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Abstract

Hypoxia Inducible Factors (HIFs) are heterodimeric transcription factors induced in many cancers 

where they frequently promote the expression of many protumorigenic pathways. Though 

transcription factors are typically considered “undruggable”, the PAS-B domain of the HIF-2α 

subunit contains a large cavity within its hydrophobic core that offers a unique foothold for small-

molecule regulation. Here we identify artificial ligands that bind within this pocket and 

characterize the resulting structural and functional changes caused by binding. Notably, these 

ligands antagonize HIF-2 heterodimerization and DNA-binding activity in vitro and in cultured 

cells, reducing HIF-2 target gene expression. Despite the high identity between HIF-2α and 

HIF-1α, these ligands are highly selective and do not affect HIF-1 function. These chemical tools 

establish the molecular basis for selective regulation of HIF-2, providing potential therapeutic 

opportunities to intervene in HIF-2-driven tumors such as renal cell carcinomas.

Human cells respond to hypoxia through the coordinated actions of the HIF family of 

transcription factors1. Assembled as heterodimers of an oxygen-sensitive subunit (HIF-1α, 

-2α or 3α) and a dimerization partner (Aryl Hydrocarbon Receptor Nuclear Translocator 

(ARNT) or HIF-β), these proteins control the expression of hundreds of genes that facilitate 

cellular adaptation and responses to low oxygen levels2,3. While HIFs perform critical 

physiological functions1,4,5, increased levels of these potent factors are highly correlated 
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with the onset and progression of a variety of cancers1. Indeed, several downstream targets 

of HIF are well-validated targets for anti-cancer therapies. However, there are potentially 

significant advantages to directly antagonizing the HIF complexes themselves, and 

consequently their many downstream targets, as supported by experiments linking HIF 

ablation to impaired tumorigenesis6–8. As such, there is strong interest in the development of 

artificial compounds to regulate HIF function, to generate both basic research reagents and 

lead compounds for therapeutic development.

However, HIF presents a traditionally challenging target for pharmacological intervention: it 

is a large, intracellular protein complex without any active sites that are typically used for 

small-molecule substrate binding. In addition, much of the transcription factor resides 

primarily in an extended conformation, further reducing the availability of potential ligand 

binding sites. However, both HIF subunits contain Per-ARNT-Sim (PAS) protein-protein 

interaction domains that contribute to the assembly of the HIF complex9,10 and the 

recruitment of coactivators11,12. These PAS domains are widely used as environmental 

sensors throughout biology, controlling activities of a diverse array of proteins13. Notably, 

such environmental sensing is often achieved by binding small-molecule cofactors within 

the core of a PAS domain, using ligand-induced allosteric changes to control the affinity for 

other protein elements bound to the outside surface14. Given the difficulties in directly and 

selectively antagonizing protein-protein interactions with small molecules15,16, exploiting 

such internal cavities offers potential advantages.

The PAS-B domain from HIF-2α appears to be especially amenable to ligand-mediated 

allosteric regulation. This particular PAS domain contains a relatively large (290 Å3) 

preformed cavity that can be occupied by either water or by small molecules17,18. Using 

NMR-based screens of small fragment libraries, we have shown that this site can be bound 

by small-molecule ligands with sub-μM affinities, inducing conformational changes that 

impair heterodimerization of isolated PAS-B domains in vitro18. Unfortunately, these 

molecules were not themselves suitable for further characterization in cultured cells, leading 

us to use a functionally-based high throughput screen to survey a larger library of more 

complex compounds for inhibitors capable of disrupting an engineered HIF-2 PAS-B 

heterodimer.

Here we significantly advance these studies via the development of an improved small-

molecule scaffold initially identified in this screen. Biophysical characterization of these 

compounds, and a derivative optimized by medicinal chemistry approaches, demonstrate 

specific, selective and efficacious binding within the internal cavity of HIF-2α PAS-B. 

These compounds disrupt heterodimerization of the full-length HIF-2 transcription factor. 

Importantly, these molecules function effectively as HIF-2 inhibitors in living cells, 

disrupting HIF-2 DNA binding and the transcription of its target genes. Moreover, these 

compounds are selective for the HIF-2 isoform and fail to antagonize HIF-1, whose highly 

related HIF-1α subunit lacks a comparable ligand-binding site. These reagents provide an 

opportunity to delineate differences in HIF-1 and HIF-2 physiology and serve as an entry 

point for eventual selective therapeutic inactivation of HIF-2 in diseases19, including renal 

cell carcinomas20–22.
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RESULTS

Identification of HIF-2 PAS-B dimerization antagonists

We previously identified ligands that bind the HIF-2α PAS-B domain using solution NMR-

based screening of a small library of almost 800 drug-like fragments17,18,23. Following 

medicinal chemistry optimization, some advanced lead compounds bound HIF-2α with sub-

micromolar dissociation constants. Despite their large size (MW~300 Da), these ligands all 

bound within an internal pocket (290 Å3) completely buried within the HIF-2α PAS-B 

domain17,18. Cavities of this size or larger are quite rare, present in only ~0.3% of over 

32,000 high resolution structures of comparably-sized proteins or protein domains 

(Supplementary Results, Supplementary Fig. 1). Almost all of these cavities constitute 

ligand-binding sites within the apo- forms of natural ligand binding proteins. Consistent with 

a comparable functional role for the cavity in HIF-2α PAS-B, our artificial ligands exhibited 

modest abilities to disrupt isolated PAS-PAS interactions in vitro18. However, their limited 

potency to do so limited further characterization in living cells.

To identify superior chemical scaffolds with the potential to antagonize HIF-2 activity in 

living cells, we developed an in vitro assay that assessed functional disruption of PAS-PAS 

interactions in a high-throughput screening (HTS) format. The isolated wild-type domains 

associate with a KD ≈ 100 μM, precluding many protein-protein interaction assays. This 

interaction can be improved by more than 100-fold by introducing mutations that enhance 

ionic interactions at the complex interface without altering other PAS features, including the 

HIF-2α ligand binding site18. These “PAS-B*” variants (R247E HIF-2α and E362R ARNT) 

were employed in an Amplified Luminescent Proximity Homogeneous Assay (AlphaScreen) 

to identify compounds capable of disrupting the stabilized heterodimer (Supplementary Fig. 

2).

Using this HTS assay, over 200,000 compounds were individually interrogated for their 

ability to disrupt the HIF-2α-ARNT PAS-B* complex (Supplementary Table 1). The top 

640 “hit” compounds, each of which decreased the luminescence proximity signal by over 

3σ, were reassayed. Approximately 80% of these initial hits were validated, reflecting the 

high quality of this screen. However, a large number of these confirmed hits antagonized a 

key counterscreen designed to eliminate compounds that interfere with the AlphaScreen 

format itself. Once these nonspecific compounds were eliminated, fewer than 70 candidate 

disruptors of the HIF-2α-ARNT PAS-B* heterodimer remained. Subsequent titrations of a 

resupplied subset of these compounds revealed several displaying standard dose-dependent 

behavior, with IC50 values ranging between 0.3 – 10 μM as exemplified for compound (1) 

(Supplementary Fig. 3a,b). Notably, this class of these compounds shared some structural 

features with amine-linked compounds identified from our NMR-based ligand binding 

screens17,18, leading us to further investigate their mode of action and potency.

In principle, the HIF-2α-ARNT PAS-B* heterodimer could be disrupted by small molecules 

that bound to either of the two PAS-B subunits, either within their cores or at the β-sheet 

surfaces that mediate protein-protein interactions. Based on the similarity of (1) to 

compounds we previously observed in HIF-2α-ligand complexes18,23, we anticipated that 

they might directly bind within the HIF-2α PAS-B* domain. Using NMR spectroscopy to 
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compare 15N/1H HSQC spectra of both PAS-B domains in the absence and presence of (1), 

significant ligand-induced spectral changes were observed for HIF-2α PAS-B, but not for 

the corresponding ARNT PAS-B subunit (Supplementary Fig. 3c). The slow exchange 

behavior for these chemical shift changes was consistent with low-μM or tighter dissociation 

constants. These binding affinities were quantitated using isothermal titration calorimetry 

(ITC), reporting KD = 1.1 μM and a 1:1 stoichiometry (Supplementary Fig. 3d), though the 

high DMSO levels required to solubilize (1) likely attenuate the true ligand affinity 

slightly17. In all, there was reasonable correlation between ligand affinity and the sub-μM 

(~0.4 μM) IC50 value observed for heterodimer disruption (Supplementary Fig. 3b).

A medicinal chemistry effort was undertaken to understand the structure-activity 

relationships underlying the ability of (1) to disrupt HIF-2α-ARNT PAS-B* 

heterodimerization (J.L. Rogers et al., in press; DOI (http://dx.doi.org/10.1021/jm301847z)). 

An improved analog, (2), was identified (Fig. 1a) which also bound to the HIF-2α PAS-B 

domain (Fig. 1b–d) with a KD = 81 nM (Fig. 1d). Taken together, these data indicate that 

this compound class functions by binding directly to HIF-2α.

Antagonists bind within the HIF-2α PAS-B internal cavity

To further define how these compounds disrupt HIF-2α-ARNT PAS-B* heterodimerization, 

we integrated X-ray crystallographic and high-resolution solution NMR studies of HIF-2α 

PAS-B bound to compound (2). As anticipated, a co-crystal structure revealed that this 

ligand bound within the preformed HIF-2α PAS-B internal cavity (Fig. 1a,b; Supplementary 

Fig. 4 and Supplementary Table 2), displacing water. Compound (2) shares some common 

structural features with the previously described small-molecule ligands (Supplementary 

Fig. 5), facilitating binding with a combination of van der Waals and electrostatic 

interactions including: A) placement of ligand nitro group and linker amine adjacent to the 

H248 imidazole sidechain, B) a pi-hydrogen bond between the Y281 hydroxyl and the A-

ring benzene ring, and C) an intra-ligand H-bond shared between the amine linker and the 

A-ring nitro moiety. Further examination of the structure suggests that compound (2) derives 

its higher affinity from enhanced van der Waals and electrostatic interactions. In particular, 

the larger di-halogenated Bring of (2) better complements the surrounding hydrophobic 

pocket that was only partially occupied by the B-rings of fragment-derived compounds 

THS-017, -020 and -044 that bound with 600 nM – 2 μM dissociation constants and lower 

molar enthalpies17,18 (Supplementary Fig. 5). In addition, the A-ring of (2) presents 

potential new electrostatic interactions, particularly in placing its oxadiazole ring to H-bond 

adjacent to one of the S292 sidechain conformations observed in the (2) ternary complex. 

Similarly, identification of B-ring substitutions complementing the apo-protein binding site 

shape better than (1) was key to the development of (2) (Supplementary Fig. 5).

Bound ligands induce HIF-2α PAS-B conformational changes

To obtain mechanistic insights of the linkage between small-molecule binding and protein-

protein interactions in HIF-2α PAS-B, we compared independent solution and 

crystallographic data acquired on apo- and (2)-bound HIF-2α. The HIF-2α PAS-B-

compound (2) complex was amenable to high-resolution solution NMR studies (Fig. 1c), 

allowing us to assign backbone chemical shifts and compare these to existing apo-protein 
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information9. Chemical shift differences observed between these sets (Fig. 2a) established 

that compound (2) binding affected many sites in the surrounding protein, which still retains 

the mixed α/β PAS domain fold. Mapping these shift changes onto the crystal structure (Fig. 

2a,b), we observed many of the largest differences mapping on the β-sheet (particularly the 

Hβ, Iβ and Aβ strands). Parallel crystallographic analyses used a difference Fourier analysis 

of apo and (2)-bound HIF-2α-ARNT PAS-B* datasets (featuring highly similar crystal 

parameters) showed ligand-associated changes in electron density both within the HIF-2α 

cavity and across the neighboring β-sheet (Fig. 2c). Notably, almost no Fo-Fo difference 

density was observed elsewhere in the structure, including the ARNT PAS-B subunit, 

providing a powerful control for artifacts from the analysis. These independent analyses link 

ligand binding to conformational changes at the β-sheet surface of the HIF-2α PAS-B 

domain that is used to bind its ARNT counterpart (Supplementary Fig. 6), strongly 

supporting an allosteric mode of action for our artificial inhibitors.

Ligand (2) selectively disrupts HIF-2 heterodimerization

Like (1), the conformational changes induced by (2) disrupt heterodimerization of isolated 

HIF-2α and ARNT PAS-B* domains in the AlphaScreen assay (Fig. 3a). However, 

heterodimerization of the two full-length HIF subunits is mediated by multiple protein-

protein interactions involving the PAS-A and basic Helix-Loop-Helix domains10. To 

determine whether (2) can antagonize heterodimerization between full length HIF-2α and 

ARNT polypeptides, we prepared nuclear extracts from hypoxic Hep3B cells. An antibody 

recognizing the N terminus of ARNT10, was used to immunoprecipitate the endogenous 

ARNT protein from the nuclear extracts (Fig. 3b, Supplementary Fig. 7). The HIF-2α 

subunit co-immunoprecipitated with ARNT in extracts incubated with the DMSO vehicle 

control. However, addition of (2) to the extracts decreased HIF-2α co-immunoprecipitation 

efficiency by >2-fold in a dose-dependent manner (Fig. 3b). The magnitude of these effects 

on HIF-2 heterodimerization is similar to that observed following mutation of the HIF-2α 

PAS-B dimerization interface10.

In addition to HIF-2α, Hep3B cells also expresses HIF-1α. Though these two HIF-α 

isoforms share >70% identity between their PAS-B domains, modeling of the HIF-1α PAS-

B domain onto the HIF-2α PAS-B structure suggests that several bulkier residues face into 

the internal HIF-1α cavity (Fig. 4a,b; Supplementary Fig. 8). Such alterations are expected 

to constrict the pocket and interfere with ligand binding; this was confirmed by ITC data 

demonstrating that (2) effectively does not bind to the HIF-1α PAS-B domain (Fig. 4c; KD 

≫ 5 μM). The large selectivity of (2) for HIF-2α is reflected in Figure 3b, as increasing 

amounts of (2) have little effect on HIF-1 heterodimerization as assessed by co-

immunoprecipitation. These data confirm that in vitro, (2) binds selectively within a 

preformed ligand binding site buried within the HIF-2α PAS-B domain. Ensuing allosteric 

conformational changes propagate to the surface of the domain, weakening interactions with 

the ARNT PAS-B domain and disrupting heterodimerization of the full-length HIF-2 

transcription factor.
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Ligand (2) selectively disrupts HIF-2 in cultured cells

The improved in vitro efficacy of (2) provides an opportunity to validate selective HIF-2 

antagonism in living cells. No overt toxicity was observed for 786-0 or Hep3B cells 

incubated with as much as 30 μM of compound (2) (Supplementary Fig. 9). The metabolic 

stability of compound (2) when incubated with 786-0 cells in vitro was also good, with a 

t½~14 hr; parallel experiments with culture media only demonstrate no loss of compound (2) 

over 24 hr (data not shown). 786-0 cells, derived from a human renal cell carcinoma, lack 

functional pVHL and constitutively accumulate HIF-2α under normoxic conditions. These 

cells also lack detectable HIF-1α expression so that HIF-dependent regulation of target 

genes is attributable to HIF-2 isoform24. Addition of (2) to cultured 786-0 cells does not 

alter HIF-2α expression, either at the mRNA (Fig. 5a) or protein levels (Supplementary Fig. 

10). However, expression of a well-validated HIF-2 target gene (VEGF) is reduced in a 

dose-dependent manner in 786-0 cells incubated with (2) for 18 hr (Fig. 5a).

To confirm that the mode-of-action for HIF-2 inhibition by (2) is indeed dependent upon 

binding to HIF-2α, we examined ligand effects on Hep3B cells. While some hypoxia 

inducible target genes are regulated by both HIF-1 and HIF-2 in these cells, other genes are 

exclusively regulated by a single isoform25,26. By examining EPO or PGK1 expression as 

surrogate markers for HIF-2 and HIF-1, respectively, Hep3B cells were preincubated with 1 

or 10 μM (2) for 2 hr and maintained either under normoxic or under hypoxic (1% O2) 

conditions for 6 or 12 hr. As shown in Figure 5b, while hypoxia induces both EPO and 

PGK1 mRNA expression, only hypoxic induction of EPO mRNA is antagonized by (2). 

Incubation with (2) has no effect on the expression of PGK1 or on the HIF-1α and -2α 

mRNA levels (Supplementary Fig. 11).

If (2) is working in cells by antagonizing HIF-2 heterodimerization, HIF-2’s DNA-binding 

activity should likewise be selectively compromised. Chromatin immunoprecipation (ChIP) 

using antibodies raised against HIF-1α or HIF-2α was used to measure HIF DNA binding in 

cultured cells. An increase in both HIF-1 and HIF-2 binding to a HIF-responsive promoter 

element is observed under hypoxic conditions, reflecting the increase in stability of both α-

subunits. However, the DNA-binding activity of HIF-1 is unaffected in cells incubated with 

10 μM (2) while HIF-2’s DNA-binding activity is substantially decreased (Fig. 5c). 

Together these data constitute a proof-of-principle demonstration that small-molecule 

ligands can directly and selectively bind to a cavity within the PAS-B domain of the HIF-2α 

polypeptide. Ligand binding induces conformational changes in HIF-2α that disrupt 

formation of the HIF-2 heterodimer, antagonizing HIF-2’s DNA-binding activity and 

selectivity reducing expression of HIF-2 target genes in living cells.

DISCUSSION

Great progress has been made in unraveling the relationship between HIF, hypoxia, and 

tumor progression and metastasis (as reviewed19,27). Increased levels of HIF have been 

observed in human cancers of the brain, breast, kidney and ovaries among others, and are 

often associated with increased tumor aggressiveness, therapeutic resistance and mortality27. 

While much attention has focused on links between HIF-1α and cancer, there is increasing 
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evidence that HIF-2α is an important driver of a number of common tumors19,28. For 

example, a clear role for HIF-2 in cancer has been defined for a number of VHL-deficient 

renal cell carcinomas in which the pro-tumorigenic effects of stabilized HIF-2α cannot be 

phenocopied by HIF-1α6–8. More recently, HIF-2α has been recognized as an intriguing 

therapeutic target in a number of genetically diverse cancers29, including glioblastomas30,31 

and nonsmall cell lung carcinomas32. The underlying mechanisms responsible for a HIF-2 

preference in certain cancers remains the subject of investigation though selectivity in 

expression, target genes and interaction partners have all been implicated19.

The accumulation and activity of the HIF-α subunit is acutely induced following a decrease 

in cellular O2 levels as is frequently encountered in tumors. Under normoxia, the α-subunit 

is rapidly degraded following O2-dependent hydroxylation of key prolines within the 

oxygen-dependent degradation domain, recruiting the pVHL ubiquitin ligase33,34. Parallel 

O2-dependent hydroxylation of asparagines in the HIF-α C-terminal transactivation domain 

also controls HIF’s ability to interact with certain transcriptional coactivators35,36. However, 

HIF-α is often constitutively upregulated in an O2-independent manner in tumors containing 

appropriate genetic alterations to oncogenic signaling pathways or tumor suppressor genes. 

This scenario is best exemplified by mutations that inactivate pVHL and result in 

constitutive stabilization of the HIF-α subunit, predisposing patients to renal cell carcinomas 

and a host of other cancers37. Mutations to many other proteins have also been shown to 

constitutively-induce HIF-α, albeit by other mechanisms27. Small-molecule HIF antagonists 

that bind directly to the transcription factor, independent of the mechanism underlying its 

induction, may therefore have utility in a wide range of disease studies.

HIF-2α provides a particularly appealing target for inhibitor development given the 

preformed cavity present in its PAS-B domain. Such cavities are very rare in protein 

domains of this size, as they compromise a significant component of the hydrophobic core 

that normally stabilizes a protein fold. Despite its sequestration from solvent, we have 

previously shown that this cavity is accessible to small-molecule ligands in vitro17,18. Here 

we identify superior compounds that bind to the HIF-2α PAS-B domain with a KD ~ 80 nM. 

This class of compounds induces conformational changes within the domain upon binding, 

with changes identified at the critical β-sheet interface used to bind ARNT PAS-B 

(Supplementary Fig. 12). Notably, comparable changes are observed in PAS domains with 

their cognate natural ligands despite differences in ligand structure and activation 

mechanism, suggesting some degree of conservation in their allosteric activation principles. 

For example, photosensory PAS domains that bind flavin chromophores comparably to our 

artificial HIF-2α ligands, harness a change in cofactor configuration via the photochemical 

formation of a protein-flavin bond to perturb βsheet structure and protein binding14,38 

(Supplementary Fig. 12).

Though multiple protein-protein interactions drive HIF heterodimerization, ligand-

dependent allosteric changes to the HIF-2α PAS-B domain are sufficient to disrupt 

formation of the endogenous full-length HIF-2 complex, with a corresponding selective 

diminution of HIF-2 activity in living cells. Though HIF PAS domains have been implicated 

as targets for HIF inihibitors39,40 this is the first example in which the molecular 

underpinnings for compound activity have been elucidated. For example, acriflavine was 
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recently reported to directly antagonize HIF upon binding to the HIF-α PAS-B domains40. 

However, as this compound inhibits both HIF-1 and HIF-2, an internal PAS-B cavity is 

likely not the relevant binding site as differences among the isoforms confers exquisite 

specificity.

Though initially charcterized in the context of their role in oxygen sensing, HIFs are 

responsive to a multitude of cellular cues, including cellular metabilites. For example, the 

nutrient sensing mTOR pathway acts upstream of HIF-α expression while intermediary 

metabolites of the Krebs Cycle influence the activity of the HIF hydroxylases41. While our 

findings here provide useful reagents for HIF-2 inhibition, it is tempting to further speculate 

that such a pocket has evolved for HIF-2 regulation by endogenous metabolites in vivo. 

From a structural perspective, this hypothesis is supported by the presence of rare large 

cavities (such as in HIF-2α PAS-B) most commonly within apo- forms of natural ligand 

binding proteins (Supplementary Fig. 1). If so, future elucidation of cognate natural ligands 

may provide novel insights into isoform-specific metabolic regulation of HIF in 

physiological and pathological, settings.

ONLINE METHODS

Protein preparation

HIF-2α PAS-B (240-350), HIF-2α PAS-B* (240-350, R247E), ARNT PAS-B (355-470), 

and ARNT PAS-B* (355-470, E362R) domains were expressed and purified as previously 

described18. HIF-1α PAS-B (238-349) used for ITC and HIF-2α PAS-B used for NMR 

studies complexed with (2) were expressed with an N-terminal Gβ1 fusion tag23 and purified 

by Source-Q ion exchange and Superdex S75 size exclusion chromatography. For the 

HIF-1α PAS-B domain, the Gβ1 tag was not removed, as its retention improved the 

solubility of the purified PAS-B domain.

AlphaScreen protein reagents were expressed as GST-HIF-2α PAS-B* and His6-Gβ1-

ARNT-PAS-B*-FLAG fusions and purified with affinity (glutathione or Ni(II)) and 

Superdex S75 chromatography, equilibrated in AlphaScreen assay buffer (50 mM Tris (pH 

7.5), 100 mM NaCl; 1 mM dithiothreitol) and flash-frozen in liquid N2.

NMR analyses

Protein backbone resonance assignments for the HIF-2α PAS-B/compound (2) complex 

were determined using HNCO, HNCACB and CBCA(CO)NH spectra collected on a 

cryoprobe-equipped Varian Inova 600 MHz spectrometer from a sample of 300 μM 

U-13C,15N-HIF-2α PAS-B, 350 μM compound (2) and 0.4% DMSO in 10 mM d11-Tris pH 

7.3, and 20 mM NaCl buffer using NMRViewJ42. Data collected at a second condition (5 

mM MES, pH 6.5; 20 mM NaCl) were used to resolve ambiguities stemming from exchange 

broadening in a limited number of sites. Chemical shift differences (Fig. 2a,b) were 

calculated from backbone HIF-2α PAS-B 15N/1H assignments of the complex (here) and 

apo form9:
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AlphaScreen

Reactions were performed in microtiter plates containing 100 nM GST-HIF-2α PAS-B*, 

100 nM ARNT-PAS-B*-Flag, 20 mM Tris-Cl (pH 7.5), 100 mM NaCl, 1 mM DTT, 0.02% 

Tween-200, 1.5 pg/μl AlphaScreen Glutathione Donor Beads (PerkinElmer), and 1.5 pg/μl 

AlphaLISA anti-FLAG Acceptor Beads (PerkinElmer). Compound stocks (100X) were 

prepared in DMSO. Plates were incubated in the dark at room temperature with gentle 

rocking for 4 hr prior to data collection using an EnVision microplate reader (PerkinElmer). 

As a control, the individual PAS-B* domains were replaced by a single (doubly-tagged) 

GST-ARNT-PAS-B*-FLAG protein (230 nM) capable of recruiting both beads to induce an 

AlphaScreen signal.

NMR ligand binding assay

Compounds were titrated at 125 and 250 μM concentrations into samples of 200 μM 

uniformly 15N-labeled HIF-2α and ARNT PAS-B domains. Significant changes in peak 

intensity or locations in 15N/1H HSQC spectra indicated ligand binding.

Isothermal titration calorimetry of protein/small molecule complexes

Thermodynamic parameters of small molecule binding were determined using a MicroCal 

VP-ITC calorimeter. Protein solutions were extensively dialyzed against buffer (50 mM Tris 

(pH 7.5), 20 mM NaCl and 5 mM beta-mercaptoethanol), which was subsequently used to 

prepare a matched compound solution by dilution from a 50 mM compound stock in 100% 

DMSO. ITC data collected for compound (1) were acquired in 5.0% DMSO to improve 

compound solubility, while data for compound (2) was collected at ≤ 0.02% DMSO. Prior 

controls have demonstrated modest effects of 5% DMSO on measured thermodynamic 

parameters for HIF/ligand complexes, typically reducing affinities two to four fold17. Each 

isotherm was recorded by injecting 200 μM protein (syringe) into 5 – 10 μM solutions of 

compound (cell), accounting for dilution heats by subtracting data from a control titration of 

200 μM protein into a matched buffer-DMSO solution. Thermograms were fit to a single site 

binding model to extract equilibrium binding parameters.

Crystallography

Compound (2) was co-crystallized as a ternary complex with the HIF-2α/ARNT PAS-B* 

heterodimer17,18. Briefly, HIF-2α/ARNT PAS-B* heterodimers were crystallized in the 

presence of a stoichiometric excess of (2). Ternary complex crystals grew in hanging drops 

of 2 μl of 300 μM ternary complex and 2 μl of precipitant (100 mM Bis-Tris (pH 5.5–6.0), 

20 mM NaCl, 19–23% PEG 3350), which was supplemented with 25% PEG400 prior to 

freezing in liquid nitrogen. X-ray diffraction data were collected at the Advanced Photon 

Source (Argonne National Laboratory, Argonne, IL), beamline ID-19 at 100 K using 

0.97937 Å X-rays, which were reduced and scaled with the HKL2000 software package43. 

The structures were determined, refined and validated using the PHENIX44 macromolecular 

crystallography software suite (version 1.7.2-869) in conjunction with the PRODRG2 web 

server45 to generate initial ligand coordinates, molecular modeling with COOT46, validation 

with MolProbity47, and additional analysis and figure preparation in PyMOL (Schrödinger, 

Inc.). The final structural model was refined with an occupancy of compound (2) at 0.7, with 
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final refinement statistics are presented in Supplementary Table 2 (coordinates deposited at 

RCSB with PDB code 4GHI). Calculated hydrogen atomic positions were added to protein 

and ligand coordinate files and employed in a “riding-hydrogen” mode. The final model 

demonstrates good stereochemical properties, as accessed by Ramachandran (100% favored) 

and Molprobility (3.17 (98%) clash score and 1.24 (96%) Molprobility scores) analyses. An 

Fo-Fo electron density difference map (Fig. 2c; Supplementary Fig. 12a) was calculated 

using difference structure factor amplitudes derived from the apo and ligand-bound 

diffraction data, with phases derived from the atomic coordinates of the apo protein 

heterodimer (PDB code: 3F1P18). Structure factor amplitudes were scaled using SCALEIT 

and maps were calculated using FFT, both from the CCP448 software suite. The homology 

model of HIF-1α PAS-B (Fig. 4a,b) was generated with MODELLER49 using the ligand-

free coordinates of HIF-2α PAS-B (3F1P).

Occupancies for sites demonstrating multiple conformers were optimized by phenix.refine 

including the HIF-2α PAS-B cavity-lining residue M252. As compound (2) demonstrates 

fractional (0.7) occupancy of binding sites in the crystal, both apo (M252-in) and compound 

(2)-bound (M252-out) conformations are represented in 2mFo-DFc density maps 

(Supplementary Figure 4). The M252-in conformation is not modeled in the final structure 

for clarity. Fractional occupancy of compound (2) is likely a consequence of steric 

constraints imposed by growing HIF-2α PAS-B*/compound (2) crystals under the same 

conditions previously used grow apo- heterodimer crystals. This approach might constrain 

compound-induced protein conformational changes associated with PAS-B* heterodimer 

disruption, reducing HIF-2α PAS-B*/compound affinities and ligand occupancies in the 

ternary complex.

Buried cavity identification

Solvent-inaccessible cavities were detected and volumes quantitated using an in-house 

Python-based software program developed specifically for locating internal, buried cavities 

(available upon request). The program uses a grid-based search to identify regions within the 

solvent-accessible molecular envelope where a 1.4 Å radius probe sphere, which 

approximates a water molecule, may be placed without sterically clashing with protein. 

Adjacent probe-occupied points were iteratively clustered into groups with successively 

finer grid spacing. At each stage, clusters that extend to the solvent are discarded. Finally, 

volumes of the contiguous clusters that remain were determined. This approach was applied 

to a non-redundant subset of the PDB generated based on sequence homology between X-

ray crystal structures of 2.5 Å or better resolution (generated by the NCBI VAST tool, non-

identical dataset = 32,263 chains as of February 2012). Cavities containing non-water 

HETATM records, commonly used for ligands and cofactors, were excluded from analysis. 

This analysis revealed 121,433 cavities with a mean volume of 38.9 Å3.

Cell culture

Human renal adenocarcinoma 786-0 and hepatocellular carcinoma Hep3B cells (AATC) 

were grown in DMEM/high glucose media (HyClone) supplemented with 10% (786-0) or 

15% (Hep3B) fetal bovine serum (Atlanta Biologicals), 20 mM HEPES buffer pH 7.4, 1 

mM sodium pyruvate, 100 U/ml penicillin and 100 μg/ml streptomycin (Invitrogen). 
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Hypoxic experiments performed in a dedicated incubator (Coy Laboratory Products Inc) 

containing 1% O2, 5% CO2 and balance N2. Compounds were added in DMSO (1% final).

RT-PCR

Cells were collected with Trizol (Invitrogen) and total RNA was extracted using the RNeasy 

Mini Kit (Qiagen). Following DNase treatment, cDNA was synthesized using SuperScript II 

Reverse Transcriptase (Invitrogen). Quantitative real time RT-PCR was performed in 

triplicate using iTaq SYBR Green Supermix with ROX (Bio-Rad) with the 7900HT 

detection system and software Prism (Applied Biosystems, Inc.). Data were analyzed using 

the comparative CT method50 and expression levels were normalized to cyclophilin B. The 

data for each gene is the mean of three values determined from three independently 

harvested sets. The following primers sets were used to amplify Cyclophilin B 

(TGCCATCGCCAAGGAGTAG; TGCACAGACGGTCACTCAAA), HIF-2α 

(GCGACAATGACAGCTGACAA; CAGCATCCCGGGACTTCT), EPO 

(GAGGCCGAGAATATCACGACGGG; TGCCCGACCTCCATCCTCTTCCAG), HIF-1α 

(TGCCACATCATCACCATATAGAGA; TCCTTTTCCTGCTCTGTTTGG), PGK1 

(TTAAAGGGAAGCGGGTCGTTA; TCCATTGTCCAAGCAGAATTTGA), and VEGF1 

(CTACCTCCACCATGCCAAGTG; TGATTCTGCCCTCCTCCTTCT).

Co-immunoprecipitation

Nuclear protein extraction and co-IP experiments were performed as previously reported51. 

The following antibodies were used for immunoblot analysis: anti-HIF-1α mouse 

monoclonal antibody (BD Biosciences); anti-EPAS/HIF-2α mouse monoclonal antibody 

(Novus Biological); anti-ARNT/HIF-1β mouse monoclonal antibody (Novus Biological).

Chromatin Immunoprecipitation (ChIP)

Experiments were performed as described52 using the ChIP-IT Express Enzymatic Kit 

(Active Motif) according to the manufacturer’s protocol. ChIP assays were carried out using 

normal mouse IgG (Santa Cruz Biotechnology), anti-HIF-2α mouse monoclonal antibody 

(Novus Biologicals), or anti-HIF-1α mouse monoclonal antibody (BD Biosciences). 

Genomic DNA precipitated from a 15 cm plate cultured in the indicated manner for each 

treatment, and maintained in parallel to those samples used in gene expression analyses, was 

analyzed by qPCR using the primers for a human EPO enhancer amplicon 

(ACTCCTGGCAGCAGTGCAGC; CCCTCTCCTTGATGACAATCTCAGC). The 

captured genomic DNA was measured by normalizing with that of input material and 

compared between samples as previously reported25,52.

786-0 Metabolic Stability Assays

786-0 cells from ATCC (Manassas, VA) were plated at 5000 cells/well in 50 μL in 96-well 

plates and allowed to adhere overnight in standard RPMI growth media containing 10% 

FBS, 2 mM glutamine, 1X penicillin streptomycin, 10 mM HEPES, 1 mM sodium pyruvate, 

and 1X non essential amino acids (all purchased from Life Technologies, Grand Island, 

NY). Compound (2) was dissolved in DMSO at 2 mM, further diluted to 4 μM in HI media, 

and added to the cells in 50 μL so that the final compound concentration was 2 μM. Two 
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additional wells containing compound and no cells were plated to serve as time 0 (C0) and 

endpoint solvent control (Cep). The cells were then placed in a 37°C, 5% CO2 incubator. At 

the timepoints indicated, the media was collected, the cells washed once with PBS and the 

wash added to the media, and finally the cells were trypsinized and the contents added to the 

tube containing media and PBS. An equal volume of methanol added to lyse the cells and 

precipitate proteins. The samples were incubated 10′ at RT and then spun at 15,000× g for 5 

min in a microcentrifuge. The supernatant was analyzed by LC-MS/MS. Analytical methods 

were developed for compound (2) using an Applied Biosystems (Foster City, CA) 3200-

QTrap, a combination triple quadrupole/ion trap instrument. The parent ion and the two 

most prominent daughter ions were followed to confirm compound identity, although only 

the most abundant daughter was used for quantitation. An Agilent (Santa Clara, CA) C18 

XDB column, 5 micron packing 50 × 4.6 mm size was used for chromatography.

A modified method53 was used for determination of metabolic stability half-life by substrate 

depletion. Briefly, a “% recovered” number was calculated for the C0 and Cep samples 

plated in media only to control for compound-related issues such as solubility and stability 

in the assay media. This value was obtained by dividing Cep LC-MS/MS peak area by the C0 

peak area and multiplying by 100. Typically, acceptable values are between 70-140%54 

although half-lives are reported for compounds with lower % recovered numbers. A “% 

remaining” value was used to assess metabolic stability of a compound over time. The LC-

MS/MS peak area of the incubated sample at each time point was divided by the LC-MS/MS 

peak area of the time 0 (T0) sample and multiplied by 100. The natural log (ln) of the % 

remaining of compound was then plotted versus time (in min) and a linear regression curve 

plotted going through y-intercept at ln(100). The metabolism of some compounds fail to 

show linear kinetics at later time point, so those time points are excluded. The half-life (T½) 

was calculated as T½ = 0.693/slope.

Additional chemical synthetic information and chemical characterization data are provided 

in the Supplementary Note.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Biophysical characterization of the HIF-2α PAS-B-2 complex
(a) The crystal structure of the ternary complex of HIF-2 PAS-B* with compound (2) 

reveals ligand binding into the internal cavity sequestered from bulk solvent within the 

HIF-2α PAS-B domain (gray). For clarity, the ARNT-PAS-B* portion of the protein 

heterodimer is not shown, and a portion of the HIF-2α PAS-B* surface (blue) has been cut 

away to reveal the internal binding site. (b) Protein-ligand contacts as revealed by expanded 

view of the compound (2) binding site, showing that it is composed of a mix of polar and 

hydrophobic residues. (c) 15N/1H HSQC spectra of 200 μM 15N HIF-2α PAS-B (main 

panel) and 15N-ARNT PAS-B (inset) in the presence of 0, 125 and 250μM (2) (red to blue) 

demonstrate the specific binding of compound (2) to HIF-2α PAS-B. One-dimensional 

traces of spectra (at locations shown by dashed lines) demonstrate slow exchange binding 

behavior of (2) to HIF-2α, and no binding to ARNT PAS-B. (d) ITC measurements of (2) to 

HIF-2α PAS-B quantitate the binding affinity and 1:1 stoichiometry.
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Figure 2. Binding of (2) into HIF-2α PAS-B affects the heterodimeric β-sheet interface between 
HIF PAS domains
(a) Backbone 1H and 15N chemical shift differences between apo-and (2)-bound states are 

mapped onto the HIF-2α PAS-B primary and secondary structures. The yellow-to-red color 

scale shown on the right is used in (b) and Supplementary Figure 6. (b) Ligand-induced 

chemical shift perturbations are mapped onto the HIF-2α PAS-B structure with spheres 

denoting HIF-2α Cα sites within 8 Å of ARNT PAS-B. View is approximately 180° rotated 

about the y (vertical) axis from the view in Figure 1a. (c) Ligand-induced conformational 

changes in similar regions are also evident from X-ray diffraction data, as revealed by a 

Fo(liganded) -Fo(apo) electron density difference map (rendered at 4σ; positive density in 

green, negative density in red).
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Figure 3. Compound (2) disrupts HIF-2 heterodimerization in vitro
(a) Addition of (2) blocks heterodimer assembly between purified recombinant HIF-2α 

PAS-B* and ARNT PAS-B* heterodimer (squares) as assessed in the AlphaScreen Assay. 

No effect was observed in control reactions employing a single (doubly-tagged) GST-

ARNT-PAS-B*-FLAG protein capable of recruiting both beads to induce an AlphaScreen 

signal (circles). Assays were performed in triplicate and the error bars represent ± SD. RU = 

relative units. (b) Compound (2) disrupts heterodimerization of the full length HIF-2 

transcription factor. Nuclear extracts prepared from hypoxic Hep3B cells expressing ARNT, 

HIF-1α and HIF-2α (input) were incubated with increasing concentrations of (2). 

Immunoblot analysis indicates amounts of HIF polypeptides immunoprecipitated in the 

absence (-Ab) or presence of an anti-ARNT antibody.
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Figure 4. Compound (2) binds selectively to HIF-2α over HIF-1α PAS-B
(a) Comparison of internal cavity sizes (blue) identified by a 1.4 Å probe within our HIF-2α 

PAS-B crystal structure (PDB code 3F1P)18 (top) and a homology model of HIF-1α PAS-B 

domain based on this structure. Sequence differences amongst these two closely related 

paralogs reduce the expected size of the HIF-1α PAS-B cavity. (b) The HIF-1α PAS-B 

model suggests that several sequence differences among these paralogs leads to the 

placement of bulkier side chains (red) within the HIF-1α PAS-B core. These substitutions 

appear to shrink the cavity observed in HIF-2α PAS-B (HIF-2α PAS-B cavity rendered as a 

blue surface, superimposed on the HIF-1α PAS-B model). Amino acid differences are 

indicated with the first designating HIF-2 amino acid identity, and HIF-1 identity by the last 

letter. (c) ITC measurements of a HIF-1α PAS-B-compound (2) titration does not show 

detectable protein-ligand interaction under the same conditions used to observe binding with 

HIF-2α PAS-B (Fig. 1d).
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Figure 5. Compound (2) selectively antagonizes HIF-2 activity in cultured cells
While incubation of (2) with normoxic 786-0 cells has no effect on HIF-2α expression (a), 

RT-PCR reveals that expression of HIF-2 target genes are antagonized by (2) in both 786-0 

(a) and Hep3B (b) cells. (c) Compound (2) selectively disrupts DNA binding by HIF-2, but 

not HIF-1, in a ChIP assay. The RT-PCR data for each gene are the mean of three values 

determined from three independently harvested sets and the error bars represent ± SD. 

Differences between paired values are statistically significant as determined by t-test. * = p 

< 0.01; ** = p < 0.001
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