer type and
the top 10 SNVs in the highest recurrence, as shown in
Figure 2C. The isocitrate dehydrogenase 1 gene (IDH1)’s
mostly frequently observed non-synonymous SNV is a well-
known driver mutation (R132H) in the central nervous sys-
tem (81.0%) (Figure 2A), which is consistent with a previous
study (54).

Gene expression category

This category includes cancer/tissue type-specific gene ex-
pression, differential gene expression, protein expression
and the correlation between gene expression and CNVs.
Figure 3A shows an example of cell line-specific expression
in 24 cancer types from CCLE for mTOR (encoding mam-
malian target of rapamycin) which is a critically deregulated
gene in the cell-signaling pathway in various human can-
cer types (55). In addition, ccmGDB provides phosphory-
lated protein expression plots using the RPPA data from
TCPA (44). One example is shown in Figure 3B for activated
PTEN expression in ovarian serous cystadenocarcinoma
(OV) and lower grade glioma (LGG) (56). Differential gene
expression analyses for eight cancer types of TCGA were
also included in ccmGDB. Among all the 2071 cmGenes
and all the 514 ccmGenes, on average 1454 and 380 genes
displayed differential expression patterns (adjusted P-value
< 0.05, t-test with correction by Benjamini–Hochberg’s
false discovery rate (FDR)), respectively, as shown in Sup-
plementary Table S1. Almost 50% of ccmGenes and cm-
Genes showed differentially expressed patterns with up- or
down-regulated features. For example, SLC2A1, encoding
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Figure 3. Expression category in ccmGDB. Using this category, user can compare the expression level per cancer/tissue type at a glance. (A) Gene expression
plot of mTOR for cancer cell lines using CCLE data. (B) Protein expression plot of PTEN using TCPA data. (C) Differential gene expression plot of SLC2A1
for primary cancer tissues using TCGA data. (D) Correlation plot between gene expression and copy number of mTOR for TCGA data.

a major glucose transporter in the mammalian blood-brain
barrier, plays a crucial role in cancer cell metabolism (57).
Figure 3C indicates that SLC2A1 is highly expressed in all
the eight tumor types compared to the matched normal
samples (adjusted P-value < 0.05, t-test with correction by
Benjamini–Hochberg’s FDR). In addition, ccmGDB pro-
vides a correlation analysis between gene expression and
CNVs. Figure 3D shows that mTOR is highly amplified in
lung squamous cell carcinoma (LUSC) with a positive cor-
relation with CNVs among 15 different TCGA cancer types.

Gene–gene network category

The gene–gene network category provides cancer/tissue
type-specific co-expressed gene network and co-expressed
protein interaction network (CePIN) analysis for the top
20 co-expressed genes having the highest gene–gene co-
expression correlation for each cmGene across 8 cancer

types and normal tissues as shown in Figure 4A. Using
this annotation, we performed a gene set enrichment anal-
ysis for IDH1 (Supplementary Table S2) with WEB-based
Gene SeT AnaLysis Toolkit (WebGestalt) (58). The top en-
riched pathway in BRCA was ‘carbohydrate metabolic pro-
cess’ with q-value 0.0019, which corresponds to ‘glycolysis’.
The ‘NADPH regeneration’ pathway was also significantly
enriched in breast cancer samples with q-value 0.0041. The
‘NADPH regeneration’ pathway has a major role in the pen-
tose phosphate pathway (PPP), ATP formation pathway via
glycolysis. On the other hand, the normal samples’ enriched
pathways showed energy transduction processes via oxida-
tive phosphorylation. These results would suggest to us the
possibility of an energy metabolism process alteration from
oxidative phosphorylation to glycolysis during tumorigene-
sis. In addition, ccmGDB displays meaningful KEGG path-
way information for each target gene via a popular bioinfor-
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Figure 4. Gene–gene network category and pharmacological category. (A) Co-expressed protein interaction network using the top 20 co-expressed genes for
IDH1. By gene set enrichment analysis (GSEA) of the 20 genes with the cancer/tissue type-specific information in this category, user can infer differentially
activated pathways. The target gene is colored in red and other cmGenes in orange. (B) Enriched KEGG pathway information using all interacting genes
from PathwayCommons. (C) Pharmacological information for SLC2A1. Gene-centric network, drug-centric networks and detailed information for each
drug including the two-dimensional structure information are provided.

matics tool DAVID (59) using all the interacting genes from
PathwayCommons data as shown in Figure 4B.

Drug pharmacological category

Figure 4C shows a drug–gene network visualization using
both gene-centric and drug-centric fashions. From a gene-
centric network, user can retrieve drug names related with
the target gene. From a drug centric network, user can ob-
tain more detailed information for those drugs including
DrugBank ID, target domain name, the drug’s approved
status, other genes related with this drug and the two-
dimensional drug structure. We identified potential drug-
gable genes targeting tumor metabolism through construct-
ing a drug-target interaction subnetwork connecting 80 ap-

proved or experimental drugs and 23 significantly mutated
cell metabolism genes. Supplementary Figure S3 shows sev-
eral druggable targets that are significantly mutated in can-
cer, such as AKT1, PIK3CA, MTOR, IDH1 and PIK3R1.
We found that several known anticancer drugs can regu-
late cancer cell metabolism pathways, such as caldribine,
sirolimus, everolimus, temsirolimus and imatinib. Cladrib-
ine was approved for the treatment of chronic lymphocytic
leukemia and cutaneous T-cell lymphoma (48). However,
the exact mechanism-of-action (MOA) of cladribine for
cancer treatment is unknown. Supplementary Figure S3 in-
dicates that cladribine targets a significantly mutated cancer
gene POLE, which is a key DNA repair gene. A previous
cancer genome study reported that POLE is significantly
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mutated in uterine cancer (36) and this gene was specifi-
cally highlighted in a pan-cancer mutation signature analy-
sis (60). Budesonide was an approved glucocorticoid agent
for the treatment of allergic rhinitis (61). Supplementary
Figure S3 reveals that budesonide might target PIK3CA,
PIK3R1 and AKT1 by regulating cell metabolism activity.
Previous preclinical and clinical studies showed that budes-
onide is a very promising agent for lung cancer chemopre-
vention (62,63).

DISCUSSION AND FUTURE DIRECTION

This study presents a unique resource, ccmGDB, for the
systematic annotation of cell metabolism genes in can-
cer. Among 2071 cell metabolism genes, 77% have not
been deeply studied in cancer yet. Using ccmGDB, user
can search cancer-related genetic, genomic, transcriptomic,
proteomic, functional information and systematic somatic
mutation annotations. However, more detailed annotations
for regulation such as microRNA, epigenetic alterations
and other gene regulation information have not been sys-
tematically done. Previous studies have reported that mi-
croRNAs and epigenetic changes also play critical roles in
cancer cell metabolism (64); thus, we plan to annotate such
data in the near future. Furthermore, there are several meth-
ods to quantitate metabolites like Consumption and Re-
lease (CORE) profiling (65) and Metabolic Flux Analysis
(MFA) (66). We anticipate an increasing number of metabo-
lite quantitation studies in the next a few years. If so, we will
integrate these data in ccmGDB as well.

To serve cancer cell metabolism researchers for the de-
velopment of novel targeted cancer therapy, we will contin-
uously update ccmGDB and provide a unique resource in
the following directions. (i) Collect high-quality microRNA
data that regulate cell metabolism in the particular cancer
type and add microRNA–gene regulation information (67).
We will expand this effort to include other types of non-
coding RNA such as long non-coding RNA (lncRNA) too.
(ii) Add more comprehensive cancer genetic and genomic
data, including methylation, and regulatory profiles of non-
coding somatic mutation data from several whole-genome
sequencing and functional genomic projects, such as the
NIH Roadmap Epigenetics (68) and the International Can-
cer Genome Consortium (ICGC) (69) projects. (iii) Add
more high-quality drug pharmacological data from high-
throughput screening studies and drug resistance studies for
more positive clinical outcome and better therapeutics.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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