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Abstract

Background
Progression free survival (PFS) is a critical clinical outcome endpoint during cancer
management and treatment evaluation. Yet, PFS is often missing from publicly avail-
able datasets due to the current subjective, expert, and time-intensive nature of gener-
ating PFS metrics. Given emerging research in multi-modal machine learning (ML), we
explored the benefits and challenges associated with mining different electronic health
record (EHR) data modalities and automating extraction of PFS metrics via ML algo-
rithms.

Methods
We analyzed EHR data from 92 pathology-proven GBM patients, obtaining 233 corticos-
teroid prescriptions, 2080 radiology reports, and 743 brain MRI scans. Three methods
were developed to derive clinical PFS: 1) frequency analysis of corticosteroid prescrip-
tions, 2) natural language processing (NLP) of reports, and 3) computer vision (CV) vol-
umetric analysis of imaging. Outputs from these methods were compared to manually
annotated clinical guideline PFS metrics.

Results
Employing data-driven methods, standalone progression rates were 63% (prescription),
78% (NLP), and 54% (CV), compared to the 99% progression rate from manually applied
clinical guidelines using integrated data sources. The prescription method identified pro-
gression an average of 5.2 months later than the clinical standard, while the CV and
NLP algorithms identified progression earlier by 2.6 and 6.9 months, respectively. While
lesion growth is a clinical guideline progression indicator, only half of patients exhibited
increasing contrast-enhancing tumor volumes during scan-based CV analysis.
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Conclusion:
Our results indicate that data-driven algorithms can extract tumor progression outcomes
from existing EHR data. However, ML methods are subject to varying availability bias,
supporting contextual information, and pre-processing resource burdens that influence
the extracted PFS endpoint distributions. Our scan-based CV results also suggest that
the automation of clinical criteria may not align with human intuition. Our findings indicate
a need for improved data source integration, validation, and revisiting of clinical criteria in
parallel to multi-modal ML algorithm development.
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Author summary
Progression free survival is an important outcome in cancer research used to evaluate
new treatments. However, this data is often not publicly available as it requires labor-
intensive, subjective judgement from clinicians. Different data modalities, such as text
reports and imaging, stored in the electronic health record could be used to automate
the extraction of progression events from a patient’s medical record. This paper explores
three automated and/or machine learning (ML) methods to extract progression from
integrated electronic health data, including 1) analysis of patient prescription frequen-
cies, 2) natural language processing algorithms applied to radiology reports, and 3)
computer vision tumor segmentation algorithms applied to brain MRI scans. These
automated results were compared to the current manual clinical standard method of
determining progression. Our study found that various ML algorithms can automate the
extraction of progression outcomes from diverse patient data. Yet, manual evaluation
identified progression at a higher rate compared to data-driven algorithms. Our results
indicated that “ground truth” labels obtained for training ML algorithms are influenced
by both the data source and method used to obtain them. Future research should con-
sider that varying data sources, availability, and reliability can create methodological bias
during ML projects.

Introduction
Glioblastoma multiforme (GBM), a form of high-grade glioma, is amongst the most aggres-
sive brain tumors with a median survival 14 months [1]. Yet, brain tumor outcomes have seen
limited improvement despite ongoing imaging, radiation therapy, and systemic management
advancements. The ability to identify biomarkers associated with progression and treatment
response is limited by data that often only includes survival as outcome endpoints.

Overall survival (OS) is commonly employed in patient datasets given its simpler calcu-
lation from date of diagnosis to date of death. However, OS is an imperfect outcome end-
point as it reflects the summation of multiple interventions beyond standard of care (SOC)
upfront chemoirradiation (CRT), such as potential re-resection and use of study agents upon
recurrence. Conversely, progression free survival (PFS), defined as the time between diag-
nosis to disease progression, is derived from a complex set of data sources using a subjective,
labor-intensive process that surveys a patient’s medical record [2]. PFS data is instrumental
for guiding disease management and biomarker research as it can indicate treatment response
or failure, allowing for rapid intervention to treat lower tumor burdens or initiation of novel
treatment options [3].
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Clinical standards for generating PFS data
Current neuro-oncology practice standards involve using Response Assessment in Neuro-
Oncology (RANO) criteria to determine progression for glioma patients [2]. These cri-
teria allow for a combination of clinical and imaging features. Progression is defined by
Wen et al. [2] as including any of the following factors:

1. ≥ 25% increase in T1 gadolinium enhancing disease,
2. increasing T2/FLAIR volume,
3. any new lesions, and/or
4. deteriorating clinical status.

Determining true progression in glioma is difficult due to the temporary clinical and
radiographic deterioration that patients may experience following completion of CRT. This
deterioration is termed pseudoprogression if these symptoms result from acute effects of man-
agement and reduce over time [4–6]. While previous RECIST progression criteria did not
account for deteriorating clinical factors, the MacDonald criteria update eventually incor-
porated clinical status and corticosteroid administration [7] and successive RANO itera-
tions added caveats for pseudoprogression. Despite these changes, there are still limitations
towards obtaining consensus on tumor progression. For example, progression of disease
is based on a ≥ 25% or greater increase in the product of perpendicular diameters on con-
trast enhanced imaging, which can be subjective and represent pseudoprogression without
changes outside the radiotherapy (RT) field. Moreover, it should be noted that the extent
and location of the RT dose cloud is not readily available for visualization to radiologists or
even some neuro-oncology teams. Thus, tumor size or lesion counts are often not explicitly
captured or recorded in a patient’s electronic health record (EHR). While ongoing revisions
to RANO currently include adapting to the use of immunotherapeutics and molecular dis-
ease classification [8], there are still limitations in the quantification of tumors identified by
imaging.

Given the aforementioned limitations, non-clinical-trial glioma data sets do not have a
straightforward progression date for patient unless retrospectively assigned in small cohorts.
Most publicly available brain tumor data sets do not include PFS data, includingThe Cancer
Genome Atlas (TCGA) [9], The Cancer Imaging Atlas (TCIA) [10], Georgetown Database of
Cancer (G-DOC) [11], and the Chinese Glioma Genome Atlas (CGGA) [12].

Data integration and multi-modal machine learning (ML)
Clinical application of RANO criteria involves review of multiple EHR data sources and
modalities by skilled clinicians. This process reflects human attempts to integrate and extract
insights from multiple modalities of medical data, including scans, radiology reports, progress
notes, and other clinical context over time and potentially institutions. ML research has
begun to focus on multi-modal algorithms with the goal of more closely aligning with clin-
ical practice, where a totality of information is processed during diagnosis and treatment
[13,14]. Some studies have often demonstrated that multi-modal algorithms demonstrate
superior performance over unimodal algorithms trained on a singular stream of data [15,16].
However, it is not yet clear how various data modalities may influence the predictions of a
multi-modal algorithm, either due to the information encoded within the data or biases sur-
rounding the data collection process. As a result, data integration for multi-modal ML anal-
ysis has remained underexplored, particularly in the areas of endpoint extraction and brain
cancer.
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Recent attempts to compute PFS metrics from data using artificial intelligence (AI) have
successfully used clinical features [17] and radiomic features extracted from brain MRI scans,
including texture and morphological features [18] and quantified tumor volumes [19]. While
Kwiatkowska-Miernik et al. [18] identify that four out of six of their models demonstrate
appropriate predictive performance via mean absolute percentage error, they do not detail
specific criteria applied to obtain ground truth progression (“determined based on follow-
up MRI exams evaluated by an experienced radiologist”) and only evaluate a cohort of 51
patients meeting their inclusion criteria. Meanwhile, Kickingereder et al. obtain 87% agree-
ment between automated neural network versus radiologist drawn volumes; however, this
volumetric approach demonstrated lower agreement (between 73% to 51% depending on the
test set) with manually applied RANO criteria, indicating a need to explore other volumetric
approaches or definitions [19].

At the same time, others suggest that these ML outcome prediction studies may lack
complete inclusion of histologic, pathologic, and molecular data sources that mirror clin-
ical practice [20]. Some retrospective analyses on clinical GBM data sets have integrated
imaging data sources including histopathology imaging [21] and genetic alterations [22].
Yet, these studies generally do not study overall or progression free survival as an outcome
endpoint. Clinical practice guidelines currently do not stipulate PFS capture by means other
than manually applied RANO criteria. Thus, there is a need for approaches to increase PFS
availability and further mine for linkages between progression and imaging, -omic, and other
clinical features.

Data capture in the electronic health record during cancer treatment
and management
Several clinical data elements are collected and stored over the natural history course of a
patient’s cancer diagnosis (Fig 1). The following subsections discuss cancer standard of care
and corresponding diverse data sources that could be used to obtain progression free survival.

Clinical standard of care. For glioblastoma multiforme (GBM), treatment standard of
care involves maximal surgical resection followed by radiotherapy (RT) with administration
of concurrent and maintenance temozolomide (altogether termed chemoirraditation (CRT)).
Following completion of CRT, patients are followed clinically with contrast-enhanced MRI
completed 2-8 weeks post CRT, then repeated every 2-4 months for 3 years, and then every
3-6 months indefinitely per national and international guidelines [23].

Tabular prescription data. GBM patients often experience devastating neurological
symptoms and are usually prescribed corticosteroids to manage these acute effects. Corticos-
teroids act by decreasing inflammation in the brain and may be administered prior to surgical
intervention, post-surgical intervention (most common), during CRT, following completion
of CRT to manage acute effects, or upon tumor progression. Oral dexamethasone is the most
commonly prescribed, while intravenous loading may be selected when a more rapid effect or
loading dose is indicated. A “tapering schedule” for gradual discontinuation of dexametha-
sone is employed to mitigate potential adrenal insufficiency and worsening of neurological
symptoms. Corticosteroid prescriptions are captured in the EHR and their use can theoret-
ically be correlated with radiographic report findings and clinical records. However, there is
widespread heterogeneity in prescription patterns and tapering schedules, as well as subjectiv-
ity involved in the initiation of steroids. Thus, steroid usage is often difficult to implement and
retrospectively interpret.
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Free text documents. Hundreds of documents can be generated over the course of a
patient’s cancer diagnosis and treatment (Fig 1). EHR systems are often dated and lack infras-
tructure to share information with other systems which limits bulk and longitudinal analysis.
Free text documents held within the EHR are often reviewed manually by a clinician prior to a
patient’s visit or update in care. However, this process can be repetitive, time-consuming, and
prone to error as details may be omitted or redundant between documents. As a result, nat-
ural language processing of clinical documents has been an increasingly popular method to
improve efficiency of medical record analysis.

Imaging. Numerous medical images from various imaging modalities are collected over
the course of a patient’s diagnosis, treatment, and care management, including magnetic res-
onance imaging (MRI), computer tomography (CT), and cone-beam CT scans (Fig 1). How-
ever, cone-beam CT scans are not typically available outside of the radiation oncology depart-
ment where they are used for treatment verification. Moreover, while RANO criteria indicate
a quantitative metric to observe 25% volume increases in enhancing lesions, in practice, it is
not common practice to quantify lesions or other enhancing regions identified on MRI scans,
especially in community or non-neuro-oncology specialized settings. Moreover, when mea-
surements are obtained, the rate of agreement between radiologists is generally ≤ 50% which
limits the utility of these metrics during analysis [24]. In addition, radiologists are generally
not privy to radiation treatment dose cloud data, such as the 80% isodose line which can indi-
cate recurrent disease outside of the high dose field, making it more difficult to distinguish
pseudoprogression from progression given any increased enhancement [6].

Human influences on EHR data. Automated methods to derive data outcome labels may
not necessarily “objective” as EHR data sourecs are subject to inclusion bias, representative-
ness issues, and other types of biases [25,26]. The increased accessibility of radiology reports
compared to their source imaging files could make a free-text, natural language processing
(NLP)-based method for obtaining progression metrics more desirable due to increased data
point availability within a given patient timeline. However, radiology reports usually reflect
a single author’s judgment based on the medical conventions of the time [27] and studies
document differences in interrater reliability during imaging analysis [28]. Sole reliance on

Fig 1. Sample cancer patient treatment timeline with data generated and captured within the EHR.

https://doi.org/10.1371/journal.pdig.0000755.g001
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radiology reports can create positive bias in a reconstruction of a patient’s medical history
from EHR data, as we only have access to what was explicitly measured and included in the
report [25,26,29]. Human-generated textual data can mirror issues with the “file drawer prob-
lem” in scientific publishing where information deemed as non-notable cannot be accessed by
other potentially interested parties [30]. This reflects a common tension in medical machine
learning (ML) where data annotation requirements for ML include information about the
presence and absence of every possible diagnostic option, as opposed to clinical practice,
where clinicians usually only document notable features that require further attention or
potential follow-up [27]. Other datapoints, such as MRI scan frequency and acquired scan
parameters, are also constrained by provider-based practices at the time including follow-up
frequency and machine availability.

Automated approaches to derive PFS
Over the last decade, the medical field has seen an explosion in accessible and queryable EHR
data, though there are still large gaps in retroactively transferring older patient data and inte-
grating various sources. Barriers to digitization of medical data also persist, including fear
of documentation due to stigma related to diagnosis and treatment of certain diseases such
as HIV [31]. The subjective and labor-intensive process of generating annotations for super-
vised machine learning has also highlighted issues such as label bias and low inter-rater relia-
bility [28,32,33]. These issues have led to increased interest in ML label generation methods,
though current annotation algorithms carry their own set of issues, including narrower label-
ing abilities and technical onboarding challenges [34,35]. Given critical challenges in gener-
ating clinically-relevant labels/annotations for supervised machine learning, we discuss and
survey the current literature on automated approaches to generate outcome endpoints using
EHR patient data.

Natural language processing (NLP). Natural language processing (NLP) algorithms
attempt to understand human-generated text by computationally encoding and represent-
ing text [36]. A large portion of current NLP research is centered on text generation [37] and
knowledge checking [38,39] due to current advances in large language models (LLM); how-
ever, there is growing literature focused on extracting structured details from unstructured
free text in applications including multiple sclerosis traits [40], chronic disease [41], activi-
ties of daily living [42], social determinants of health [43,44], and other clinical traits [45–48].
Rule-based NLP approaches capitalize on domain knowledge by matching to human-specified
keywords or patterns in text [36]. In contrast, other deep learning approaches tend to employ
more complex algorithm architectures to predict or classify text based on larger training data
sets and concept-level annotations [36].

In the context of cancer care and management, NLP has been used to extract pathological
information for prostate cancer [49], BI-RADS assessments from radiology reports in breast
cancer [50], initial treatment types [51], breast cancer phenotypes [52], and other quantitative
clinical information [53]. A scoping review of 123 publications by Wang et al. [54] found that
most cancer-related NLP algorithms were built with the aims of general information extrac-
tion and cohort identification, with only 3 studies attempting to visualize disease history and
the authors explicitly identifying outcome analysis as a current gap in NLP-assisted mining of
EHR text data.

For outcome identification, NLP algorithms have been deployed to identify recurrence in
breast cancer [55,56], response events and progression events in lung cancer [57], progres-
sion using structured and embedded free text in glaucoma [58], and progression across cancer
types using EHR-derived Framingham risk scores [59]. Sangariyavanich et al. [36] conduct
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a systematic review of 267 models across 17 studies using NLP to identify recurrent cancer,
with a majority relying on statistical text representation. The authors find slightly superior
performance between studies using deep learning NLP compared to rule-based algorithms,
but acknowledge a lack of comparative literature in developing and deploying algorithms to
detect recurrence or progression.

Most papers reviewed by [36] evaluate algorithm performance through calculated area
under the receiver operating curve (AUROC), F1, precision, and/or recall scores, requiring
manually curated ground truth data sets to identify report-level labels of either recurrence
or stable disease. The review reports median F1 scores of 0.71, 0.43, and 0.76, for the rule-
based, ML, and deep learning approaches evaluated, respectively [36]. However, given cur-
rent challenges in medical data sharing, there are little to no publicly available datasets with
report-level progression annotations for cross-validation. At the time of this publication, there
are also few studies investigating suitable proxies for progression via free text or NLP meth-
ods. Thus, the current state of NLP-supported structured endpoint extraction relies on hand-
crafted, report-level ground truth, which is time-intensive to curate and not often shared for
further validation.

Outside of predictive performance, NLP algorithms may also be evaluated in other
dimensions including algorithmic complexity, privacy and security, interpretability, and
veracity. While deep learning algorithms may often achieve comparable [60,61] or supe-
rior accuracy [36,62] to rule-based approaches, they are often subject to differences in
required resources for training and deployment, training data set sizes, developer and clini-
cian user familiarity, output verification processes, privacy and security concerns, and meth-
ods to achieve interpretability [60,61]. Berge et al. [61] emphasize the specific need for local
approaches in the medical domain, which motivates the use of rule-based approaches or
transfer learning in the context of larger foundation models for deep learning approaches.
Bhattarai et al. [62] also note that outputs from local rule-based models such as spaCy are also
deterministic (compared to emerging LLM approaches using models including GPT-4 which
provide non-deterministic outputs without current widely accepted gold standard methods
for verification).

Computer vision (CV). Computer vision is a field of computer science dedicated to
extracting information from visual or image data. There is extensive literature dedicated to
machine learning pre-processing and processing of MRI scans [63]. Many of these appli-
cations involve signal processing, segmentation, auto-contouring, and other disease detec-
tion algorithms. However, brain scans require additional processing for anonymization/de-
identification purposes, which represents a barrier to public data sharing [64]. Thus, there are
also few studies aimed at quantifying and tracking progression in brain tumors directly via
imaging.

Direct volumetric imaging analysis may appear to be a more “objective” method to
determine tumor progression. However, medical image processing is a far more resource-
and expertise-intensive task that can conflict with changing and evolving technologies in
image processing and data storage over time. Even with a sufficiently large imaging data
set, pre-processing is a labor- and time-intensive task requiring several registration, skull-
stripping, contouring, and de-anonymization steps to allow for comparisons within and
between patients. While extra steps can be taken to integrate and share scans between
institutions, including federated learning initiatives [65], current computer vision (CV)
research indicates reduced transferability and generalizability of ML-based decision-
assisting algorithms when patient scans are obtained from different imaging machines and
facilities [66–68].
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Some studies have explored the use of data-driven algorithms to detect tumor features,
including primary gross tumor volume (GTV) contouring in patients with nasopharyngeal
carcinoma [69] and peritumoral edema in recurrent GBM [70]. A review of literature linking
radiomic features to other biomarkers [71] found three studies linking lesion or necrotic vol-
ume to genetic features, but none of the cited studies explored ML segmentation algorithms
or linked data to outcomes [72–74]. Kidd et al. [75] used convolutional neural networks to
extract volumes from malignant pleural mesothelioma patients and compare against mod-
ified RECIST (Response Evaluation Criteria in Solid Tumors) criteria, finding a significant
difference in AI-derived volume changes between partial response and progression patients.
These studies indicate the need for further exploration and validation of automated tumor
segmentation volumes, particularly when linking to clinical features and outcomes.

Contributions
Given current barriers in generating PFS data in the context of GBM, this paper aims to mine,
integrate, and automate large-scale EHR data to arrive at PFS endpoints efficiently, and com-
pare automated and/or machine learning PFS endpoints to manually-derived PFS metrics
using clinical guidelines. This data integration framework can be replicated to add PFS out-
comes in other large-scale data sets given acute clinical need and lack of data availability in
other cancer disease sites and medical disciplines [19,76,77]. In this paper, we showcase:

1. the integration of clinical, imaging, and prescription medication data within a queryable
framework;

2. the automated identification of a progression free survival date using corticosteroid
administration, natural language processing (NLP)-analyzed radiology reports, and
computer vision (CV)-derived MRI tumor volumes;

3. with comparison to manual chart review as the clinical gold standard for progression
according to RANO.

Materials and methods
This analysis set out to mine various EHR data modalities, automate the extraction of PFS
metrics via ML algorithms, and evaluate the ability of these methods to extract relevant pro-
gression evidence from a given modality compared to the current clinical standard approach
using manually RANO criteria.

Patient cohort
The patient cohort initially included 423 brain malignancy patients who received treatment on
protocol at the NIH. All patients were treated on NCI NIH IRB (IRB00011862) approved pro-
tocols. Given the significant radiographic differences between GBM and lower grade glioma
patients, the current analysis focused on patients with GBM confirmed via histopathology to
ensure homogeneity. Patients were excluded if a manual progression date could not be deter-
mined due to loss to follow-up or patient expiration without overt progression evidence (i.e.
death occurring from non-glioma cause or less then 1 month following completion of CRT)
(Fig 2). Patients were also excluded for lacking at least one queryable radiology report, one
medication prescription, and two brain MRI scans (for comparative purposes) dated after
their completion of chemoirradiation. Data was aggregated and queried through the NIH
Integrated Data Analysis Platform (NIDAP). Available patient data included demographic
and clinical attributes, MRI reports, progress notes, lab results, medication lists, and imaging
scans.
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Fig 2. Overall patient cohort with overlapping data source availability.

https://doi.org/10.1371/journal.pdig.0000755.g002

Fig 3. Paradigm for manual and automated methods to derive progression free survival.

https://doi.org/10.1371/journal.pdig.0000755.g003
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Clinical standard for assigning PFS
A clinical standard progression date for each patient was assigned using via manual review of
patient charts with RANO criteria progression (Fig 3). Progression in clinic was determined
based on clinical and specifically neurological status, need for symptom management (e.g.,
use of steroids, recurrence of seizures requiring augmentation or initiation of seizure medica-
tion, etc.), and any alterations in patient status from previous functionality. These factors were
concurrently considered by a clinical team with imaging alterations in tumor volumes treated
with RT. Determination of progression was not the result of a single data modality or a single
individual but rather the result of multidisciplinary discussion with consensus being reached
after evaluation of all the features, which was then captured as progression in clinical progress
notes. The nuances of this discussion are to some extent captured in clinical notes; however,
data quantitatively documenting the number of individuals in the discussion (minimally ≥ 2
and typically > 5) and their level of agreement are not captured. The consensus (agreement)
of the group is based on real time application of RANO criteria and manually captured as
consensus for progression or stability in this study. Other studies [27] have cited disconnects
between the method and physical/virtual equipment used for ground truth labeling in clini-
cal practice versus ML data annotation. Thus, to avoid this limitation, clinical standard RANO
criteria were applied in the exact clinical context using the same equipment and software that
providers used when treating patients.

Corticosteroid administration analysis
All available prescriptions throughout a patient’s medical history were queried from the NIH
Integrated Data Analysis Platform (NIDAP). Trends in prescription types, frequencies, doses,
and sequences were analyzed. Prescriptions matching the generic key word ‘dexamethasone’
and associated brand names of any dosage and any administration route were selected for
further analysis. Since GBM standard of care involves prescribing steroids immediately after
surgery and CRT, analyses were limited to prescriptions dated 1 month after the end of CRT.
Since steroids are prescribed on a tapering schedule, the first date of the largest dose prescrip-
tion was followed continuously until the last date of the smallest prescription to determine
the window of steroid tapering. During all subsequent analyses, this window was treated as a
single course of steroids post-CRT.

The first date of the post-CRT steroids course was compared to the manually obtained
clinical standard progression date. The number of prescriptions and months after treatment
completion were compared to year of treatment to identify any department-level changes in
prescription practices over time.

Natural language processing of radiology reports
All available medical documents throughout the patient’s medical history were pulled from
the integrated data framework. Free text document analyses were limited to brain MRI radi-
ology reports.

Documents dated prior to the end date of a patient’s radiation therapy course were
dropped to maintain consistency between variable-length patient histories. Document text
was pre-processed to standardize paragraph formatting and spacing. The open-source Python
spaCy package was used to perform standard natural language processing tasks including part
of speech tagging, lemmatization, and dependency parsing (Fig 3). The add-on medspaCy
package was used for further handling of medical context and document section parsing [78].
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Overall trends in word frequencies were analyzed within and across reports. We annotated
the clinical standard RANO criteria for verbs and adjectives related to both progression and
stability, as described in [79]. A trained clinician also viewed the descending term frequency
list obtained from an aggregate of reports (S3a Fig) and sorted terms potentially relevant to
determining progression criteria into either progression or stability categories, similar to
the method employed by [80]. Using clinical standard RANO criteria and these observed
frequency trends, we created a list of words hypothesized to indicate either progression or
stability (listed in S1 Table).

Rule-based matchers with these term lists were created to search and tag any lemmatized
instances of progression- and stability-related tokens within each document.

The medspaCy extension package was used to identify and handle contextual modifiers of
these key terms, including negations and familial, historical, and hypothetical mentions. A
custom ‘surgical’ contextual pipeline was constructed to match any tokens modified by sur-
gical or postoperative terms to separate out tumor changes related to post-surgical effects of
treatment. The ‘negation’ contextual pipeline was also expanded to include other terms com-
monly indicating no change in clinical practice given the high likelihood of radiology reports
to indicate stability as a lack of positive findings (S1 Table).

Each patient document was processed via the custom spaCy and medspaCy NLP pipeline
implementation, and progression- and stability-related terms were extracted and categorized
per document. Progression terms modified by negated or historical contextual terms in the
document were re-categorized as ‘stability’ terms. Progression terms modified by surgical
context were dropped from the progression category term list due to their high likelihood of
indicating psuedoprogression as compared to actual progression.

The frequency of progression-related words for a given document was compared to the
frequency of stability-related words to determine the overall document status. A higher fre-
quency of progression-related words indicated overall progression within the document. If
the number of progression-related terms equaled the number of stability-related terms, then
surgical-context modified terms were included in the analysis to provide additional con-
text. Various weightings and thresholds for obtaining a report-level determination from each
term categories were tested. We also tested various approaches to using RANO criteria as a
proxy for report level ground truth (e.g., selecting all reports within a time window of clin-
ician ground truth); however, given the goal of independently testing results derived from
various data modalities, we wanted to avoid using the results of one modality to optimize or
constrain the predictions of another modality (e.g., using manual ground truth to optimize
weights for the NLP-based methods). Thus, given a lack of report-level ground truth and pub-
licly available reports for validation tests, a one-to-one weighting was ultimately selected in
this study. This weighting was selected with the goal of testing a rule that could be straight-
forwardly communicated to clinicians and with acknowledgment that alternate approaches
should be evaluated and optimized in future work.

Report-derived progression dates were obtained by selecting the date of the first report that
indicated progression overall based on the term frequency formulas described above. These
report-derived progression dates were compared to both manually-obtained clinical standard
dates and to other data-derived progression methods.

Computer vision analysis of MRI scans
All available brain MRI imaging throughout the patient’s medical history were pulled from
the integrated framework. Only patients with at least two post-RT scans were included. The
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following 3T MRI sequences were acquired: T1-weighted pre-contrast, T1-weighted post-
contrast, T2-weighted, and T2-weighted fluid-attenuated inversion recovery (FLAIR). The
complete methods for deriving the brain MRI volumes are further detailed and published
in [81]. The tumor segmentation pipeline classified four tissue types: 1) background, 2)
contrast-enhancing tumor, 3) non-contrast-enhancing tumor, and 4) edema.

Given that current clinical standard RANO criteria involve observing a 25% increase in
contrast-enhancing lesions to indicate progression [2], we chose to limit our analysis of rel-
ative volume changes to contrast-enhancing tumor. Volumetric changes were calculated
by dividing a given scan volume over the volume from the initial reference or baseline brain
MRI scan available post-surgery but pre-CRT intervention (Eq 1). To ensure adequate capture
of alteration in contrast enhancement for patients with both large and small tumor volumes
while also avoiding false positives created by small segmentation errors, we elected to treat a
≥ 5% increase in volume as an indication of progression.

relative volumetric change = post-CRT contrast enhancing tumor volume
baseline contrast enhancing tumor volume

(1)

Imaging-derived progression dates were obtained by selecting the earliest date of scans
with a ≥ 5% relative increase in contrast-enhancing tumor volume. These image-derived pro-
gression dates were compared to manually-obtained clinical standard dates and compared to
other data-derived progression methods.

Comparative analysis
The data-derived progression methods were aggregated by patient for overall comparison and
analyzed for statistically significant differences in the overall distributions and individual dif-
ferences between data-derived dates. Given that not every patient met the criteria for progres-
sion under each progression method, many of these comparisons reflected a smaller subset of
the overall cohort.

Non-parametric statistics were used to compare progression timeline dates given that the
normality assumption for the progression date distributions was violated (i.e., very long-
term survivors lead to a right-skewed distribution as seen in Fig 4a). The input data was the
calculated PFS (in months) and the dependent variable was the method used to obtain the
calculated PFS metric.

The Kruskal-Wallis Test was used to examine differences in datapoint progression time-
lines. The data met the test criteria as the observed PFS metrics (i.e., number of months) were
continuous, the methods to obtain each PFS metric were not dependent on each other, and
each method contained a sufficiently large number of positive observations.

TheWilcoxon signed-rank test with Bonferroni correction was used for pairwise com-
parisons between different datapoint timelines. The data met the test criteria as observations
were 1) not normally distributed (Fig 4a), 2) dependent or naturally paired samples (i.e., each
method calculated a PFS metric for the same given patient), and 3) independent from other
pairs (i.e., metrics were calculated for each patient separately).

Results
While the brain malignancy cohort receiving treatment at the National Institutes of Health
(NIH) was around 423 patients, this analysis required integration of data from various
sources. 331 patients were excluded for lacking either a confirmed GBM diagnosis or at least
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Fig 4. a) Boxplot and b) scatterplot distributions of manual and data-derived progression free survival dates.
The dark green line represents the clinical standard PFS dates, with points falling above the dark green line indicating
that the automated method derived an earlier PFS date compared to the clinical standard and points falling below
indicating that the method derived a later PFS date. The light blue, dark blue, and light green trendlines reflect the
Ordinary Least Squares linear regression for the radiology report, MRI scan, and prescription methods, respectively.

https://doi.org/10.1371/journal.pdig.0000755.g004

one instance of each EHR data modality queried in this paper. Ultimately, all four types of
data were available for 92 patients receiving treatment between 2004-2023 at the NIH.

Manual clinical standard
Following manual determination of patient progression using RANO criteria with MRI report
and clinical exam review, 99% (n=91) of patients experienced tumor progression. These
patients progressed an average 404 days or 13 months (stddev: 20.9 months) after the end of
their last day of RT (Table 1).
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Table 1. Descriptive statistics for a) manual and automated methods to derive PFS dates and b) relative differ-
ences between the manual PFS method and each automated PFS datapoint. PFS statistics are reported in months.
Negative statistics indicate that the automated PFS date occurred prior to the manual PFS date.

Clinical standard Prescription Radiology report MRI scan
a) % progressed 99% (n=91) 63% (n=58) 79% (n=73) 54% (n=50)

mean PFS 13.3 17.9 8.0 6.2
std dev 20.9 18.8 13.2 11.6
median PFS 6.5 11.8 3.6 1.9
range PFS 0-137.1 1-84.8 0.3-73.8 0.6-55.5

Prescription Radiology report MRI scan
mean PFS difference 4.5 -6.9 -2.6

b) std dev 8.3 19.2 5.8
median PFS differ-
ence

2.5 -1.6 -0.03

range PFS difference -6.1-33.8 -103.0-14.9 -33.5-2.1

https://doi.org/10.1371/journal.pdig.0000755.t001

There was no association observed between the date of treatment received and length of
clinical standard progression free survival timelines (R2 = 0.0,F(1, 89) = 0.0004110, p = .865)
(S1 Fig).

Corticosteroid prescription analysis
23928 total prescription orders across the entire medical history of 92 patients were identi-
fied. 223 or 0.9% of these prescriptions across 58 patients were specifically for dexametha-
sone. Given the need for a tapering schedule for dexamethasone, patients often received mul-
tiple prescriptions of varying doses for a given “course” of steroids (Fig 5a). In comparison, 91
(99%) patients were identified as having progressed via the manual clinical standard method.
The median date of these steroid prescriptions were 11.8 months after end of radiotherapy
(stddev: 18.8 months). When compared to a given ground truth progression date for a patient,
post-radiotherapy steroid prescriptions occurred an average of 4.5 months (range -6 to 34
months, median 2.5 months, stddev 8.3 months) after clinical standard progression dates.

Natural language processing of radiology reports
1993 available radiology reports across 92 patients were identified. 1862 documents were
dated on or after the patient’s diagnosis date, and 1677 documents were dated after a patient
received CRT. Within reports dated after a patient’s diagnosis, the most common document
types included “MRI BRAIN-Perfusion (IP)” (n = 1245), “IP Perfusion” (n = 90), “CT Cere-
brum” (n = 97), and “DX Chest - PA + Lat” (n = 69). Only reports including brain MRI
results after a patient’s diagnosis date were selected for further analysis.

A total of 1243 brain MRI radiology reports dated after treatment completion were avail-
able across 92 patients, with an average document length of 347 words. Frequency analy-
sis indicated that the most common disease-relevant terms used in these reports included
‘enhancement’, ‘perfusion’, ‘enhancing’, ‘increased’, ‘tumor’, and ‘abnormal.’ In consultation
with RANO criteria and frequency analysis of these documents, a list of words conceptually
related to progression and stability were generated and used to write matcher rules for NLP-
based text analysis. Using these lists, documents were analyzed for terms mentioned on either
list (S3a Fig).

Terms indicating stability were mentioned 2641 times across 1243 documents, while words
indicating progression were mentioned 1233 times (S3a Fig). 803 additional terms were
related to progression but modified by surgical context. Documents often contained terms
pertaining to multiple categories. 70% of documents contained at least one term related to
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Fig 5. Patient timelines and progression results for available a) steroid prescriptions, b) radiology reports, and c) brain MRI scans. c) Red and blue points indicate
scans with a relative increase and decrease, respectively, in contrast-enhancing tumor volumes compared to the baseline post-surgery, pre-RT scan.

https://doi.org/10.1371/journal.pdig.0000755.g005

‘stable,’ and 35% of documents contained a term relating to both ‘stable’ and ‘progression.’
11% of documents contained terms relating to ‘stable,’ ‘progression,’ and ‘surgical progression’
simultaneously.

After applying ‘progression’ and ‘stable’ category term-frequency formulas to each report,
overall progression was identified in 222 reports (18% of post-RT reports) belonging to 73
patients (80%) (Fig 5b). The average date of these first progression reports were 8 months after
end of radiotherapy (stddev: 13 months). When compared to a given ground truth progres-
sion date for a patient, radiology reports indicating progression occurred an average of 6.9
months (range -103 to 14.9 months, median -1.6 months, stddev 19 months) prior to clinical
standard progression dates.

Computer vision analysis of MRI scans
A total of 743 scans were available across all 92 patients following surgery. On average,
edema was the largest identified volume, followed by non-contrast-enhancing tumor and
contrast-enhancing tumor (S2 Table). Total tumor, defined as the sum between non-contrast-
enhancing and contrast-enhancing tumor, displayed a right-tailed distribution of values with
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large variation in the fourth quartile (S4 Fig). Total burden, defined as the sum between total
tumor and edema volumes, reflected a wider range of scan-level volumes.

To identify scans that indicated progression from a pre-RT baseline scan, the relative
change in contrast-enhancing tumor was calculated between each baseline scan and sub-
sequent follow-up scan. 134 (23%) scans across 52 (57%) patients indicated any increase in
contrast-enhancing tumor volume from an initial baseline scan and 125 scans across 50 (54%)
patients exhibited a ≥%5 increase. Given the wide range in patient brain volumes and volume
changes, Fig 5c visualizes the logarithmic relative slope change in contrast-enhancing tumor
for all available patient scans over time.

The average dates of the first progression-indicating scans were 6.2 months after end of
radiotherapy (stddev: 11.6 months). When compared to a given ground truth progression
date for a patient, scans with at least 5% increasing contrast-enhancing lesions occurred an
average of 2.6 months (range -33 to 2.1 months, median -.03 months, stddev 5.8 months)
prior to clinical standard progression dates.

Comparative analysis
An average of 2.4 steroid prescriptions, 2.4 progression-indicating radiology reports, and 1.4
progression-indicating MRI brain scans were available per patient. The total months to first
progression-indicating datapoint were compiled for each method in Table 1a and the relative
time span compared to clinical standard were calculated for the three automated progression
data methods in Table 1b.

There were significant differences observed between the four methods of determin-
ing progression for patients that progressed via all four methods (𝜒2 = 39.7, p = 1.2e–8).
Post hoc pairwise comparisons showed significant differences between the clinical stan-
dard progression timelines and those obtained from scans with relative ≥ 5% increases in
contrast-enhancing tumor volumes (W = 133.0, p = 5.7e–4), steroid prescriptions (W =
234.5, p = 2.555e–6), and radiology reports (W = 672.5, p = .002) after Bonferroni correction.
Progression dates derived from reports were significantly different from those derived from
steroids (W = 136.5, p = 2.2e–06) but not scans (W = 281.0, p = .418). All but one scan pro-
gression date occurred earlier than the respective steroid prescriptions for patients with both
datapoints available (W = 12.0, p = 8.1e–09).

Compared to the clinical standard method that identified progression in 99% (n = 91) of
patients, the report NLP indicated the highest number of recurrent patients (n = 72), followed
by steroid prescription analysis (n = 58), and lastly volumetric-based analysis of scans (n = 50)
(Fig 6). The data modality that came closest to the clinical standard progression dates was
steroids (avg 4.5 months later), followed by volumetric-based scan analysis (avg 2.6 months
earlier), and then report-based NLP (avg 6.9 months earlier).

Fig 4 visualizes the boxplot and scatterplot distribution of progression dates for each
method. The available data-derived progression dates were within 2 months of the clinical
standard progression dates for 36% of report-derived dates, 66% of scan-derived dates, and
36% of steroid-derived dates.

Discussion
We compare results between manual and different data-driven and/or machine learning
methods to capture progression events using diverse data modalities within an integrated
patient data framework.
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Clinical standard
RANO criteria is the current standard for determining progression for a given brain malig-
nancy patient. Standard clinical application of RANO criteria involves review of multiple
sources of medical data available to a specialized or skilled clinician. This process can be dis-
rupted without complete compilation of scans, radiology reports, progress notes, and other
clinical context over long periods and potentially across multiple medical institutions. Man-
ual review of patient charts is also time consuming and labor-intensive. However, expert clin-
icians hold rich domain knowledge and can incorporate additional context and judgment
available in clinic or during dual review of other chart elements.

Readers during the study noted difficulty in making definitive progression determinations
during many patient cases. For example, sometimes progression would be indicated within
a specific radiology report despite no changes made in a patient’s treatment protocol. This
indicated that another clinician likely chose to follow-up and/or wait for further information
before adjusting or changing their treatment approach. These results highlighted that the clin-
ical standard manual approach of determining progression mixes objective factors, such as
the appearance of new lesions, with other subjective factors such as worsening of neurologi-
cal symptoms. Thus, there is potential for high variability in RANO judgments between clin-
icians and between patients even when using the same sources of data. These variable factors
could impact results during patient care and data analysis, especially if PFS dates are shared in
public data sets without reviewable context on the RANO criteria decision.

Corticosteroid prescription analysis
Post-radiotherapy steroid prescriptions may provide context about a patient’s disease manage-
ment that allow clinicians and researchers to further probe for progression evidence. How-
ever, in this paper, corticosteroid prescription analysis identified fewer numbers of patients
as experiencing progression overall compared to the other manual and data-driven meth-
ods. This could be due to patients receiving care management from outside providers after
completion of treatment at our center, highlighting barriers that remain within an integrated
data framework approach. Conversely, it is important to be cautious when using this method
as steroids can be prescribed for non-progression-related reasons, including post-surgical
changes. Given that treatment protocols may vary from center to center, it may be appro-
priate to adjust the date periods in which steroid prescriptions are filtered after surgery and

Fig 6. Progression-indicating datapoints for studied patient cohort.

https://doi.org/10.1371/journal.pdig.0000755.g006
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radiotherapy. Thus, steroid-driven progression analysis may include both false positive and
false negative errors due to inclusion of non-progression and exclusion of progression-related
steroid prescriptions.

This method requires access to patient prescriptions, and can be done with simple data
analysis techniques using tabular format data. Moreover, given the finite and structured
nature of prescription EHR data, this method required the least amount of data preparation
and cleaning. Review of steroid prescriptions also does not necessarily require a specialized
clinical expert to query or review the data. As a result, this method may be more straightfor-
ward and accessible to non-oncologists researching PFS outcomes in patient cohorts.

However, given that steroids are commonly prescribed for neurological symptoms associ-
ated with radiotherapy treatment, it is important to acknowledge that a prescription database
may not actually reflect real-world patient medication schedules. It is not uncommon for
providers to adjust their dosage and recommendations to patients based on their symptoms
after receiving a given prescription. We observed high variability in prescription doses, fre-
quencies, and types of administration in this study (Fig 5c). Given that steroids are also gen-
erally prescribed during RT, this prescription data method of determining progression may
identify later progression dates if patients hold onto a previous dose of steroids and admin-
ister them later on. This disconnect between digital data and real-world behavior remains an
issue across multiple areas of clinical research.

Natural language processing of radiology reports
Ultimately, the rule-based NLP method identified the most number of patients as having pro-
gressed in the cohort. While the method displayed the furthest date difference from the clin-
ical standard method, it was also the only method to identify progression in patients with
very long stable disease (>100 months) (S2 Fig). These results suggest potential overall ben-
efits from deploying an NLP method, but with a need for further algorithmic design and
parameter tuning if close clinical correlation is desired.

The rule-based NLP approach employed in this paper provided a summary of progression-
related terms and the context in which they were mentioned for each available report. We
opted for a rule-based implementation over other large-scale language models in order to
employ a simple, reproducible framework that could be deployed locally. The rule-based
approach was also selected to provide improved decision interpretability and reviewability,
as the custom progression- and stability-related term matchers allowed researchers to ver-
ify progression evidence over the entire course of medical history and seek further context
within the original report, if desired (S3b Fig). This method could be embedded into real-
world practice where an interested clinician or researcher is provided with an overall graphic
interpretation of a patient’s medical history based on these key terms, with the ability to fur-
ther investigate the actual free text and associated results for time periods of interest. Further
research is needed to develop appropriate tutorials for expert users of these systems and eval-
uate various approaches to report term weighting, evidence presentation, and overall method
interpretability in practice.

In order to translate these progression-related terms into a report-level judgment, we
weighed terms indicating progression against terms indicating stability or surgical changes.
To avoid calling progression too early given the wide range of clinical standard progres-
sion patient timelines, we also decided not to weight mentions of progression within report
more strongly than mentions of stability or surgical changes. Given high likelihoods of sur-
gical changes being correlated with pseudoprogression, we also chose to handle progression-
related changes in surgical cavities as indicating “stability” for a patient. The net effect of these
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choices resulted in a fewer subset of patients in the overall cohort having a report indicating
progression.

There was likely some tradeoff in implementing stricter linguistic criteria, as identifying a
first date of progression later in long-term stable patients likely came at the expense of identi-
fying progression at all in short-term progressors. It is worth noting that these term formulas
could be manipulated in different contexts to give more weight to terms indicating progres-
sion versus stability or surgical changes, or a specific subset of terms within each overall cat-
egory. Adjustments to these formulas may have the net effect of identifying a higher or lower
number of progressed patients and/or adjusting the timelines in which patient progression
is identified via radiology report. These decisions require judgement as to a preference for
high sensitivity or specificity, and the impact of a false positive or false negative may change
based on the context that progression data is deployed. Future studies may explore other NLP
approaches to mine radiology reports for progression evidence, including the use of large lan-
guage models (LLMs), algorithms trained with document-level “ground truth” labels for over-
all progression and stability, and evaluation of the area under the receiver operating curve in
order to determine optimal formula weighting and thresholds.

Computer vision analysis of MRI scans
Imaging reflects a patient’s real-time disease state and can be used in the clinic to guide treat-
ment decisions for a given patient. Radiomic algorithms may provide increased quantitative
evidence for decisions in the clinic, as volumetric parameters may be difficult to estimate in
practice given the limitations of viewing only two dimensions of a 3D scan slice at any point
in time. Human intuitions about volumetric imaging can be subject to errors due to differ-
ences in search techniques and cognitive load [82]. The ability to identify regions of contrast-
enhancing tumor, non-contrast-enhancing tumor, and edema in a scan closely reflects current
clinical imaging practices dictated by RANO progression criteria.

In this paper, we set out to examine the influence of increases in contrast-enhancing
tumor regions given the independence of growth in relation to steroids and its inclusion
within RANO criteria. Perhaps surprisingly, only around half of patients actually progressed
by definition of a ≥ 5% increase in contrast-enhancing tumor despite a majority of patients
progressing by manual clinical standards. Our findings align with Kickingereder et al., who
also observed reduced patient progression rates when comparing increases in contrast-
enhancing tumor volumes to manual RANO assessments [19]. This suggests practical dif-
ferences between the way that RANO criteria are implemented in clinic and how contrast-
enhancing tumors manifest on imaging, both volumetrically and perceptually. Given that
all but one patients progressed under the manual clinical standard criteria, our scan-based
progression findings indicate that clinicians may be overestimating the growth of tumor vol-
umes on scans, or that they are often using other RANO criteria, including worsening clinical
symptoms, to determine progression. These results suggest a gap between the underlying logic
of RANO criteria and how the clinical principles are applied in practice.

Comparative analysis
Defining tumor progression is a critical, yet imperfect challenge in cancer management and
treatment. The ability to “objectively” determine progression is limited by complex, poorly
understood cancer biology and tumor proliferation mechanisms. As a result, any attempt
to determine tumor progression within a patient will amount to an imperfect proxy of the
underlying ground truth state. Given diverse motivations to study tumor progression, the
ideal definition and data points of interest will likely shift between audiences.
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Overall, automating progression from only one type of EHR data often resulted in an ear-
lier progression date compared to the manually determined ground truth. If these automated
PFS metrics were consulted during clinical treatment, this could result in earlier implemen-
tation of more drastic interventions, such as potential re-irradiation or initiation of other
therapeutic agents. If the same methods were implemented retroactively during data analy-
sis, earlier progression dates would imply that certain subpopulations of patients had more
aggressive disease.

Given that the scan-based progression method identified almost all progressed patients
earlier than by clinical criteria, but also identified the fewest number of patients experiencing
any progressed, the scan-based method demonstrated a propensity to commit both false posi-
tive and negative errors. This indicates that the CV method may benefit from a more nuanced
definition of progression, such as taking into account the initial tumor volume size, or incor-
porating factors of non-contrast-enhancing tumor tissue or edema into future scan-based
progression methods.

The report-based method also identified patients as progressing earlier, with the most
number of patients being identified compared to the other automated data-driven methods.
Given the rule-based nature of the NLP method deployed in this paper, report-level decisions
could be adjusted based on the disease aspects most relevant to a given research team. Thus,
these results indicate the distribution of outcomes from an automated endpoint extraction
framework can be shaped by both data source and algorithmic design.

Sociotechnical considerations
Human patient and clinician behavior may interact with the design of information systems
to shape the process of ground truth construction and extraction of outcome endpoints from
EHR data.

Changing practices over time. The use of RANO criteria, radiology reports, and steroid
prescriptions all reflect attempts to use human behavior as a proxy for a biological process.
Human behavior is cataloged into the electronic health record, either by structured fields via
medication prescriptions or by unstructured text via radiology reports and progress notes. As
a result, these measures can only capture decisions made in the real world and may undergo
“dataset shift” [66] when reflecting medical practices and choices made at the time [27]. Given
the relatively small size of the data set in the study, future studies may opt to analyze changes
in term, frequency, and prescription patterns over time.

Tradeoffs between data modalities. Many patients in the studied cohort had far more
radiology reports available for analysis compared to actual imaging scans. This is potentially
surprising given that radiology reports are an interpretation of the processed imaging file
and thus, are a degree removed away from the original data source. We speculate that the
increased accessibility of radiology reports may be due to patient choices in cancer man-
agement. If patients are choosing to continue follow-up care at local facilities, it is possible
that current data sharing infrastructure better supports the distribution of radiology reports
compared to raw or processed imaging files.

Many available, pre-processed images in the study had to be excluded due to poor image
quality or inability of the trained CV algorithm to identify appropriate areas of contrast
enhancing and non-contrast enhancing tumor. Moreover, the high number of radiology
reports that did not correspond to an available scan indicates existing infrastructure chal-
lenges in sharing and querying imaging files. Clinicians and researchers looking to automate
PFS via quantitative tumor volume parameters may be limited to fewer datapoints in their
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analysis given the higher processing burdens of imaging. Conversely, researchers may pre-
fer the use of other higher frequency data types to provide a more continuous picture of a
patient’s disease [83].

Limitations
Pseudoprogression. Tumor progression can be difficult to objectively determine for a patient as
patients may exhibit signs of pseudoprogression immediately following treatment. When con-
ducting document-level analysis, a patient may demonstrate progression in one scan, a slow-
ing down of progression in a following scan, and then a reversal of slowed progression in the
future. This can make it more challenging to rely on a single document to obtain progression
data given the importance of context during clinical evaluation. Thus, a framework relying
on multiple points of data, such as CV-based volumetric imaging changes, may make it eas-
ier to identify between visit changes such as pseudoprogression and stability from a previous
progression instance.

Application of RANO criteria. One limitation of the study could be the application of
RANO criteria and its use as a benchmark against other automated methods. While RANO
criteria are the current clinical gold standard, their application requires clinical context that
may not have been retrospectively queryable within a system’s EHR. The application of the
criteria is a subjective, collaborative process during which we did not have access to individ-
ual physician datapoints and thus, were not able to report interrater reliability or agreement
on the application of RANO criteria. Bulk analysis methods may omit documents that are not
available via a queryable framework, such as scanned, faxed, and/or handwritten notes from
historical charts. Radiation treatment plan data was not available at the time of analysis, so
80% isodose lines could not be used to verify progression versus pseudoprogression when
evaluating growth in the size or number of lesions. However, given that most radiologists do
not have access to this data either, this limitation closely mirrors and reflects real world prac-
tice. Future studies may incorporate non-digital documents and radiation treatment plan data
to evaluate the extent to which progression versus pseudoprogression is actually captured by
observing changes within and outside of the isodose lines.

Report-level ground truth for NLP.We were constrained by time- and expert-related
resources in obtaining report-level ground truth for the nearly 2,000 radiology reports ana-
lyzed in this study. Given that the treatment response and disease progression timeline can
vary greatly between patients (e.g., one patient demonstrating no change consistently until a
given scan indicates a significant change vs. another patient with alternating periods punctu-
ated by slow change and stability), we were not able to identify a satisfactory proxy in deter-
mining the overall evidence for progression or stability in a given report. As a result, we were
not able to refine or test our selected one-to-one threshold weighting for terms indicating pro-
gression or stability. Future studies could curate (or when possible, employ any newly avail-
able public) datasets with report-level ground truth to test and robustly benchmark various
rule-based weightings to obtain overall report-level progression determinations.

Inferring behavior from data.The analysis of post-radiotherapy steroid prescriptions may
have been limited by the fact that we only had access to visits conducted at our medical facil-
ity. It is possible that patients may have been received medications, scans, and visits from out-
side providers. Additionally, given varying practices in tapering prescription schedules for
steroids, it was difficult to draw finer insights from differences in prescribed doses or lengths
of tapering schedules. This reflects challenges of siloed medical data systems and limits the
ability of queryable data frameworks to better approximate “ground truth” determinations.
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Data cohort.The collection of data at the NIH may also reflect a more unique context in
which patients are diagnosed, treated, and managed for complex diseases. Given that patients
are often referred from other centers to the NIH where treatment is not associated with insur-
ance billing, it is difficult to assess the representativeness and generalizability of data sets col-
lected at this institution, compared to the general population of individuals affected by a given
disease. To our knowledge, this is the first paper that attempts to collect and contrast differ-
ent modalities of data in order to obtain a subjective patient outcome, and there are no other
publicly available data sets to validate this approach yet. Future studies may try incorporat-
ing data available outside the NIH, such as radiology reports authored by different clinicians
or insurance billing codes, to validate and probe differences in data sets generated between
institutions.

Missing clinical context and accountability. Some may have valid concerns with non-
specialized researchers making progression determinations from the only data that they have
available. Further work needs to explore the explainability and interpretability of NLP- and
CV-based methods to obtain progression from free-text documents and imaging. There may
also be concerns that using single data sources, such as prescriptions or free text documents,
may inadvertently result in individuals ignoring relevant information contained in other data
modalities. Efforts to improve data sharing and integrated frameworks also need to consider
privacy and security concerns when attempting to aggregate large, multi-site sources of data
for a given patient.

Single stream analysis. Lastly, it is worth noting that all of these automated data-derived
progression methods focused on using only one type of data, while the multidisciplinary team
clinical standard method incorporated multiple data sources in the EHR to manually deter-
mine progression. This paper intentionally set out to focus on the abilities and limitations of
individual data sources in identifying “ground truth” within a patient’s clinical history time-
line. This decision was made to approximate many real-world clinical scenarios where com-
plete, integrated datasets are not available and difficult to compile and curate. However, with
these insights in mind, future studies may investigate multimodal learning techniques to pro-
vide progression free survival dates based on a totality of available patient data, including late
stage fusion, or aggregation, of the individual models developed for this paper.

Conclusion
Progression free survival (PFS) is a critical yet under utilized endpoint during biomarker anal-
ysis of various malignancies. The current clinical standard to determine progression within a
glioblastoma patient involves the application of RANO criteria, a composite of clinical events
and imaging findings, during consultation with a multidisciplinary team. This paper set out
to explore the benefits and challenges associated with mining different EHR data modalities
and automating the extraction of progression free survival metrics via machine learning algo-
rithms. We developed three separate methods to automatically identify progression within a
cohort of 92 glioblastoma patients treated on study at the NIH, including 1) selection of cat-
egorical corticosteroid prescriptions, 2) rule-based natural language processing of free text
radiology reports, and 3) computer vision-based volumetric analysis of brain MRI scans.

Though all three methods were able to provide a progression date for a majority of the
patient cohort, they identified fewer patients as having progressed overall compared to the
manual clinical standard. Steroid prescriptions were more likely to identify progression later
than the manual clinical standard, while CV-based volumetric scan and NLP-based report
analysis identified progression much earlier. Approximately half of analyzed patients did not
an increase in tumor volumes, indicating that human intuitions about tumor changes during
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disease progression may not align with quantified volumetric parameters. Our results suggest
that various EHR data modalities can be queried to automate PFS analysis, though algorithm
design choices, including data modality and progression parameters, will have downstream
impacts on clinical decision making or biomedical analysis. Future research directions may
explore the benefits and challenges of integrating multiple EHR data modalities, also known
as multi-modal analysis, during automated analysis.
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