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Abstract

Nanoparticles (NPs) are causing threats to the environment. Silver NPs (AgNPs) are

increasingly used in commercial products and may end up in freshwater ecosystems. The

freshwater organisms are vulnerable due to water-borne and dietary exposure to AgNPs.

Surface properties play an important role in the fate and behavior of AgNPs in the aquatic

environment and their effects on organisms. However, effects of surface properties of

AgNPs on organisms are poorly understood. In this study, we explored the effects of AgNPs

coated with three different ligands; Tyrosine (T-AgNP), Epigallocatechin gallate (E-AgNP)

and Curcumin (C-AgNP) in relation to the toxicity to a key aquatic organism; Daphnia cari-

nata. The study focused on how coatings determine fate of NPs in the medium, mortality,

feeding behaviour, bioaccumulation and trophic transfer from the freshwater alga, Raphido-

celis subcapitata to daphnids. NP stability tests indicated that T-AgNPs were least stable in

the ASTM daphnia medium while C-AgNPs were most stable. 48 h EC50 values of AgNPs to

D. carinata were in the order of E-AgNP (19.37 μg L-1) > C-AgNP (21.37 μg L-1) > T-AgNP

(49.74 μg L-1) while the 48 h EC50 value of Ag+ ions was 1.21 μg L-1. AgNP contaminated

algae significantly decreased the feeding rates of daphnids. However, no significant differ-

ences were observed in feeding rates between algae contaminated with differently coated

AgNPs. Trophic transfer studies showed that AgNPs were transferred from algae to daph-

nids. The bioacumulation of AgNPs in algae and the diet-borne bioaccumulation of AgNPs

in daphnids varied for differently coated AgNPs. Bioaccumulation of C-AgNPs in algae was

1.5 time higher than T-AgNPs. However, the accumulation of T-AgNPs in daphnids via tro-

phic transfer was 2.6 times higher than T-AgNPs. The knowledge generated from this study

enhances the understanding of surface property dependent toxicity, bioaccumulation and

trophic transfer of AgNPs in aquatic environments.
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Introduction

Engineered nanoparticles (ENPs) are man-made materials with a size range of 1 to 100 nm [1].

Global production of ENPs are increasing exponentially as they are widely being used in many

applications such as healthcare, personal care, construction, energy, electronics, catalysts,

packaging, textiles, environmental remediation and agriculture [2–4]. Despite their useful

applications, the physicochemical characteristics that make NPs unique are causing possible

threats to the health of the environment including humans. Unfortunately, understanding the

implications of NPs have not kept pace with the advancements of nanotechnology and there-

fore, concerns are growing about their possible environmental health and safety risks among

the scientific community, regulatory agencies and general public [1, 5–8]. There are 1800 plus

nano-enabled consumer products in the market while silver nanoparticles (AgNPs) is the most

frequently used nano-material (435 products) as reported by Vance, Kuiken [9]. Certain physi-

cochemical, chemical and structural features of AgNPs are useful as an excellent antimicrobial

agent [10–15] and in the fields of material science, chemistry and physics [16]. With increased

usage in consumer products, large quantities of AgNPs end up in aquatic ecosystems posing a

huge threat to aquatic organisms. Primary producers are vulnerable to water-borne exposure

while higher organisms are affected by both water-borne and diet-borne exposure [17, 18].

Complete assessment of health and environmental impacts of engineered nanomaterials is not

possible due to lack of nanotoxicity and ecotoxicity data and it will take many more years to

produce actionable information leaving all concerned parties with little guidance [7]. There-

fore, further studies are required to minimize the harm caused by NPs considering the diver-

sity of NP characteristics [16, 19–22].

AgNPs may cause mechanical [23–25] and physiological [26, 27] damage. Some researchers

claim that liberated ions from AgNPs are the only cause of toxicity to aquatic organisms [28,

29] while other studies indicate that particles are the major cause of toxicity [30, 31]. The toxic-

ity of NPs are compared to the toxicity of the counterpart bulk material, usually metal salts to

test this hypothesis [32]. Surface coatings of NPs have a strong influence on their physico-

chemical properties and can also influence the toxicity to organisms [33]. Though there are

studies on effects of coated NPs, further studies are required due to addition of new coating

materials, different views on effects of coatings and to protect native freshwater species. Zhao

and Wang [34] found AgNPs coated with sodium dodecylbenzene sulfonate caused highest

toxicity (48 h LC50: 1.1 μg L-1) to Daphnia magna followed by polyvinylpyrrolidone (PVP)

(48 h LC50: 2.0 μg L-1) and lactate-coated AgNPs (48 h LC50: 28.7 μg L-1). Silva, Pokhrel [33]

studied the toxicity of three types of organo-coated AgNPs to D. magna. They found that the

branched polyethyleneimine-coated AgNPs (48 h LC50: 0.41μg L-1) were most toxic followed

by citrate (48 h LC50: 2.88 μg L-1) and PVP-coated AgNPs (48 h LC50: 4.79 μg L-1). Newton,

Puppala [35] exposed D. magna to three types of coated AgNPs for 48 h in two different

media. They found gum Arabic-coated AgNPs (48 h LC50: 2.14–3.48 μg L-1) were most toxic

followed by polyethylene glycol (48 h LC50: 2.27–13.08 μg L-1) and PVP-coated AgNPs (48 h

LC50: 14.04–14.81 μg L-1).

NPs can be bioaccumulated and transferred from one trophic level to another through the

food chain [36–38]. Trophic transfer studies allow us to differentiate the importance of differ-

ent exposure routes which is useful in risk analysis. Algae are primary producers of energy as a

food source and any impacts at this level may affect the health of organisms at higher trophic

levels [39, 40]. Several studies have shown that food is the major source of AgNP accumulation

in D. magna [39, 41]. Zhao and Wang [41] found that AgNPs were more efficiently assimilated

in daphnids and was more difficult to depurate when NPs were ingested through the dietary

intake than water-borne exposure. McTeer, Dean [42] observed trophic transfer of NPs to D.
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magna from AgNP treated alga Chlamydomonas reinhardtii. Chae and An [43] saw trophic

transfer of Ag nanowires (AgNWs) from C. reinhardtii to D. magna and then to the fish Danio
rerio. Lee, Yoon [44] observed trophic transfer of gold NPs (AuNPs) to D. magna from C. rein-
hardtii and Euglena gracilis. Bouldin, Ingle [45] observed transfer of Carboxyl quantum dots

(QD) from QD-exposed alga Raphidocelis subcapitata to Ceriodaphnia dubia. Elsewhere, tro-

phic transfer of ENPs were demonstrated from algae to mussels [46], daphnids to zebrafish

[47] and biofilms to snails [48]. Exposure to AgNPs and Ag+ ions contaminated algae also

cause changes in feeding behaviour in daphnids. McTeer, Dean [42] also reported a significant

reduction in feeding when daphnids were fed with AgNP and Ag+ ion contaminated algae

compared to untreated algae. Zhu, Chang [49] observed dose dependent reductions in inges-

tion and filtration rate when D. magna was exposed to TiO2 NPs.

In this study, we studied the toxicity of AgNPs coated with different organic ligands; Tyro-

sine (T-AgNP), Curcurmin (C-AgNP) and Epigallocatechin gallate (E-AgNP) to the freshwa-

ter filter-feeding cladoceran, Daphnia carinata. In addition, the effects of associated Ag with

alga on daphnid feeding behaviour and trophic transfer from the alga diet to daphnids were

investigated. Tyrosine, Curcurmin and Epigallocatechin gallate have different number of phe-

nol structures and classified as mono-phenol, bi-phenol and poly-phenols respectively. Since

they are organic compounds, their usage is considered as a green and ecofriendly approach to

produce NPs while they are biocompatible which is a useful characteristic in therapeutic appli-

cations [50]. These coatings are used to produce NPs for different applications, mainly being

found in medical applications [50–54]. Though there are studies on the effects of AgNPs with

most commonly used coatings, studies on organic coatings used in this study are lacking.

Daphnia sp. is one of the most sensitive species used in aquatic toxicological studies and is rec-

ommended as a model test organism by international agencies. The most common species

used for studies is D. magna which is considered as an invasive species in some parts of the

world. Therefore, it is required to improve test species and protocols to better reflect species

sensitivity in different ecosystems [55], for environmental risk assessment and to protect native

species. Also, daphnids represent the bottom level of the freshwater food chain and any quali-

tative or quantitative effect to the population will affect higher organisms [16]. To the best of

our knowledge, this is the first study where the effects of differently coated NPs were studied

against D. carinata while other studies so far have used D. magna. Also, the coating materials

are quite novel and have not being used in similar kind of studies.

Materials and methods

2.1 Preparation of NPs

L-tyrosine, epigallocatechin gallate (EGCG) and curcumin (Fig A1, A2 and A3 in S1 File) were

obtained from Sigma-Aldrich. NP synthesis was performed in-house as previously described

by Selvakannan, Swami [53]. Briefly, 10 mL of 1 mM Ag2SO4 solution was mixed with 10 mL

of 1 mM aqueous solution of Tyrosine, EGCG and Curcumin and diluted to 100 mL with

MilliQ water. To each solution, 1 mL of 100 mM KOH solution was added, and the mixture

was allowed to boil until the colour of the solution turned yellow which indicates NP forma-

tion. The AgNP solutions were allowed to age for 1 day and then concentrated by rotary evap-

oration. The solutions were then dialyzed for 48 h in a dialysis tube (MWCO: 3 kDa) which

was submerged in copious amounts of MilliQ water with stirring to remove any uncoordi-

nated silver ions, excess KOH and unbound coating materials. Water was replaced twice with

fresh MilliQ water after 6 and 24 h. The dialyzed AgNP solutions were stored in the dark. Each

type of NP (0.1 mL) was acid digested with ultra-pure grade 70% HNO3 (Thermo Fisher Scien-

tific, NSW, Australia) on a heating block at 105 oC for 12 h. The digested samples were then
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diluted with MilliQ water and the silver (Ag+ ions) concentrations were measured by induc-

tively coupled plasma mass spectrometry (ICP-MS) (7700x, Agilent Technologies).

2.2 Characterization of NPs

The zeta potential and hydrodynamic diameter (HDD) of the AgNPs were measured using a

folded capillary cell and glass cuvette, respectively, on a Zetasizer (Dynamic light scattering;

Malvern Zetasizer Nano series, NanoZS). The particles were drop cast on carbon copper grids

and images were taken using a transmission electron microscope (TEM) operated at an accel-

erating voltage of 100 kV (TEM, JEOL 1010) equipped with a Gatan imaging system. The

mean core size of NPs was determined from TEM images using ImageJ software. The surface

plasmon resonance (SPR) was recorded as absorbance spectra using a UV-visible spectropho-

tometer (Varian Cary 50) operated at a resolution of 2 nm, from 200 to 800 nm, using a quartz

cuvette with a path length of 1 cm. Concentrations of stock solutions were measured with

ICP-MS (7700x, Agilent Technologies) after acid digestion with concentrated HNO3.

2.3 Culturing organisms

R. subcapitata pure cultures were maintained in the lab and the algal cells were inoculated in

the MLA medium to prepare the algae stock cultures. MLA medium was prepared as described

by Bolch and Blackburn [56] with slight modifications. Briefly, concentrate nutrient stock

solutions were prepared by filter sterilization and the medium was prepared in MilliQ water

by autoclaving for 15 min at 121˚C. The algae stock cultures were maintained axenically as per

the OECD guidelines [57]. Cultures were aerated and incubated in a light-temperature con-

trolled chamber at 23 ± 1˚C under continuous illumination (6000 lux). White fluorescent

tubes were used as the light source while the light intensity in the test setup was measured

using a LI-COR light meter (model LI-189). The pH was maintained at 7.5 ± 0.5. Algal cells

were counted periodically with an automated cell counter (TC20, Bio-Rad Laboratories, Her-

cules, CA) to make sure the culture is at exponential growth stage when it is treated with NPs

for the daphnid feeding and bioaccumulation test. A widespread Daphnia species in Australia,

D. carinata was used to assess the acute toxicity, feeding behaviour and bioaccumulation

experiments. ASTM standard medium [58] was used for stock culturing and in all experi-

ments. Daphnid stock culture was maintained at 20 ± 1˚C with 16:8 h light and dark photope-

riod to obtain neonatal cladocerans. They were fed with R. subcapitata (5 × 105 cells mL-1), a

highly suitable nutrient source for daphnids. The medium was aerated to make it saturated

with oxygen before addition of daphnids. The medium was renewed three times a week, and

the pH was maintained at 7.5 ± 0.2 throughout and cultures were maintained in glass beakers

which were loosely covered to prevent any contamination and evaporation.

2.4 AgNP temporal stability and dissolution in the test medium

The stability of AgNPs in the ASTM medium and MilliQ water was investigated as previously

described by Tejamaya, Römer [59] with some modifications. Nanoparticle solutions of

5,000 μg L-1 were incubated in glass vials for 24 h at similar environmental conditions to the

daphnid acute toxicity test. The SPR, HDD and zeta potential of the suspensions were investi-

gated, and pH was monitored. The release of Ag+ ions from NPs was investigated in the ASTM

medium and MilliQ water over 24 h as previously described by Xia, Kovochich [60] with some

modifications. Briefly, 1 mL from each NP suspension was extracted into Eppendorf tubes and

centrifuged at 21,000 rpm for 15 min (Sigma 3-KL centrifuge). Supernatant (0.75 mL) from

carefully removed tubes was transferred to 15 mL tubes, acidified with HNO3 and diluted with

MilliQ water. The Ag+ ion concentrations were measured by ICP-MS (7700x, Agilent

AgNP toxicity and trophic transfer
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Technologies). The samples need to be in ionic form prior to entering the mass analyser in

order to be detected. The coated NPs were not detectable as validated by independent experi-

ments by using undigested NPs. Therefore, the influence of NPs which may be present in the

supernatant to the readings was insignificant.

2.5 Acute toxicity bioassay with D. carinata
AgNP test solutions of relevant nominal concentrations for the acute test were prepared based

on ICP-MS results just before the test began by sonicating and dispersing relevant volumes of

stock solutions in daphnid culture medium. Ionic silver stock solution was prepared by dis-

solving Ag2SO4 in culture medium followed by ICP-MS analysis and required concentrations

for acute tests were prepared by dissolving relevant volumes from the stock solution in daph-

nid culture medium. Controls contained only the culture medium. Semi-static renewal acute

toxicity tests were performed according to the OECD standard procedure [61]. Less than 24 h

old third brood progeny was used for experiments. Daphnid neonates were exposed to seven

different concentrations of each test substance for 48 h. Test concentrations were chosen

based on results obtained from range finding tests. Concentrations employed for the tests were

in the range of 10.0–40.0 μg L-1 for E-AgNP, 30.0–90.0 μg L-1 for T-AgNP, 10.0–35.0 μg L-1 for

C-AgNP and 0.6–1.8 μg L-1 for Ag+ ions. For each concentration, 5 neonates (age: < 24 h)

were placed in a 35 mL glass vial containing 15 mL of test solution. The test solution was

renewed after 24 h and all experiments were conducted in quadruplicate (n = 4). Daphnids

were not fed during the 48 h time period. The tests were conducted at 20 ± 1˚C with 16:8 h

light and dark photoperiod, pH was maintained at 7.5 ± 0.2 while the dissolved oxygen con-

centration in all the test solutions exceeded 3 mg L−1. Immobilization was recorded after 24

and 48 h while they were considered immobile if they couldn’t move within 15 s of gentle agi-

tation of the test container. The toxicity tests were considered valid if the mortality was not

>10% in the control.

2.6 Feeding analysis and AgNP trophic transfer

Algae feeding experiment was conducted as described by McTeer, Dean [42] and Grintzalis,

Dai [62] with some modifications. Cell density of the algae culture which was in exponential

growth stage was adjusted to 5 × 104 cells mL-1. Algae cells were propagated in a 1 L Erlen-

meyer flask containing 500 mL algae culture in the presence of particles (50 μg L-1) or absence

(blank control) in triplicate. The flasks were incubated as per the OECD guideline [57] on

orbital shakers (OM6, RATEK, Aus) at 100 rpm under the same environmental conditions

used for algae culturing. Algal cell counts of each flask were taken with the automated cell

counter and the specific algal growth rate of all treatments were calculated for each day. Algae

cells were fed to daphnids after 6 days when the cells had reached stationary growth phase.

Since the cells were no longer dividing, number of cells consumed could accurately be mea-

sured. A volume of 350 mL from each culture was centrifuged (3000 g, 5 min, 20˚C) and

washed three times with MilliQ water to remove any loosely adsorbed contaminants from

algae. The algae were then resuspended in ASTM medium in a 50 mL Falcon tube as it con-

tained approximately 5 × 106 cells mL-1 and stored at 4˚C. Feeding experiments were carried

out under similar environmental conditions used for the acute toxicity test in 100 mL glass

beakers in triplicate with 50 mL ASTM medium in each beaker. Daphnids (15, age:< 24 h)

were placed in each beaker and fed with AgNP treated and untreated algae for 5 days. Daph-

nids were transferred to fresh media after every 24 h and the starting and final algal cell num-

bers were determined with the automated cell counter. The solutions were stirred on a

magnetic stirrer for 20 s before samples were taken for cell counting. The 5 day feeding phase

AgNP toxicity and trophic transfer
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was followed by a 3 day depuration phase in fresh medium where daphnids were fed with

unexposed algae. Then, daphnids were oven dried at 60˚C for 48 h and acid digested on a

block heater for 6 h at 100˚C with 70% HNO3 and 30% H2O2. Digested samples were diluted

with MilliQ water and analysed using ICP-MS. A volume of 50 mL from each remaining cul-

ture was harvested by centrifugation (3000 g, 5 min) and washed three times with MilliQ

water. The resulting algal pellets were oven dried at 60˚C for 48 h and acid digested separately

as described above. The digested samples (0.5 mL) were diluted with MilliQ water and the sil-

ver (Ag+ ions) concentrations were measured using ICP-MS (7700X, Agilent Technologies).

2.7 Data analysis

The 24 and 48 h EC50 values and their associated 95% confidence intervals (95% CI) were cal-

culated using the TOXRat software (TOXRat solutions GmbH, version 3.0). The statistical

method used was the probit analysis using linear maximum likelihood regression. The daily

feeding rate was determined by dividing the number of algal cells consumed by the number of

daphnids that were alive in each beaker. Trophic transfer was quantitatively determined by cal-

culating the transfer of Ag to a daphnid from 105 algal cells consumed. For each dataset, mean

and SD are presented and data were considered statistically significantly different at P< 0.05.

All data were normally distributed according to Shapiro-Wilk test. Differences between treat-

ments were analysed using one-way analysis of variance (ANOVA). When significant differ-

ences were detected at a 95% level of confidence, the Tukey’s multiple comparisons were

applied. ANOVA was performed using Sigmaplot statistics version 13. Differences of treat-

ments over time for repeated measures were determined by 2-factor ANOVA followed by

Holm-Sidak method.

Results and discussion

3.1 Particle characterization

Strong, well defined absorptions peaks at 406 (T-AgNP), 400 (E-AgNP) and 414 nm

(C-AgNP) in the SPR curves (Fig 1A) indicate the presence of AgNPs [53, 63–66]; these peaks

were absent in controls which included media, pure coating material and coating material plus

KOH. The presence of NPs was further confirmed by TEM analysis (Fig 1B, 1C and 1D) which

revealed spherical shaped NPs which were reasonably uniform in size. Intensity weighted

mean HDD and zeta potential values in MilliQ water and core sizes of AgNPs are shown in

Table 1. Zeta potential values below -30 mV suggest that organic molecules formed strong

coatings on the AgNPs [50]. The secondary peaks of SPR spectra at 272 (T-AgNP), 270

(E-AgNP) and 256 nm (C-AgNP) are due to the Ag-bound tyrosine [53, 67], EGCG [68] and

curcumin molecules [69] respectively. The concentrations of T-AgNP, E-AgNP, C-AgNP and

Ag2SO4 stock solutions as measured by ICP-MS were 45.59, 48.84, 42.66 and 10.52 mgL-1

respectively.

3.2 Stability of coated AgNPs in ASTM medium

Suspensions of AgNPs in MilliQ water were initially yellowish in colour with absorption peaks

at 406, 400 and 414 nm for T-AgNPs, E-AgNPs and C-AgNPs respectively. Once the AgNPs

were dispersed in ASTM medium, visual observation revealed that the T-AgNP and E-AgNP

suspensions turned to yellowish brown within minutes, but the yellowish colour of C-AgNP

suspension was stable even after 24 h. SPR analysis revealed a larger decrease in the absorption

peaks of T-AgNPs (34 & 70%) and E-AgNPs (33 & 57%) after 5 min and after 24 h respectively

in comparison to the initial relevant absorption peaks of AgNPs in the MilliQ water measured

AgNP toxicity and trophic transfer
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after 5 min (Fig 2A and 2B). In contrast, the decrease of the absorption peak was 4 & 5% for

C-AgNPs after 5 min and 24 h (Fig 2C). In addition, the SPR bands of T-AgNPs and E-AgNPs

significantly broadened which was not observed for C-AgNPs. However, the SPR bands of

AgNPs didn’t change considerably in the MilliQ water (Fig B1, B2 and B3 in S1 File). In the

ASTM medium, the percentage change of dissolution after 24 h in comparison to the dissolu-

tion after first 5 min was 0.06, 0.04 and 1.51% for T-AgNPs, E-AgNPs and C-AgNPs respec-

tively while it was 0.04, 0.36 and 4.39%, respectively in MilliQ water. The mean HDD of

T-AgNPs and E-AgNPs in the ASTM medium increased approximately by 2.7 and 4.7 times

respectively after 5 min and by 9 and 8 times after 24 h. However, the mean HDD of C-AgNPs

did not change considerably (Table 2). In comparison, none of the AgNPs showed consider-

able change in HDD in the MilliQ water (Table A in S1 File). The percentage intensity distri-

bution of particle size (weighted according to the scattering intensity of each particle fraction)

in media revealed that approximately 63, 79 and 87% of aggregates of T-AgNPs, E-AgNPs and

Fig 1. The SPR spectra and TEM images of AgNPs. (A) The SPR of AgNPs in MilliQ water. (B) T-AgNPs. (C)

E-AgNPs. (D) C-AgNPs.

https://doi.org/10.1371/journal.pone.0214398.g001

Table 1. Summary of AgNP sizes and zeta potential in MilliQ water. Standard deviations (± SD) are from triplicates.

T-AgNP E-AgNP C-AgNP

HDD (nm) 51.58 ± 0.55 40.06 ± 1.50 36.37 ± 0.58

TEM average size (r.nm) 10.56 ± 2.27 9.27 ± 1.29 13.68 ± 0.76

Zeta potential (mV) -42.13 ± 0.33 -38.93 ± 1.37 -44.65 ± 1.65

https://doi.org/10.1371/journal.pone.0214398.t001
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C-AgNPs remained at the sub-micron level after 24 h. In comparison to the zeta potential of

NPs in the MilliQ water (Table A in S1 File), it sharply increased by 13.4, 23.9 and 24.3 mV of

T-AgNPs, E-AgNPs and C-AgNPs respectively after 5 min but did not change considerably

thereafter (Table 2). The polydispersity index (PdI) of T-AgNPs and E-AgNPs slightly

increased in both ASTM medium (Table 2) and MilliQ water (Table A in S1 File).

A broader absorbance peak, a large background signal and increased HDD indicate aggre-

gation of NPs [59, 70]. As per the results, T-AgNPs and E-AgNPs aggregated rapidly in ASTM

Fig 2. The SPR of AgNPs in MilliQ water and ASTM medium. (A) T-AgNPs. (B) E-AgNPs. (C) C-AgNPs.

https://doi.org/10.1371/journal.pone.0214398.g002

Table 2. HDD, zeta potential and PdI of AgNPs measured after 5 min and 24 h. AgNPs were dispersed in the ASTM media at Ag concentration of 5,000 μg L-1. Stan-

dard deviations (± SD) are from triplicates.

Substance Medium HDD (nm) Zeta Potential (mV) PdI

< 5 min 24 h < 5 min 24 h < 5 min 24 h

T-AgNP ASTM 116.3 ± 6.4 394.1 ± 90.0 ˗ 26.3 ± 1.6 ˗ 24.0 ± 0.9 0.35 ± 0.10 0.63 ± 0.08

E-AgNP ASTM 170.8 ± 33.8 290.4 ± 46.6 ˗ 22.7 ± 3.1 ˗ 22.5 ± 1.3 0.45 ± 0.04 0.55 ± 0.03

C-AgNP ASTM 44.2 ± 8.6 49.7 ± 12.1 ˗ 24.2 ± 1.4 ˗ 23.3 ± 0.7 0.45 ± 0.04 0.46 ± 0.01

https://doi.org/10.1371/journal.pone.0214398.t002
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medium in comparison to C-AgNPs. Aggregation of NPs depends on particle concentration,

pH, ionic strength, ionic composition, concentration and composition of natural organic mat-

ter, and other characteristics of the aqueous media [71, 72]. The observed differences in aggre-

gation among coated AgNPs may be due to different coating materials since other

characteristics of AgNPs such as initial HDD, shape and zeta potential are not significantly dif-

ferent (p> 0.05) [73, 74]. Also, all NPs showed no signs of aggregation in MilliQ water within

the same time duration. The observed higher aggregation of AgNPs in ASTM medium in com-

parison to the MilliQ water could be attributed to the higher ionic strength of the medium.

Decreased zeta potential values in ASTM medium with high ionic strength compared to

MilliQ water with relatively low ionic strength are in accordance with the classical colloid the-

ory [75, 76]. A reduction of the thickness of the diffuse double layer with increased ionic

strength allows for the attractive van der Waals interactions to dominate and increases the par-

ticle-particle interaction resulting in increased aggregation [77, 78]. In general, the dissolution

of AgNPs was higher in MilliQ water than in the ASTM medium. Köser, Engelke [79] and

Levard, Mitra [80] reported that the percentage dissolution of AgNPs correlates to the Cl- ion

content (Cl/Ag ratio) in the medium which was contradictory to our results. This may be due

to the precipitation of Ag ions by halides (Cl-) in the medium [81] which is not expected in the

MilliQ water. Halides may reduce the exposure of organisms to any free ions released from

NPs. Also, the size of the AgNPs is one of deciding factors for the release of Ag+ ions [82].

Small size particles have high surface to volume ratios and therefore, more atoms on the sur-

face come into contact with oxidants in comparison to larger particles [83]. Aggregation of

NPs results in larger particles with increased HDD reducing the surface area of particles avail-

able to release free Ag ions [34, 84]. Higher dissolution of AgNPs in MilliQ water than in

ASTM medium may also be due to the less aggregation of AgNPs. The observed higher disso-

lution of C-AgNPs in both ASTM medium and MilliQ water than T-AgNPs and E-AgNPs is

attributed to the less aggregation of C-AgNPs, while dissolution depends on several other fac-

tors [85].

Aggregation, dissolution and change in NP characteristics such as HDD as observed in this

study may influence the bioavailability of NPs and hence, play an important role in determining

toxicity [59, 86–88]. Also, culture medium impacted the behaviour and properties of AgNPs

which may ultimately lead to various toxicological responses [89]. This study shows that the

type of NP coating and medium significantly influence the degree of aggregation and the behav-

iour of AgNPs, which are required to consider in environmental risk assessment [90].

3.3 Acute toxicity of AgNPs to D. carinata
Evaluation of acute toxicity is crucial in environmental risk assessment of NPs in protecting

the organisms and setting up water quality guidelines. According to the results in this study,

the toxicity of AgNPs and Ag+ ions correlate with the concentration while the toxicity of Ag+

ions is significantly higher than AgNPs as per the 48 h EC50 values (Table 3). Among

Table 3. 48 h EC50, 20, 10 values of D. carinata exposed to T-AgNP, E-AgNP, C-AgNP and Ag+ ions in the ASTM medium.

Substance EC50 EC20 EC10

μg L-1 95% CI μg L-1 95% CI μg L-1 95% CI

Ag+ ions 1.21 1.12 1.3 0.96 0.84 1.05 0.85 0.72 0.95

T-AgNP 49.74 45.4 53.86 38.7 33.31 42.76 33.94 28.06 38.27

E-AgNP 19.37 16.86 21.79 12.91 10.08 15.11 10.45 7.58 12.68

C-AgNP 21.37 19.41 23.26 16.88 14.33 18.7 14.92 12.09 16.87

https://doi.org/10.1371/journal.pone.0214398.t003
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differently coated AgNPs, E-AgNPs showed the highest toxicity, but it was approximately 16

times less toxic compared to Ag+ ions. There was no much difference in toxicity between

E-AgNPs and C-AgNPs (48 h EC50: 19.3 & 21.3 μg L-1), but T-AgNP was almost 2.5 times less

toxic (48 h EC50: 49.7 μg L-1).

NP size, type of coating, shape, charge are some major factors that influence toxicity [26,

33–35, 84, 91]. The shape of all NPs is spherical, and the initial size and charge do not signifi-

cantly differ (p> 0.05) which may not explain the observed differences in acute toxicity.

Therefore, the difference in toxicity is presumed to be the effects of different coating materials

which reaffirm that different types of coating of NPs do have different effects on toxicity of

NPs. T-AgNPs were least stable in the ASTM medium exhibiting the highest aggregation and

settling of particles. Thus, the reduced toxicity of T-AgNPs compared to the other two types

could be due to the lower bioavailability of NPs [71, 92]. However, the toxicity of E-AgNPs

was similar to that of C-AgNPs which showed less aggregation and high dissolution compared

with E-AgNPs. Therefore, the observed difference in toxicity could be a result of several factors

which can’t be exclusively explained from the results of this study. Several previous studies

have assessed the acute toxicity of AgNPs to Daphnia sp. and the reported EC50 values fall in

the range of 0.26 to 236.3 μg L-1 for AgNPs and 0.16 to 12.9 μg L-1 for Ag+ ions [19, 29, 93–96].

The toxicity of coated AgNPs in this study is comparatively less than the values reported by

majority of studies for other coated AgNPs. The broad range of toxicity values among pub-

lished studies can be explained by different test scenarios and particle characteristics [84, 97].

D. magna has been the preferred species in many previous studies while this study used D.

carinata.

Many research findings support the idea that the toxicity comes exclusively from Ag+ ions

as the main source of toxicity [35, 98, 99]. Ag+ could prevent the absorption of Na across the

membranes of gills by inhibiting the Na+, K+-ATPase activity and this could lead to ionoregu-

latory failure causing death [100]. The significantly lower EC50 value for Ag+ in comparison to

NPs shows that the ionic silver is much more toxic than AgNPs. Coatings control the release of

ions from AgNPs to the surrounding medium [34, 98]. As per the percentage dissolution of

AgNPs, the computed concentrations of dissolved fractions of Ag+ ions from T-AgNPs,

E-AgNPs and C-AgNPs at EC50 concentrations in the ASTM medium were 0.21, 0.13 and

1.06 μg L-1 respectively which were below the 48 h EC50 value of Ag+ ions. The toxicity may

therefore not exclusively come from released Ag+ ions from AgNPs; NPs may have other toxic

effects such as generation of reactive oxygen species (ROS) causing oxidative stress [26, 93,

101, 102], attachment to daphnid’s body surface or appendages leading to physical impairment

and behavioral changes [103].

3.4 Feeding behaviour of D. carinata
Daphnid feeding rate significantly increased from day 1 to 5 for all treated algae and in con-

trols due to higher food consumption with ageing (Fig 3). The mean 5 day feeding rate was

highest in the control followed by C-AgNP, E-AgNP and T-AgNP treated algae fed daphnids.

Compared with the control, there was no significant deviation (p> 0.05) in feeding rate in the

day 1 while only the feeding rate of E-AgNP treated algae was significantly different in the day

2. In contrast, the feeding rates of AgNP treated algae were significantly different to the rele-

vant control from day 3 to 5 (p< 0.05). When compared with each treatment group, Daphnid

feeding rates of algae treated with E-AgNPs in day 2 and T-AgNPs in day 5 were significantly

different from other two types (p< 0.05). However, a consistent difference was not observed

and therefore, the data obtained is not sufficient to prove any significant variations of feeding

rates among daphnids based on algae treated with AgNPs with different coatings. Besides, less
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favoritism for untreated algae compared to treated algae shows that AgNPs have some effect

on feeding behaviour. Previous studies also have shown that the feeding rate of daphnids

became depressed when contaminants were associated with algae [104–106]. McTeer, Dean

[42] observed a reduction in feeding rates when daphnids were fed with algae treated with

polymer-coated AgNPs. Nutritional characteristics of all algae samples were similar and there-

fore, they emphasized that the feeding reduction was due to Ag toxicity but not due to the

nutritional quality of the algae diet. Zhao and Wang [93] speculated that the reduced feeding

rate was due to accumulation of NPs in the gut or due to higher sedimentation of contami-

nated algae to the bottom of the vessel causing less availability for filter feeding.

Inputs of energy from food is critically important for population growth and survival and

therefore, the feeding rate in primary consumers like Daphnia sp. could have profound impli-

cations at the population level [104]. Feeding inhibition may cause reduction of growth, tar-

geted inhibition of internal organs and reproduction of daphnids [93, 107–109]. It may also

have effects on water clarity, altered nutrient regeneration rates, population size of predators

[110] and elevated phytoplankton biomass due to reduced grazing [111]. Therefore, the

observed feeding inhibition of algae associated with NPs by daphnids in this study is a cause of

concern and should be considered in assessing aquatic NP pollution.

3.5 Trophic transfer of AgNPs from R. subcapitata to D. carinata
The mean AgNP accumulation in algae treated with 50 μg L-1 C-AgNP (0.68 ± 0.09 ng 105

cells-1), E-AgNP (0.61 ± 0.08 ng 105 cells-1) and T-AgNP (0.44 ± 0.06 ng 105 cells-1)

Fig 3. Algal feeding rates of D. carinata over a 5 d feeding period exposed to R. subcapitata cells that were treated with 50 μg L-1

concentrations of AgNPs. Data are mean ± SD from three independent experiments, each with 15 daphnids. The error bars indicate

the SD (p< 0.05, n = 3). The p-values for multiple pairwise comparisons were obtained from two-way ANOVA followed by Holm-

Sidak method using Sigmaplot. Letter sign denotes comparison of p-values of feeding rates for each day separately while the � sign

denotes comparison of p-values of feeding rates over 5 days. Treatments that do not share lowercase letters or number of � signs are

significantly different.

https://doi.org/10.1371/journal.pone.0214398.g003
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concentration was significantly different to the control (0.09 ± 0.04 ng 105 cells-1) (Fig 4A).

C-AgNP accumulation in algae was significantly higher than T-AgNPs. However, the Ag accu-

mulation profile in algae does not mirror the Ag accumulation profiles in daphnids. The mean

Ag content in daphnids treated with T-AgNPs (0.016 ± 0.006 ng daph-1 105 cells-1) was signifi-

cantly higher than the Ag content in daphnids treated with C-AgNPs (0.006 ± 0.0004 ng daph-1

105 cells-1) (Fig 4B). Also, Ag content in daphnids treated with T-AgNPs and E-AgNPs was sig-

nificantly higher than the control. Though the T-AgNP treated algae accumulated lowest

amount of NPs, it led to the highest mean percentage of Ag retention (3.6%) in daphnids fol-

lowed by E-AgNP (2.1%) and C-AgNP treated algae (0.95%) (Fig 4C). In contrast, McTeer,

Dean [42] found metal accumulation profiles in D. magna from trophic transfer correlated with

the metal accumulation profiles in algae treated with ZnNPs. The Ag bioaccumulation in daph-

nids did not correlate with the daphnid survival percentage (Fig 4D) where no significant differ-

ence was observed between each treatment group.

Any remaining treated algae in the digestive tract may lead to overestimation of bioaccu-

mulation. Gillis, Chow-Fraser [112] determined the length of time required to completely

depurate metal contaminated sediments from the digestive track of D. magna in the presence

of algae and recommend a minimum of 8 h. Petersen, Akkanen [113] observed a limited

Fig 4. Bioaccumulation and trophic transfer of AgNPs. (A) Elemental Ag content per 105 R. subcapitata cells measured after 5 days of growth in 50 μg L-1

concentrations of AgNPs or with no Ag treatment (control). (B) Elemental Ag content (per daphnid). (C) Percentage Ag retained (per daphnid). (D)

Percentage survival of algae-fed D. carinata after 5 days of exposure to R. subcapitata cells that were grown in 50 μg L-1 or no Ag (control). The error bars

indicate the SD (p< 0.05, n = 3). The p-values were obtained from one-way ANOVA followed by Tukey test using Sigmaplot. Treatments that do not share

lowercase letters are significantly different.

https://doi.org/10.1371/journal.pone.0214398.g004
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depuration of carbon nanotubes from D. magna after 48 h whereas Zhu, Chang [49] observed

complete depuration of food associated TiO2 NPs from the gut of D. magna after 26 h. Follow-

ing exposure to the treated algae, daphnids were allowed to feed on fresh algae for 72 h in fresh

medium and it was assumed all NPs in the digestive track were removed. The algae treatment

concentration of AgNP (50 μg L-1) was chosen to ensure sufficient Ag concentrations were

available for detection in daphnid tissues without causing mortality to algae, based on EC50

values obtained through an algae acute test for all types of NPs in a different study (Table B in

S1 File). However, since the toxicity of Ag+ ions from silver salt (Ag2SO4) to the alga was very

high (72 h EC50: 51 μg L-1), the feeding and trophic transfer experiments were not conducted

for algae contaminated with silver salt at this concentration.

Several other studies have also shown the potential transfer of different types of NPs along

the food chain [41, 47, 114]. However, it is not possible to conclude whether Ag was trans-

ferred from algae to daphnids in the form of NPs or Ag+ ions. McTeer, Dean [42] hypothesized

that Ag+ ions liberated from AgNPs by dissolution were accumulated by algae and then trans-

ferred in to the daphnids. Van Hoecke, De Schamphelaere [90] demonstrated that NPs could

not cross the double cell layer of R. subcapitata when exposed to silica NPs as confirmed by

TEM images. Piccapietra, Allué [115] found AgNP internalization was limited when C. rein-
hardtii was exposed to carbonate coated AgNPs. However, NPs less than 20 nm may pass

through the algal cell walls since the cell walls are porous (5–20 nm in size) and their perme-

ability changes during mitosis. Also, high concentrations of AgNPs may increase the perme-

ability of algae cell wall resulting in more internalization [39]. Miao, Luo [116] confirmed

internalization of NPs in the cell after exposing Ochromonas danica to AgNPs and Kalman,

Paul [39] found AgNP localized in starch granules within the chloroplast of Chlorella vulgaris
as determined by TEM images. Therefore, the trophic transfer of NPs from algae to daphnids

may occur in the forms of NPs or Ag+ ions which depend on several factors such as the type of

algae, life stage of algae and size of NPs. Data generated from this study clearly show that the

type of coating affects the NP accumulation in algae and trophic transfer from algae to daph-

nids. However, it is not possible to predict the toxicity to daphnids based on bioaccumulation

through trophic transfer from this study, and hence, further studies are recommended. The

transfer of AgNPs along the aquatic food chain could have adverse implications and therefore

there is a need to take this into consideration in protecting aquatic organisms. In doing so,

great caution must be taken when assessing the risk of differently coated NPs.

Conclusion

The type of AgNP coating and medium significantly influenced the degree of aggregation and

the behaviour of AgNPs. Based on the 48 h EC50 values of D. carinata, we found that the Ag+

ions are significantly more toxic than AgNPs. The toxicity of E-AgNP and C-AgNP were not

significantly different, but T-AgNPs were comparatively about 2.5 times less toxic. Since other

characteristics such as shape, size and charge are quite similar, the difference in toxicity could

be attributed to the effect of different coatings. Feeding experiments revealed that the ingestion

rates of NP treated algae were significantly lower than untreated algae revealing associated

AgNPs with algae change daphnid feeding behaviour which could have longer term negative

effects on D. carinata population. However, findings from this study are not sufficient to con-

clude the cause of changed behaviour. Ingestion rates of algae treated with differently coated

NPs were not markedly different showing that different types of coatings had little effect on D.

carinata feeding. Our findings also demonstrated the diet-borne transfer of AgNPs from

AgNP contaminated R. subcapitata to D. carinata. In the algae exposed to AgNPs, T-AgNP

bioaccumulation was the highest while C-AgNPs were the lowest. However, bioaccumulation
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of Ag in daphnids through trophic transfer did not correlate with the accumulation profiles of

Ag in algal cells. The percentage Ag retained in daphnids was highest for T-AgNP treated algae

while it is lowest for C-AgNPs. These results demonstrate that type of coating may have effects

on AgNP accumulation profiles at different trophic levels. The behaviour of differently coated

NPs in medium, their toxicity profile and trophic transfer data generated in this study demon-

strate the importance of considering type of coating in environmental risk assessment.

Supporting information

S1 File. Fig A: Chemical formulae. 1) Tyrosine 2) Epigallecatechin-3-gallate and 3) Curcu-

min. Fig B: The SPR of AgNPs in MilliQ water measured after 5 min and 24 h. (1) T-AgNPs

(2) E-AgNPs and (3) C-AgNPs. Table A: HDD, Zeta potential and PdI of AgNPs measured

after 5 min and 24 h. AgNPs were dispersed in MilliQ water at Ag concentration of 5,000 μg

L-1. Standard deviations (± SD) are from triplicates. Table B: 72 h EC50 values of AgNPs with

different coatings and Ag+ ions for algae Raphidocelis subcapitata.
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