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ABSTRACT
Lung adenocarcinoma (LUAD) represents the main lung cancer (LC) subtype that possesses 
a disappointing clinical outcome over the decades. Tumor hypoxia is closely bound up with 
dismal survival for malignant tumor cases. We identified hypoxia-associated long non-coding RNA 
(lncRNA) signature to be an explicit indicator for predicting prognosis. The present work acquired 
RNA-seq and associated clinical data from The Cancer Genome Atlas (TCGA) database. Consensus 
cluster analysis characterized the hypoxia status of LUAD patients. Cox regression analysis with 
the least absolute shrinkage and selection operator (LASSO) method determined significantly 
prognosis-related lncRNAs which were used to create a prognostic model. Diverse statistical 
approaches like the Kaplan-Meier curve, receiver operating characteristic (ROC) curve, and nomo
gram were adopted to verify the accuracy of the risk score. The potential immune environment 
landscape was unearthed by the CIBERSORT algorithm. Three hypoxia-related clusters were 
determined and 221 differentially expressed hypoxia-related lncRNAs were screened out. We 
developed a new predictive model based on seven lncRNAs (LINC00941, AC022784.1, 
AC079949.2, LINC00707, AL161431.1, AC010980.2 and AC090001.1). Kaplan-Meier curves and 
ROC plots uncovered the reliable predictive power of the risk score model. In addition, the 
immunosuppressive landscape was presented in the high-risk group by immune cell infiltration 
analysis. The seven hypoxia lncRNAs survival signature in our article are robust, accurate tools for 
predicting overall survival in LUAD patients.
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Introduction

Lung cancer (LC) is a frequently seen reason for 
cancer-associated mortality globally, accounting 
for the top position in male cancer death and 
the second position in female cancer death [1]. 
The most recent data from the National Cancer 
Registry, Global Cancer Survey 2020, showed that 
a total of 2,206,771 new cases of lung cancer and 
1,796,144 deaths occurred worldwide in 2020 [2]. 
LC is divided into two types according to histolo
gical classification, including non-small cell lung 
cancer (NSCLC) and small cell lung cancer 
(SCLC). NSCLC mainly includes lung squamous 
cell carcinomas (LUSC) and lung adenocarcinoma 
(LUAD), among them, the incidence of LUAD is 
the highest [3]. Clinical treatment methods, 
including surgery, chemoradiotherapy, and 

targeted therapy have been greatly improved, but 
the prognosis of LUAD is still unsatisfactory, and 
the 5-year overall survival (OS) rate is less than 
20% [4]. Therefore, it is necessary to exploit newly 
prognostic biomarkers, which will not only be 
helpful to improve the prediction of prognosis, 
but also provide a reference for developing novel 
therapeutic targets.

Long non-coding RNAs (lncRNAs) are approxi
mately 200 nucleotides in length, which lack pro
tein-coding potential and take up around 70% of 
non-coding RNAs (ncRNAs) [5]. lncRNAs can 
interact with mRNAs, microRNAs (miRNAs), 
DNAs, as well as diverse proteins, which exert 
vital parts in diverse pathophysiological activities, 
such as epigenetic regulation, glycolysis, DNA 
repair, and cell stemness [6–8]. Several reports 
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have indicated that lncRNAs are involved in the 
regulation of tumor progression through induc
tion of tumorigenesis, invasion, and drug resis
tance [9]. Currently, numerous lncRNAs have 
been recognized as lung cancer-associated biomar
kers, such as H19, MALAT1, HOTAIR, and JPX 
[10–13]. Therefore, understanding the effect of 
lncRNAs in LUAD contributes to determine 
novel prognostic biomarkers and open up poten
tial therapeutic targets.

Studies have shown that the tumor microenvir
onment will inevitably appear hypoxic-ischemic 
state when the diameter of solid tumor exceeds 
2 mm. As one of the most obvious characteristics 
of the tumor microenvironment, hypoxia can acti
vate a variety of intracellular signaling pathways, 
which subsequently assist in tumor growth, migra
tion, angiogenesis, and apoptosis [14,15]. 
Accumulating evidence suggests the complex rela
tionship between hypoxia-induced lncRNAs and 
LUAD. Under hypoxia conditions, AC020978 
was proved to be induced in lung cancer cells 
and facilitate tumor proliferation and glycolytic 
metabolism through PKM2/HIF axis [16]. Sun 
et al. reported that CASC15 might be sensitive to 
hypoxia and enhance cancer cell viability [17]. 
However, the features of prognostic markers of 
lung adenocarcinoma based on hypoxia- 
associated lncRNAs have not been studied. As 
such, this study was designed to identify hypoxia- 
related lncRNAs and investigate their clinical 
potential in LUAD.

The present study intends to classify the differ
ent hypoxia statuses of LUAD patients and 
develop a hypoxia-related lncRNA signature with 
bioinformatics methods to strengthen the capacity 
to predict overall survival (OS) of LUAD patients.

Methods

Data acquisition

We acquired RNA-seq and associated clinical 
data from LUAD cases in The Cancer Genome 
Atlas (TCGA) database. We collected altogether 
200 hypoxia-related genes in the hallmark- 
hypoxia gene set from the Molecular Signatures 
Database (MSigDB) and are provided in 
Supplementary Table 1.

Identification of hypoxia status and differentially 
expressed hypoxia-related lncRNAs

To characterize the hypoxia status of LUAD 
patients, we conducted the Consensus Clustering 
analysis by R package ConsensusClusterPlus 
according to hypoxia-related genes. The k value 
(ranging from 2 to 9) was used for determining the 
best cluster number according to the method of 
Zhang et. al [18]. Then, we identified the differen
tially expressed hypoxia-related lncRNAs 
(HRlncRNAs) with adjusted P-value < 0.05 and | 
logFC| ≥ 1 between two candidate clusters by 
limma package in R [19].

Construction and verification of the prognosis 
signature associated with hypoxia status

For improving the risk score creditability, we clas
sified all LUAD cases as training and test sets at 
the ratio of 1:1. Of them, the training set was used 
to construct a prognosis prediction model, 
whereas the entire set and test set were adopted 
to validate the prediction performance. First of all, 
significant prognostic lncRNAs were identified by 
univariate Cox hazard regression based on 
DEHRlncRNAs in the training set. Later, the 
R package glmnet function was employed to con
duct Cox regression and LASSO regression. 
Afterward, multivariate Cox regression analysis 
was employed to construct the risk signature for 
predicting the prognosis in LUAD patients. The 
risk score was calculated as following in a formula: 
(HRlncRNA 1 expression × coefficient) + 
(HRlncRNA 2 expression × coefficient) + . . . + 
(HRlncRNA n expression × coefficient). At the 
same time, the cases were classified into low- or 
high-risk groups based on the median value of risk 
score. In addition, the entire set and test set were 
used to validate our signature.

Construction of signature-based nomogram

After the collinearity test, risk score and related 
clinical parameters were included to construct 
a predictive nomogram [20]. The 1 -, 3 -, and 
5-year OS of LUAD patients in the whole TCGA 
set were predicted by nomogram. Subsequently, 
the accuracy of the prognostic nomogram will be 
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verified according to the correction chart of pre
dicted survival rate and observed survival rate.

Gene set enrichment analysis (GSEA)

GSEA was adopted to check the high-risk asso
ciated pathways or biological functions. This study 
employed GSEA software to analyze those 
expressed genes between high- and low-risk 
groups and the Hallmark gene set collected from 
the Molecular Signatures Database v7.1. In line 
with the GSEA user guide, NOM P < 0.05 and | 
NES | > 1 were considered significant [21].

Infiltrating immune cells analysis of the 
prognostic signature

The landscape of immunocyte infiltration in 
LUAD samples was achieved from the leukocyte 
gene matrix of CIBERSORT. By performing the 
CIBERSORT algorithm, we examined the propor
tion of 22 immunocyte subtypes between low- and 
high-risk cohorts.

Clinical specimen collection

A total of twenty pairs of LUAD tissues and cor
responding adjacent normal tissues were collected 
from the Second Affiliated Hospital of Nanjing 
Medical University (NJMU), all of which were 
pathologically diagnosed as LUAD. All excised 
tissue samples were immediately stored in liquid 
nitrogen until required. This study was approved 
by the Institutional Review Board and the Ethics 
Committee of the Second Affiliated Hospital of 
NJMU, and informed consent was obtained from 
all patients with LUAD.

Cell culture

Two human LUAD cell lines (A549 and NCI- 
H460) and one human lung epithelial cell line 
(BEAS-2B) were purchased from the Shanghai 
Institute of Biochemistry and Cell Biology, the 
Chinese Academy of Sciences. All cell lines were 
cultured in RPMI 1640 medium containing 10% 
fetal bovine serum (FBS, Gibco Company) and 1% 
antibiotics (100 U/ml penicillin G and 100 mg/ml 
streptomycin) at 37°C with 5% CO2.

RNA extraction and quantitative Real-Time 
Polymerase Chain Reaction (qRT-PCR)

Total cellular RNA was extracted from cells by 
Trizol (Vazyme biotech, Nanjing, China). Then, 
we used a BioSpec-nano spectrophotometer 
(Shimadzu, Japan) to measure the concentration 
and purity of extracted cellular RNA. Prime Script 
RT Master Mix reagent (Takara Bio, Dalian, 
China) was used to synthesize complementary 
DNA (cDNA). Next, we used qRT-PCR using the 
StepOnePlus real-time PCR system (Thermo 
Fisher Science) with polymerase chain reaction 
system TB Green®PreMix Ex Taq™ (Takara Bio, 
Dalian, China) and 2−ΔΔCT method to calculate 
the relevant gene expression. The particular pri
mers are listed in Supplementary Table 2. 
GAPDH was used as the internal control for 
lncRNA expression and U6 for miRNAs 
expression.

Cell transfection

In this study, siRNA negative control (si-NC) and 
si-AL161431.1 were chemically synthesized by 
Ribobio (Guangzhou, China). The sense sequence 
of si- AL161431.1 was 5ʹ-GUUUCCUGAAC 
UUUAAUGATT-3ʹ. Then, Lipofectamine 3000 
(Invitrogen, CA, USA) was utilized to transfect 
LUAD cells with siRNAs in line with the manufac
turer’s protocol. At 48 h post-transfection, we har
vested cells for in vitro analysis.

Cell counting Kit-8 (CCK-8) assay

LUAD cells (2000/well) were seeded into the 96- 
well plates and cultured within RPMI-1640 that 
contained 10% FBS. At a fixed time of day, we 
added CCK8 solution into each well to incubate 
cells under 37°C for an additional 2 h. The absor
bance value was measured at 450 nm by a micro
plate spectrophotometer (Thermo, USA) and was 
utilized to detect the capability of tumor cell 
proliferation.

Colony formation assay

SiRNA-transfected cells (300/well) were plated 
into the 6-well plates and cultured for 10 days 
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within the RPMI-1640 medium that contained 
10% FBS. Later, 1% formaldehyde was adopted to 
fix proliferating cell colonies, whereas 1% crystal 
violet was applied in staining.

Transwell assay

The Transwell chamber (pore size, 8 μm; Corning 
Costar Corp, USA) was used to detect cell migra
tion. After suspending the stably transfected 
LUAD cells into the serum-free RMPI-1640 med
ium, the upper chamber was added with cell sus
pension. Afterward, the RMPI-1640 medium 
(500 μl) that contained 10% FBS was placed into 
the lower chamber, followed by 24 h co-culture 
under 37°C. Later, we removed cells on the upper 
membrane surface with cotton swabs and further 
stained cells on the lower surface of the membrane 
with 1% crystal violet.

Apoptosis analysis

Cell apoptosis was analyzed with a cell apoptosis 
detection kit (Vazyme, Nanjing, China). The 
transfected cells were washed with phosphate- 
buffered saline (PBS), resuspended in 500 μl of 
binding buffer, and stained with 5 μl of propidium 
iodide (PI) and 5 μl of annexin V-FITC solution. 
Then, CytoFLEX Flow Cytometer (Beckman, 
USA) was used to detect the cells.

Luciferase Reporter Assay

The target sequences of lncRNA AL161431.1 contain
ing wild-type or mutant-binding site of miR-1252-5p 
were subcloned into pmirGLO vector (Promega, 
Madison, USA) to form wt-AL161431.1 or mut- 
AL161431.1, respectively. Next, AL161431.1-wt/ 
AL161431.1-mut and miR-1252-5p/miR-NC were 
co-transfected into A549 cells. After 48 h, luciferase 
activity was examined by using a Dual-Luciferase 
Reporter Kit (Solarbio, China).

Statistical analysis

R software v3.6.3 and GraphPad Prism v8.01 were 
applied in statistical analyses. mRNA expression, 
immune cell infiltration score, and pain risk were 
compared between the two groups through the 

Wilcox test. One-way ANOVA was utilized to 
analyze continuous variables among different 
groups. Independent prognostic analysis was con
ducted by univariate as well as multivariate Cox 
regression. The difference in survival of high- and 
low-risk groups was analyzed by Kaplan-Meier 
(K-M) survival curve. In addition, we plotted 
receiver operating characteristic (ROC) curves for 
assessing the sensitivity and specificity of our con
structed prognosis model. P < 0.05 stood for sta
tistical significance.

Results

In the current study, we intended to characterize 
the different hypoxia states and screen 
HRlncRNAs in LUAD. based on the integrated 
analysis of TCGA-LUAD dataset, we created 
a novel HRlncRNAs signature and nomogram to 
accurately predict prognosis of LUAD cases. 
Immunity relative analysis and functional enrich
ment annotation were used to explore the clinical 
potency and underlying mechanisms of our 
hypoxia-based risk signature. Moreover, the 
lncRNA AL161431.1 was selected to verify our 
signature by in vitro analyses.

Consensus clustering determined hypoxia-related 
clusters of LUAD

Based on the expression profile matrix of 200 
hypoxia-related genes, we utilized the Consensus 
Clustering Method to explore the hypoxia status by 
clustering LUAD cases. When k value = 3, the 
unsupervised clustering was most stable and three 
clusters named C1 (n = 195), C2 (n = 187) and C3 
(n = 118) were generated (Figure 1(a-c)). 
Furthermore, we used survival analysis to investigate 
the relationship between hypoxia status and prog
nosis of LUAD patients. The results showed that 
cases of C2 exhibited the best prognosis, whereas 
patients of C1 had the worst OS (Figure 1(d)).

Identification of the differentially expressed 
HRlncRNAs

Based on the lncRNA expression levels of the C1 
cluster and C2 cluster, a total of 221 differentially 
expressed HRlncRNAs were identified by limma 
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package with |logFC| ≥ 1 and adjusted P-value < 
0.05 (Figure 1(e)). Heatmap characterized the 

HRlncRNA pattern in LUAD samples 
(Figure 1(f)).

Figure 1. Consensus Clustering identified hypoxia-related clusters of LUAD samples. (a) Consensus matrix for k = 3. (b) The CDF 
value of consensus index. (c) Relative change in area under CDF curve. (d) Kaplan–Meier OS survival curves for three clusters. Volcano 
plot (e) and heatmap (f) identifying differentially expressed hypoxia-related lncRNAs.

Figure 2. Construction of prognostic risk signature based on hypoxia-related lncRNAs. (a) LASSO coefficient profiles of the 79 
lncRNAs in the training cohort. (b) Cross-validation for tuning the parameter selection in the LASSO analysis.
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Establishment of HRlncRNAs prognosis signature 
and survival analysis

Firstly, according to the ratio of 1:1, the TCGA 
entire set (n = 504) were split into training group 
(n = 252) and validation group (n = 252). 
Univariate Cox regression was conducted to ana
lyze the correlation between 79 PRlncRNAs and 
OS in the training set. For reducing the overfitting 
risk, ‘glmnet’ package was used for LASSO-Cox 
regression (Figure 2). Finally, by performing mul
tivariate Cox regression method, a prognostic 
hypoxia-related risk model composed of seven 
lncRNAs (LINC00941, AC022784.1, AC079949.2, 
AC090001.1, LINC00707, AL161431.1, and 
AC010980.2) was set up (Table 1). This formula 
was adopted to generate the risk score: 
[LINC00941 expression × (0.0954)] + 
[AC022784.1 expression × (0.0378)] + 
[AC079949.2 expression × (0.2147)] + 
[AC090001.1 expression × (−0.0828)] + 
[LINC00707 expression × (0.1019)] + 
[AL161431.1 expression × (0.0740)] + 
[AC010980.2 expression × (0.2083)]. All cases 
were classified as high- or low-risk groups accord
ing to the median risk score. Figure 3 illustrated 
the predictive power of the prognostic model. 
Significantly, as revealed by KM curves, the high- 
risk group had markedly reduced OS compared 
with the low-risk group (Figure 3(b)). This study 
also utilized ROC analysis for assessing the predic
tion performance of the selected prognostic mar
kers. It was seen from Figure 3 that, the area under 
the ROC curves (AUC) values for 1-, 3-, and 
5-year OS were 0.740, 0.682, and 0.650, respec
tively, for the training set. Meanwhile, this study 
verified the above findings in both the test and 
entire sets (Figure 3(c)).

Construction and validation of a prognostic 
nomogram

For validating the performance of our constructed 
prognosis prediction model in predicting OS of 
LUAD cases, univariate as well as multivariate 
Cox regression was conducted. Risk score 
(P < 0.001), T stage (P = 0.024), N stage 
(P < 0.001), M stage (P = 0.016), and clinical 
stage (P < 0.001) were identified as the indepen
dent factors to predict the unfavorable OS for 
LUAD cases in the training set, as shown by uni
variate Cox regression. Then, the significance of 
the risk score (P < 0.001) was further proved in the 
multivariate Cox analysis (Figure 4(a)). The same 
results were confirmed in the validation set and 
the entire cohort. (Figure 4(b,c)). In addition, to 
optimize the prediction performance of our con
structed prediction model, the risk score was used 
in combination with other clinicopathological 
parameters to develop a new nomogram for pre
dicting clinical outcome at 1, 3, and 5 years in 
LUAD patients (Figure 4(d)). The calibration 
curves exhibited no deviations between the ideal 
line predicted by the nomogram and the actual 
survival rate line (Figure 4(e-g)).

Functional analysis of the seven-lncRNAs 
prognosis model

To delineate the cancer hallmarks and their corre
sponding functions of the seven-lncRNAs signa
ture involved in LUAD progression, this study 
conducted GSEA on high- and low-risk groups. 
The funding revealed that ‘glycolysis’, ‘hypoxia’, 
‘epidermal-mesenchymal transition’, ‘PI3K-AKT- 
MTOR signaling’, ‘apoptosis’, and ‘angiogenesis’ 
were all in a significant activation state in high- 
risk patients. In summary, high risk was closely 
related to the process of stimulating tumor prolif
eration and anti-apoptosis (Figure 5).

Immune environment landscape between high 
and low-risk patients

Hypoxia is a noteworthy factor of immune escape, 
so we further used CIBERSORT analysis to mirror 
the status of immune cells. Here, we evaluate the 
differences in the immune cells between two risk 

Table 1. Seven hypoxia-related prognostic lncRNAs significantly 
associated with OS.

lncRNA Coefficient Hazard ratio (95% CI) P-value

LINC00941 0.0954 1.65 (1.39–1.95) 0.113
AC022784.1 0.0378 1.34 (1.19–1.52) 0.003
AC079949.2 0.2147 1.56 (1.27–1.91) 0.277
AC090001.1 −0.0828 0.61 (0.42–0.88) 0.023
LINC00707 0.1019 1.57 (1.34–1.85) 0.046
AL161431.1 0.0740 1.30 (1.16–1.46) <0.001
AC010980.2 0.2083 1.53 (1.20–1.95) <0.001
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subgroups. Figure 6(a) reflected the immune cell 
landscape between two risk subgroups. As a result, 
neutrophils, M0 macrophages, and M2 macro
phages showed higher levels in the high-risk 
group, while Monocytes remarkably showed 
higher levels in the low-risk group (Figure 6 
(b-e)). Interestingly, we also found that the pro
posed signature was closely related to immune 
checkpoints (Figure 7). Both two-sample T-test 
and Pearson correlation analysis proved that the 
higher the risk score, the higher the expressions of 

the key immune checkpoints (B7-H3, LAG3, PD- 
1, and PD-L1).

Restriction of AL161431.1 weakened LUAD cell 
proliferation, migration, and induced apoptosis

First, we analyzed the expression levels of seven 
lncRNAs in BEAS-2B, H460, and A549 by a qRT- 
PCR assay (Figure 8(a)). Since AL161431.1 exhib
ited the most marked differentiation between 
BEAS-2B and LUAD cells (H460, A549), so we 

Figure 3. Predictive characteristics of the seven hypoxia-related lncRNAs signature. (a) Distribution of risk scores and survival status 
of high- and low-risk patients. (b) K-M analyses for both risk groups. (c) ROC curve analysis for verifying model performance in the 
prediction of LUAD survival rates at 1, 3, and 5 years.
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selected AL161431.1 to verify our signature in the 
next study. As shown in Figure 8(b), the qRT-PCR 
analysis demonstrated that AL161431.1 showed 
higher expression within LUAD tissues relative to 
adjacent normal tissues. Then, we used A549 cells 
to carry out the in vitro experiments. Intriguingly, 
the expression of AL161431.1 was increased by 

hypoxia treatment (Figure 8(c)). Figure 8(d) indi
cated the good knockdown efficiency of si- 
AL161431.1 transfection. According to CCK8 
assays, AL161431.1 silencing markedly suppressed 
LUAD cell proliferation under normxia and 
hypoxia conditions (Figure 8(e). Conforming to 
CCK8 assay results, colony formation experiments 

Figure 4. Integration of HRlncRNAs and clinical characteristics in predicting LUAD prognosis. (a-c) univariate analysis and multi
variate analysis containing risk score and clinical factors. (d) Nomogram constructed to predict OS rates at 1, 3, and 5 years. The 
nomogram calibration curves on consistency between predicted and observed (e) 1-, (f) 3-, and (g) 5-year survival.
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revealed that knockdown of AL161431.1 sup
pressed the proliferation of A549 cells (Figure 8 
(f)). Apoptosis assay was used to further clarify the 
mechanism by which AL161431.1 inhibited cell 
proliferation. The result showed that the apoptotic 
rate was increased in the si-AL161431.1 group 
(Figure 8(g)). We also found that downregulation 
of AL161431.1 significantly blocked the migration 
of A549 cells (Figure 8(h)). To explore the down
stream mechanism of AL161431.1, we obtained 
three potential miRNAs (hsa-miR-134-5p, hsa- 
miR-1294, and hsa-miR-1252-5p) with a high 
binding score by online tool starbase and DIANA 
(Figure 8(i)). Next, the qRT–PCR assay showed 
that only miR-1252-5p was negatively regulated 
by AL161431.1 (Figure 8(j)). Additionally, dual- 
luciferase reporter assays proved that 
AL161431.1-related luciferase activity was signifi
cantly inhibited by overexpressing miR-1252-5p 
(Figure 8(k)).

Discussion

Lung cancer ranks the frequently occurring reason 
for cancer-associated mortality globally, and the 
mortality and incidence rate is the highest among 
malignancies, of which 85% are NSCLC [22]. With 
the continuous development of the anti-smoking 
campaign, the cases of LUAD gradually dominates 
in NSCLC. LUAD has generally progressed to inter
mediate and advanced stages at the time of diagnosis, 
losing the best time for radical surgery, and the 
median survival of patients with intermediate and 
advanced stages is only 10–11 months after radio
therapy and chemotherapy [23]. The hypoxic niche 
in the tumor is the source of metastasis and resis
tance to treatment, and it accounts for a major rea
son for treatment failure. Although IncRNAs are 
increasingly regarded as biomarkers for predicting 
OS of various cancers, prognostic indicators based 
on the hypoxic lncRNAs are still largely unexplored 

Figure 5. Gene set enrichment analysis demonstrating hallmarks for the risk signature. (a) GSEA on glycolysis, (b) GSEA on hypoxia, 
(c) GSEA on epidermal-mesenchymal transition, (d) GSEA on PI3K/AKT/MTOR signaling, (e) GSEA on apoptosis, (f) GSEA on 
angiogenesis.
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in LUAD. Therefore, it is essential to find hypoxia- 
related molecules to determine the effective prognos
tic biomarkers of LUAD. Here, we established 
a reliable HRlncRNAs based prognostic model and 
confirmed its clinical application in LUAD patients. 
Furthermore, we also preliminarily explore the 

carcinogenic effect of AL161431.1 in LUAD cells 
and found that inhibiting AL161431.1 can block 
the proliferation of tumor cells.

In this article, we first classified the LUAD sam
ples into three hypoxia states (C1, C2, and C3) 
according to the hypoxia-associated genes 

Figure 6. Immune environment landscape between high and low-risk patients. (a) Barplot illustrating the proportion of immune cell 
infiltration in high and low-risk groups. (b-e) Box plots showing significantly different immune cells between high-risk and low-risk 
groups.
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expression profiles. Patients in the C1 cluster had 
markedly reduced OS compared with C2. 
Afterward, we analyzed the 221 DEHRlncRNAs 
between the two above-mentioned groups for con
structing the lncRNAs-based prognosis prediction 
model. A novel hypoxia-related lncRNAs model 
was generated through Cox regression analysis as 
well as the Lasso regression method in the TCGA 
training set. Next, using the constructed risk model, 
we calculated the risk scores for all LUAD patients 
and classified them as a high- or low-risk group. 
According to Kaplan-Meier analysis, cases having 

low-risk scores had superior OS to those having 
high-risk scores. In addition, the AUC value of 
ROC plots illustrated the reliability and accuracy 
of the prognostic model. We further verified that 
the model could be the factor to independently 
predict the prognosis upon univariate as well as 
multivariate Cox regression. Meanwhile, these 
results were also confirmed in the TCGA validation 
set and the entire set. Moreover, we predigested the 
risk model and integrated other clinical-related fac
tors to set up a nomogram that generates a score 
representing the prognosis of LUAD. The 

Figure 7. Correlation analysis of risk group and immune checkpoints. (a) Heatmap of the immune checkpoint expression profiles in 
high-risk and low-risk groups. (b) B7H3, (c) LAG3, (d) PD1, (e) PD-L1.
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calibration curves demonstrated the satisfactory 
predictive ability of the constructed nomogram.

Seven key lncRNAs derived from our model 
were distinctly correlated with OS in patients 

Figure 8. Inhibiting the expression of AL161431.1 blocks LUAD cell proliferation. (a) The mRNA expression level of seven signature 
lncRNAs in BEAS-2B and two LUAD cell lines (b) Relative expression of AL161431.1 in LUAD tissues and adjacent normal tissues. (c) 
AL161431.1was upregulated in A549 cells by hypoxia treatment. (d) AL161431.1 was inhibited in A549 using siRNAs. The effect of 
AL161431.1 on proliferation in A549 was detected using CCK-8 (e) and colony formation assays (f). (g) Transwell assays for cell 
migration (Scale bars: 100 μm). (h) Flow cytometric analysis of A549 cells transfected with siRNAs or si-NC about apoptotic rates. (i) 
Venn diagram showed the downstream target miRNAs of AL161431.1 by starbase and DIANA database. (j) The expression of three 
predicated miRNAs by qRT-PCR. (k) Luciferase assay in A549 cells after co-transfected either AL161431.1-wt or AL161431.1-mut 
vectors with miR-1252-5p mimic (*p < 0.05; **p < 0.01; ***p < 0.001).
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with multiple tumors. Among these seven 
lncRNAs, only AC090001.1 is a potential protec
tive factor, while LINC00941, AC022784.1, 
AC079949.2, LINC00707, AL161431.1, and 
AC010980.2 are all potential risky indicators. 
Before this, all the risky lncRNAs already have 
been confirmed to be linked to LUAD. Ren et al. 
analyzed LINC00941 expression within the LUAD 
and non-carcinoma tissue samples and clarified 
that high LINC00941 expressions could accelerate 
tumor progression and angiogenesis, which offers 
new insights into comprehension and targets for 
LUAD diagnosis and treatment [24]. The meta
static and proliferative performance of 
LINC00941 also proved in pancreatic adenocarci
noma, colon cancer, papillary thyroid cancer, and 
gastric cancer [25–28]. Our results are in strong 
agreement with these researches, indicated that 
LINC00941 is positively related to the worse prog
nosis of patients. LINC00707, the miR-876 mole
cular sponge, modulates MTDH expression within 
breast cancer [29]. The abnormal LINC00707 
expression is reported to regulate cisplatin sensi
tivity via sponging miR-145 in NSCLC cells [30]. 
In endometrial carcinoma, AL161431.1 acts as an 
oncogene to promote cell proliferation and migra
tion through the MAPK signaling pathway [31]. 
By constructing a survival-related ceRNA network, 
the investigators found that AL161431.1 had sig
nificant predictive value for overall survival in 
LUSC patients [32]. In addition, AC079949.2, 
AC022784.1, and AC010980.2 were identified to 
build risk signature for improving the prediction 
of LUAD prognosis [33–35]. However, 
AC090001.1 has not been previously reported in 
any cancers.

An increasing body of evidence indicates that 
hypoxia mediates immunosuppression by boost
ing suppressive immune cells (TAMs, Tregs, and 
neutrophils) and inducing immune checkpoints 
in the tumor environment [36]. In terms of 
mechanism, cancer cells can release various che
mokines and subsequently recruit monocytes in 
the tumor environment. Within the tumor tissue, 
the recruited monocytes swiftly TAMs which 
exhibit the low ability of antigen presentation 
and suppresses T cell growth and activation 
[37]. It has been reviewed that TAMs were 
enriched in hypoxic regions and secrete 

cytokines resulting in tumor proliferation and 
angiogenesis [38,39]. Furthermore, crucial fund
ing proved that TAM can be a robust predictor 
of poor prognosis for lung cancer patients [40].

According to our findings, M2 macrophage infil
tration showed a positive correlation with the 
hypoxia risk, which was in line with the dismal 
prognosis of high-risk cases. Besides, neutrophils, 
another pivotal immunosuppressive cell, increased 
in the high-risk group, which suggested that the 
high-risk group was associated with the immuno
suppressive microenvironment. The tumor hypoxia 
can also protect tumors from immune surveillance 
by regulating the expression of immune checkpoint 
molecules. More specifically, hypoxia-inducible fac
tor-1 (HIF-1) could selectively stimulate the expres
sion of PD-L1 and PD-L2 on myeloid-derived 
suppressor cells (MDSCs) or macrophages [41]. 
Our results showed that B7-H3, LAG3, PD-1, and 
PD-L1 were significantly increased in high-risk 
patients indicating that the target of these immune 
checkpoints might enhance the efficacy of immu
notherapy for LUAD patients.

Finally, we explored the functional significance 
of the AL161431.1 in LUAD cells by experimental 
studies. The expression level of AL161431.1 was 
upregulated under the hypoxia condition. In vitro 
analysis showed that inhibition of AL161431.1 lim
ited cell proliferation and migration and induced 
apoptosis in A549 cells. Furthermore, we found 
that AL161431.1 might exert a ‘sponge-like’ func
tion by binding with miR-1252-5p.

Certain limitations must be noted in the present 
work. First, the prognosis prediction model was just 
constructed based on TCGA datasets, while valida
tion by external dataset was lacking. Secondly, the 
relationship between lncRNA expression and 
immune cell infiltration and underlying molecular 
mechanism of lncRNAs in LUAD needs further 
in vitro and in vivo experimental studies.

Conclusion

In summary, we discriminated against LUAD 
patients with different hypoxia statuses and built 
a seven hypoxia-related lncRNAs signature which 
largely improved the prognosis of LUAD patients 
and reflected the immune environment. Our risk 
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signature might benefit precision treatment for 
LUAD.
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