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Abstract: Cre/loxP recombination is a well-established technique increasingly used for modifying
DNA both in vitro and in vivo. Nucleotide alterations can be edited in the genomes of mammalian
cells, and genetic switches can be designed to target the expression or excision of a gene in any tissue
at any time in animal models. In this study, we propose a system which worked via the Cre/loxP
switch gene and DsRed/emGFP dual-color fluorescence imaging. Mesenchymal stem cells (MSCs)
can be used to regenerate damaged tissue because of their differentiation capacity. Although previous
studies have presented evidence of fusion of transplanted MSCs with recipient cells, the possibility
of fusion in such cases remains debated. Moreover, the effects and biological implications of the
fusion of MSCs at the tissue and organ level have not yet been elucidated. Thus, the method for
determining this issue is significant and the models we proposed can illustrate the question. However,
the transgenic rats exhibited growth slower than that of wild-type rats over several weeks. The
effects on the stemness, proliferation, cell cycle, and differentiation ability of bone marrow–derived
rat MSCs (BM-rMSCs) from the models were examined to ensure our design was appropriate for the
in vivo application. We demonstrated that MSC surface markers were maintained in DsRed and Cre
transgenic rMSCs (DsRed-rMSCs and Cre-rMSCs, respectively). A WST-8 assay revealed decreased
proliferative activity in these DsRed-rMSCs and Cre-rMSCs; this result was validated through cell
counting. Furthermore, cell cycle analysis indicated a decrease in the proportion of G1-phase cells
and a concomitant increase in the proportion of S-phase cells. The levels of cell cycle–related proteins
also decreased in the DsRed-rMSCs and Cre-rMSCs, implying decelerated phase transition. However,
the BM-rMSCs collected from the transgenic rats did not exhibit altered adipogenesis, osteogenesis,
or chondrogenesis. The specific markers of these types of differentiation were upregulated after
induction. Therefore, BM-rMSCs from DsRed and Cre transgenic models can be used to investigate
the behavior of MSCs and related mechanisms. Such application may further the development of
stem cell therapy for tissue damage and other diseases.

Keywords: differentiation; Cre and loxP system; mesenchymal stem cells; cell fusion; stemness;
proliferation; cell cycle progression

1. Introduction

Mesenchymal stem cells (MSCs) are multipotent cells capable of self-renewal, and
they can give rise to tissue-specific cell types [1–3]. Owing to MSCs having been found as a
potential source for distinct cells after differentiation, many treatments are being carried
out in animal experiments and clinical trials [4–8]. Cell fusion is regarded as a powerful
attempt toward tissue regeneration. It repeatedly happens during organ development and
in adults [9–11]. Additionally, cell fusion after stem cell treatment has been discovered in
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neurons, pancreatic cells, and other tissues [12–16]. However, the significance of cell fusion
has not been fully explored, and the possibility of MSC transdifferentiation after stem
cell therapy in damaged tissues remains uncertain [17–19]. To date, most of the methods
for the in vivo assessment of fusion rely on tissue procurement and histological analysis.
Therefore, an in vivo trafficking system should be developed. Molecular imaging can be
used to accurately detect fusion in vivo over time and enable the trafficking of MSCs and
in vivo monitoring of molecular interactions, which are useful practices in regenerative
medicine [20,21].

To detect the fusion of MSCs after their transplantation into organs, a Cre/loxP-based
model was proposed in this study; the concept of the model is shown in Figure S5. A gene
cassette was used to encode a green fluorescent protein gene adjacent to a floxed segment
of the DsRed gene (which encodes red fluorescent protein) with a stop codon. When cells
expressing this cassette fuse with cells expressing the Cre recombinase, cleaving occurs at
the loxP site, removing the DsRed gene and allowing the initiation of transcription of the
green fluorescent gene.

Hamilton and Abremski discovered a site-specific recombinase, Cre recombinase, in
the P1 phage in 1984 [22]. This recombinase identifies gene sequences by using specific
permutations of the loxP identification sequence to catalyze genetic recombination. The Cre
recombinase and loxP sequence are both necessary for the initiation of the recombination
reaction. Hence, this system can be applied in different ways such as fate mapping and
gene regulation [23–26]. It was well known that Cre and loxP have a unique role in DNA
recombination. However, there have some concerns about the use of this system. Several
studies indicated that the Cre recombinase expression has an impact on DNA damage,
growth inhibition, and cell death in mammalian cells [27–29]. Since the Cre gene and loxP
sequence do not occur naturally in MSCs, the effects of the Cre gene and the loxP sequence
in MSCs need to be investigated.

In the present study, a growth-inhibitory effect was observed in the transgenic rats
compared with the wild-type rats, prompting us to understand if the in vivo application of
our design was suitable and whether the characteristic of stem cells was not altered by trans-
genes. Therefore, we aimed to examine stemness, cell proliferation, cell cycle progression,
and cell differentiation of BM-rMSCs obtained from DsRed and Cre transgenic models.

2. Materials and Methods
2.1. Animal Care and Protocol Approval

Two transgenic rat models, SD-Tg (UBC-DsRedT3-emGFP)18Narl and SD-Tg (UBC-
Cre/ERT2)7Narl, were created using Sprague–Dawley rats purchased from the National
Laboratory Animal Center (Taipei, Taiwan). The protocol followed for breeding and care
was reviewed and approved by the Institutional Animal Care and Use Committee of
Taipei Tzu Chi General Hospital, Buddhist Tzu Chi Medical Foundation (102-IACUC-024).
The rats were kept under conditions recommended in the National Institutes of Health
Guidelines on the Use of Laboratory Animals.

2.2. Collecting and Cultivation of Bone Marrow–Derived Mesenchymal Stem Cells (MSCs)

Both femurs and tibias were obtained from male Sprague–Dawley rats aged 6–8 weeks.
The bones were imbedded in 75% alcohol for 1–2 min and immersed in a phosphate-
buffered saline (PBS) containing 100 µg/mL streptomycin and 100 U/mL penicillin; this
was performed in triplicate. The bones were them transferred to high-glucose Dulbecco’s
modified Eagle’s medium (DMEM; Gibco, BRL, Grand Island, NY, USA) with 10% fetal
bovine serum (FBS) supplement (HyClone, Logan, UT, USA), and adding 100 µg/mL
streptomycin, 100 U/mL penicillin, and 4 mM L-glutamine (Gibco). For bone marrow
collection, the bone marrow cavity was carefully exposed and injected with a culture
medium through a 23-guage needle. The bone marrow tissue was centrifuged at 1500 rpm
for 5 min after the addition of Ficoll–Paque PREMIUM (GE Healthcare, Munich, Germany).
The supernatant was removed and centrifuged at 2400 rpm for 20 min, and the cell layer
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was harvested and resuspended in DMEM. The cell-containing medium was centrifuged
again at 1500 rpm for 5 min and plated in the culture medium containing DMEM and
antibiotics. After 24 h, the attached cells were collected and plated in a culture dish with
fresh culture medium. We changed the culture medium every 2–3 days, and the plated
cells were passaged when the confluence reached 80%.

2.3. MSCs Transfection and Transduction

Bone marrow–derived rat MSCs (BM-rMSCs) were plated in a culture dish supple-
mented with the aforementioned culture medium. Lentiviral constructs were used to label
the BM-rMSCs and served as experimental controls. The lentiviral vector pLAS5w.PtRFP-
I2-Puro was procured from the RNAi Consortium at Academia Sinica. Cells (293T cells;
American Type Culture Collection, CRL-11268) grown in a culture medium were infected
with viral particles; 5 × 104 BM-rMSCs were seeded in 35 mm well plates and left for
24 h. The cells were transduced at a multiplicity of infection (MOI) of 50. Viral production
was executed according to the procedure specified in Nature Protocols [30]. After viral
packaging and infection, all the cells were placed in a culture medium containing 1 µg/mL
puromycin (Sigma, St. Louis, MO, USA) for at least 10 days. The expression of RFP was
revealed through flow cytometry and Western blotting.

2.4. Transgene Expression of Transgenic Rats

The transgenic rats were killed through CO2 asphyxiation, and the transgene expres-
sion of the brain, spleen, liver, kidney, and BM-rMSCs was examined through reverse
transcription polymerase chain reaction (RT-PCR), immunohistochemistry (IHC), or West-
ern blotting. The experimental procedures are detailed in the following sections.

2.5. Phenotypic Characterization

To determine whether the BM-rMSCs maintained their phenotypes, growth after
three passages was measured through immunofluorescence staining. The BM-rMSCs were
plated on a Lab-Tek eight-well chamber slide (Thermo Fisher, Ottawa, Canada) for 24 h
and maintained in a culture medium at a concentration of 2 × 103 cells/well. The cells
were then washed with PBS before being added to a solution of 4% paraformaldehyde
(Sigma-Aldrich, St. Louis, MO, USA) and PBS for 10 min. Nonspecific binding was blocked
using a 1% bovine serum albumin (BSA) solution for 1 h at room temperature. The BM-
rMSCs were incubated overnight at 4 ◦C with four surface markers: CD29 (integrin b1 chain
1:200), CD90 (1:200), CD45 (1:200), and CD11b/c (1:200; all from Biolegend, San Diego, CA,
USA The cells were washed and incubated with either fluorescein isothiocyanate (FITC)-
conjugated secondary anti-rabbit or anti-mouse IgG antibodies (Thermo Fisher Scientific)
at room temperature for 90 min. Subsequently, the slides were washed by PBS and stained
with a DNA-binding dye, 4′,6-diamidino-2-phenylindole (DAPI; 5 µg/mL; Invitrogen,
Waltham, MA, USA), in PBS for 10 min at room temperature. The cell imaging was
captured using an inverted microscope (Eclipse TS100; Nikon, Tokyo, Japan). In addition,
flow cytometry was performed to detect the cell surface markers. The cells were plated at
200 cells/cm2 on fibronectin-coated culture dishes and harvested at approximately 70%
confluence. Thereafter, 105–106 cells were incubated with FITC-conjugated anti-CD29, anti-
CD90, anti-CD45, and anti-CD11b/c antibodies for 30 min at 4 ◦C under dark conditions.
The selected antibodies were used at 1:200 dilution. Isotype-matched irrelevant polyclonal
antibodies were used as negative controls. The cells were washed and resuspended in cell
staining buffer (Biolegend, San Diego, CA, USA) and then analyzed using a flow cytometer
(BD Biosciences, San Jose, CA, USA). Finally, the obtained data were analyzed using FlowJo
software (BD Life Sciences).



Cells 2022, 11, 2769 4 of 19

2.6. Cell Proliferation Analysis

The effects of the transgenes on BM-rMSC proliferation and viability were tested
through WST-8 cell proliferation and trypan blue exclusion assays. The WST-8 cell prolifer-
ation assay (ab228554; Abcam, Boston, MA, USA) was performed based on the manufac-
turer’s instructions. Cells were seeded in 96-well plates at the number of 5 × 103 cells/well.
Each cell was assayed in triplicate. The cells were then maintained for 24 h (day 1), 48 h
(day 2), and 72 h (day 3); subsequently, 10 µL of WST-8 reagent was added to each well. The
reaction proceeded for 1.5 h at 37 ◦C under 5% CO2. The absorbance value of each sample
at 470 nm was detected using a fluorescence plate reader. BM-rMSCs were seeded into
96-well culture plates at 105 cells/well in triplicate and then incubated at 37 ◦C under 5%
CO2 for the trypan blue exclusion assay. After 1, 3 and 5 days, the cells were stained with a
0.4% trypan blue solution. The viable cells were enumerated using an EVE automatic cell
counter (NanoEnTek, Seoul, Korea) (Figure S4) with a hemocytometer.

2.7. Cell Cycle Progression

After the BM-rMSCs were harvested through trypsinization, they were washed twice
by PBS and used 70% ethanol for fixation at −20 ◦C for at least 1 day. The fixed cells were
then washed with ice-cold PBS and stained with propidium iodide solution (Biolegend) in
the presence of 100 µg/mL RNase A (Sigma) for 30 min under dark conditions. The cell
cycle progression was analyzed using a flow cytometer (BD Biosciences) and Multicycle
AV software (De Novo Software, Glendale, CA, USA).

2.8. Western Blotting

The cells were lysed in a radioimmunoprecipitation assay buffer containing protease
inhibitor cocktail (Roche, Mannheim, Germany). Pierce Coomassie Protein Assay (Bradford,
Thermo Fisher Scientific, Waltham, MA, USA) was applied to measure the concentrations of
protein extracts. Aliquots of protein extracts (40 µg/lane) were subjected to sodium dodecyl
sulfate–polyacrylamide gel electrophoresis and transferred to phosphatidylcholine mem-
branes (Sartorius, Göttingen, Germany). The membranes were blocked using skim milk
and separately incubated overnight at 4 ◦C with primary antibodies against RFP (1:1000,
MA5-15257, Thermo Fisher Scientific), Cre (1:1000, ab188568, Abcam), CDK4 (1:1000, MA5-
12984, Thermo Fisher Scientific), cyclin D1 (1:200, MA5-16356, Thermo Fisher Scientific),
cyclin A2 (1:500, 18202-1-AP, Proteintech), cyclin B1 (1:500, 55004-1-AP, Proteintech), and
β-actin (1:5000, MA5-15739, Thermo Fisher Scientific). Subsequently, the membranes were
probed using HRP-conjugated rabbit/mouse anti-IgG for 1 h at room temperature. Finally,
protein bands were detected through enhanced chemiluminescence (ECL; PerkinElmer Life
Science, Hopkinton, MA, USA) using a UVP Biospectrum (UVP, LLC Upland, CA, USA).

2.9. Immunohistochemistry (IHC)

Organ tissues were collected from transgenic rats and sectioned in the same direction.
The samples were fixed with 4% paraformaldehyde for 1 h at room temperature and
incubated with different percentages of dehydration buffers and wax to prepare paraffin-
embedded sections (thickness of 6 µm). The tissue sections were deparaffinized in Sub-X
Xylene Substitute (Leica, Richmond, CA, USA) and then incubated in Trilogy (Cell Marque,
Rocklin, CA, USA) at 121 ◦C for 10 min for rehydration and antigen retrieval. Endogenous
peroxidase was blocked using 0.3% hydrogen peroxide for 10 min. The tissue slides were
washed with 1× Phosphate-Buffered Saline, 0.1% Tween 20 Detergent (PBST), and blocked
with 5% BSA at room temperature for 1 h. The slides were then incubated overnight with
antibodies at 4 ◦C. The slides were again washed with PBST, treated with the EnVision kit
(Agilent Technologies, Santa Clara, CA, USA), and counterstained with hematoxylin and
eosin. All the cover slides were observed through an Eclipse TE2000-U microscope (Nikon,
Melville, NY, USA). Negative controls treated with only 5% BSA were also created.
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2.10. Cell Differentiation Capacitiy

The capacity of BM-rMSCs to undergo adipogenic, osteogenic and chondrogenic dif-
ferentiation was analyzed. BM-rMSCs from the third passage were used in the experiments.
To analyze adipogenic and osteogenic differentiation, BM-rMSCs collected from the trans-
genic rats or obtained through RFP transduction were plated in a six-well culture plate at
a density of 2.5 × 104 cells/cm2. When the cells reached 40–50% confluence, adipogenic
and osteogenic differentiation was initiated using StemXVivo Osteogenic/Adipogenic
Base Media (CCM007, Bio-Techne, Minneapolis, MN, USA), with StemXVivo Adipogenic
Supplement (CCM011, Bio-Techne) and StemXVivo Mouse/Rat Osteogenic Supplement
(CCM009, Bio-Techne), respectively. The induction medium was replaced every 2–3 days,
with caution taken not to disturb the cell monolayer. After 2–3 weeks, the cells were
fixed with 4% paraformaldehyde for 30 min at room temperature (RT) and rinsed twice
with PBS. To detect lipid droplet formation, histochemical staining was performed with
0.3% Oil Red O (Cod. O1391, Sigma-Aldrich). For analysis of osteogenic differentiation,
calcium precipitates were analyzed with 40 mM Alizarin Red S (pH 4.1; Cod. TMS-008-C,
Sigma-Aldrich). Subsequently, the cultures were washed three times and washed with
PBS to remove nonspecifically bound stain. For induction of chondrogenic differentiation,
fresh rMSCs were placed in a 15 mL centrifuge tube at a density of 5 × 104 cells/cm2. The
induction culture was prepared using StemXVivo Chondrogenic Base Media (CCM005,
Bio-Techne) with StemXVivo Rat Chondrogenic Supplement (CCM020, Bio-Techne), which
was replaced every 3 days for the cells to aggregate and form spherical cell pellets; these
cell pellets were fixed, sectioned, and stained with Alcian Blue 8G (Cod. TMS-010-C,
Sigma-Aldrich) to detect aggrecan, an indicator of cartilage formation. The morphology of
the differentiated cells was imaged through inverted microscopy (Eclipse TS100; Nikon,
Tokyo, Japan).

2.11. Semi-Quantitative Polymerase Chain Reaction

Differentiation was complete after 2–3 weeks, after which time the cells should exhibit
the induced morphological changes. All the rMSCs were rinsed three times with PBS,
and the attached cells were lysed with Trizol reagent (Thermo Fisher Scientific). After
solubilization, chloroform was added, the supernatant (upper phase) containing the total
RNA was transferred, and an equal volume of 100% ethanol was added. Subsequently,
precipitation, washing, and elution were performed using Direct-zol RNA MiniPrep Kits
(Zymo Research, CA, USA) according to the manufacturer’s protocol. The extracted total
RNA was subjected to reverse transcription with SuperScript III reverse transcriptase
(Invitrogen, Carlsbad, CA) to obtain complementary DNA. RT-PCR was performed using
the Applied Biosystems 7900HT Fast Real-Time PCR System (Thermo Fisher Scientific).
The cycling conditions were tested and further optimized for distinct sequences. PCR was
performed for different numbers of cycles; expression levels were normalized to those of
β-actin and analyzed using ImageJ v1.48 (National Institutes of Health, Bethesda, MA,
USA). The forward and reverse primers used for genes examined are listed in Table S2. The
β-actin gene was used as an internal control in all PCR experiments.

2.12. Statistical Analyses

Data presented are the mean ± standard error of the mean (SEM) from at least three
biological replicates. Analysis of variance (ANOVA) in GraphPad Prism 8 (GraphPad
Software, San Diego, CA, USA) was used to identify statistical differences.

3. Results
3.1. Expression Analysis of DsRed and Cre from Transgenic Rats

To assess DsRed and Cre expression in organ tissues and BM-rMSCs, we performed
IHC, RT-PCR, and Western blotting (Figure 1). Through IHC, DsRed and Cre expression
was detected in several organs, including the brain, liver, kidney, and spleen. However,
DsRed and Cre expression was nearly undetectable in wild-type (WT) tissue (Figure S2).
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Moreover, fluorescence microscopy was used to examine red fluorescence in the DsRed
specimens, as illustrated in Figure S3, and in various organ tissues. Similarly, the DsRed
and Cre mRNA and protein levels were expressed in both the organ tissue and BM-rMSCs.
The mRNA and protein levels were further quantified, respectively, as shown in the panel
below. Although the expression of transgenes in several organs had some differences, these
results indicated the successful expression of DsRed and Cre in transgenic rats, enabling
further investigation.
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Figure 1. Transgene expression in organ tissues and BM-rMSCs. (A) IHC results for RFP and Cre
antibodies. (B) RT-PCR results indicating transgene mRNA levels. Relative mRNA expression was
further quantification (below panel). (C) Western blotting results for transgene protein levels in
several organs and BM-rMSCs. Relative protein expression was further quantified (below panel).
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3.2. Identification of RFP Overexpression in BM-rMSCs

To elucidate the effects of the transgenes on differentiation capacity, we transduced
RFP gene into BM-rMSCs using a lentivirus for comparison. After puromycin selection was
performed for 14 days, RFP mRNA and protein levels were detected through RT-PCR and
Western blotting, respectively. As illustrated in Figure S1A,B, RFP overexpression was de-
tected in the transfected cells but not in the control cells. Furthermore, the red fluorescence
signal from the RFP-transduced cells was analyzed using both fluorescence microscopy and
flow cytometry (Figure S1C,D); both results indicated that RFP was successfully generated
through lentiviral transduction.

3.3. Characterization of RFP-, DsRed- and Cre-BM-rMSCs

Transduction and genetic modification may lead to an imbalance of cellular functions.
Stemness, a notable characteristic of MSCs, was evaluated in terms of the surface markers
CD29, CD90, CD45, and CD11b/c. As the results of flow cytometry illustrate in Figure 2A,
isotype control revealed extremely low levels (<0.7%) in control rMSCs, RFP-rMSCs, DsRed-
rMSCs, and Cre-MSCs, indicating that the CD29, CD90, CD45, and CD11b/c stainings
were reliable. In the control rMSCs, RFP-rMSCs, DsRed-rMSCs, and Cre-rMSCs, the
percentages of the positive markers CD29 and CD90 were greater than 94.8%, whereas the
percentages of the negative markers CD45 and CD11b/c were less than 0.8%. Furthermore,
the immunofluorescence results (Figure 2B) indicated high CD29 and CD90 expression but
the absence of the CD45 and CD11b/c surface markers. These data indicated that stemness
was retained in the RFP-rMSCs, DsRed-rMSCs, and Cre-rMSCs, and no differences in the
expression of surface markers were observed after transduction or genetic modification.
Additionally, to elucidate the cause of the growth difference between the WT and transgenic
rats (Table S1), we analyzed cell growth by using the WST-8 assay, which analyzes cell
proliferation on the basis of metabolic activity. The proliferation rate of distinct BM-rMSCs
is illustrated in Figure 2C. The proliferation of the RFP-rMSCs, DsRed-rMSCs, and Cre-
rMSCs obtained from the transgenic rats increased over time. However, the proliferation
rates of the DsRed-rMSCs and Cre-rMSCs were remarkably lower than those of the control
and RFP-rMSCs. The WST-8 assay revealed that the Cre-rMSCs had lower metabolic
activity than the DsRed-rMSCs had after 1, 2 and 3 days. The growth differences (Table S1)
were corroborated by the results of the trypan blue exclusion assay (Figure 2D), which
indicated cell viability. The viable numbers of control and RFP-rMSCs increased notably,
whereas the viable numbers of DsRed-rMSCs and Cre-rMSCs did not. In summary, these
results suggest that the DsRed-rMSCs and Cre-rMSCs had both compromised proliferation
and elevated cell death.
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Figure 2. Stemness and proliferation assays of various rMSCs. (A) Control cells, RFP-rMSCs, DsRed-
rMSCs, and Cre-rMSCs immunophenotyped for CD29, CD90, CD45, and CD11b/c through flow
cytometry. The x-axis displays a single measurement parameter (relative fluorescence intensity). The
y-axis displays the number of events (cell count). (B) Immunofluorescence of cells with different
surface markers (green); nuclei were stained with DAPI (blue). (C) WST-8 proliferation assay.
(D) Viable cell numbers counted through trypan blue exclusion assay. Data are representative of three
independent experiments with similar results. Error bar represents SEM. The confidence interval was
95% considering the multiple comparisons between groups: ** p < 0.01 and *** p < 0.001.

3.4. Transgenes Hindered Cell Cycle Progression

To analyze the mechanism through which the transgenes contributed to the decelera-
tion of cell growth, we performed a cell cycle assay. Flow cytometry (Figure 3A,B) revealed
that, in the control rMSCs, 86.9% ± 0.6% of the cells were in the G0/G1 phase, 5.6% ± 0.8%
were in the S phase, and 7.5% ± 1.3% were in the G2/M phase. However, the percentage
of S phase cells in the DsRed-rMSCs and Cre-rMSCs was much higher. Although the
percentage of DsRed-rMSCs and Cre-rMSCs in the G0/G1 phase decreased dramatically,
the difference between the percentages of DsRed-rMSCs and Cre-rMSCs in the G2/M phase
was negligible. Because the populations of these cells in the G0/G1 and S phases were
lower and higher respectively than those of the control rMSCs, we assessed the changes
in the levels of proteins encoded by cell cycle–related genes. As displayed in Figure 3C,
the levels of cyclin D1, cyclin A2, cyclin B1, and CDK4 decreased in the DsRed-rMSCs and
Cre-rMSCs. These results indicated that the transgenes hindered the cell cycle of the rMSCs,
at least partly, by inhibiting the transition from the G1 to the S phase.

3.5. The Differentiation Effect of BM-rMSCs Collected from Transgenic Rats

MSCs are characterized by their unique ability to self-renew and to differentiate into
multiple cell types, including adipocytes, osteocytes, and chondrocytes. We examined the
capacity of these BM-rMSCs to differentiate into traditional lineages. After adipogenic,
osteogenic, and chondrogenic induction in corresponding media for 21 days, the BM-
rMSCs exhibited marked differences in morphology, as revealed by microscopic observation
(Figure 4A–C). Moreover, the differentiated BM-rMSCs were stained by several reagents
to identify the properties of different lineages. As illustrated in Figure 5A–C, evidence of
adipogenic, osteogenic, and chondrogenic differentiation was observed after staining with
Oil Red O for lipid droplets, Alizarin Red S for calcium deposits, and Alcian Blue for acidic
polysaccharides, respectively. To validate these data, we further analyzed lineage-specific
gene expression. Adipocyte protein 2 (aP2), a marker of adipocytes, was upregulated
after adipogenic induction (Figure 5D,E). Similarly, dickkopf-related protein 1 (DKK1)
was upregulated after osteogenic differentiation (Figure 5D,E). Type II collagen (formed
by homotrimers of collagen, type II, alpha 1 chains), a specific marker of chondrocytes
(Figure 5D,E), was also upregulated after chondrogenic induction. Thus, the results of
lineage-specific gene expression and phenotypic analyses indicated no influence on cell
differentiation capacity.
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Figure 3. Cell cycle analysis in DsRed- and Cre-BM-derived rMSCs. (A) Representative flow cy-
tometry results of control, RFP-, DsRed-, and Cre-BM-derived rMSCs. (B) Cell populations in each
phase were quantified using Multicycle software. (C) Expression levels of major regulators within
cell cycle using Western blotting. (D) Relative protein expression level was further quantification. Ex-
periments were performed in triplicate, and data were analyzed using analysis of variance (ANOVA).
Differences were considered significant at * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 4. Morphology of differentiated rMSCs. BM-rMSCs displayed traditional lineages in vitro.
All rMSCs were seeded in appropriate media for inducing differentiation. (A) rMSCs in adipogenesis-
inducing medium formed varying sizes of lipid droplets. (B) Maximum calcium deposition produced
by rMSCs grown in osteogenesis-inducing medium. (C) Chondrocyte pellet (ball) formed by rMSCs
cultured with chondrogenesis-inducing medium.
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Figure 5. Results of histochemical staining and RT-PCR analysis of differentiated rMSCs.
(A) Adipocytes stained with Oil Red O to detect lipid droplet formation. (B) Osteocytes stained with
Alizarin Red S to detect calcium precipitates. (C) Chondrocytes stained with Alcian Blue to detect
aggrecan. (D) Gene-specific primers used to detect mRNA. (E) Fold changes in mRNA expression of
differentiated cells, evaluated semiquantitatively. Scale bars represent 100 µm. Data are representa-
tive of three independent experiments and were compared through analysis of variance (ANOVA).
Differences were considered significant at ** p < 0.01, and *** p < 0.001.
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4. Discussion

In this study, RFP-rMSCs were created through the use of a lentiviral vector, which
enables integration into the host cell genome. After several days of puromycin selection
with RFP in BM-rMSCs, these RFP-rMSCs exhibited no differences from nontransfected
BM-rMSCs in cell morphology. RT-PCR revealed high exogenous mRNA production.
Furthermore, Western blotting revealed the RFP protein level to be high. Red fluorescence
was detected either through flow cytometry or microscopy. The RFP-rMSCs were used
as controls for comparing the effects of gene modification. In addition, distinct organ
tissues and BM-rMSCs obtained from the transgenic rats were analyzed to validate our
transgenic model. Moreover, immunophenotyping through flow cytometry and microscopy
revealed that the genetic modification with RFP, DsRed, and Cre did not alter the MSCs’
surface markers.

The results of the WST-8 and trypan blue exclusion assays indicated that the prolifera-
tion rates and viability of the DsRed-rMSCs and Cre-rMSCs were considerably lower than
those of the WT rMSCs. These results were validated through a cell cycle assay and Western
blot analysis. The cell cycle comprises the series of events resulting in the division of a
cell into two daughter cells; these events include the duplication of DNA and organelles
and the subsequent partitioning of the cytoplasm and other components into two daughter
cells through cell division. The G0/G1 phase is the nonproliferative or resting phase, DNA
replication occurs during the S phase, the cell is ready for division in the G2 phase, and
mitosis occurs in the M phase. According to our data, the DsRed-rMSCs and Cre-rMSCs
exhibited an extended S phase. At least two possible mechanisms participate in cell cycle
progression delay: The first one is that a distinct set of proteins that relay a cell from one
stage to the next need to be phosphorylated by kinase, and the second one is that a cascade
of checkpoints that monitor completion of crucial events and delay progression to the next
stage if necessary. On the other hand, cyclins require being tightly regulated during cell
cycle progression [31,32]. For instance, cyclin D1 is one of the first cyclins produced in the
cell cycle. Downregulation of cyclin D1 can retard the transition to the S phase; thus, cyclin
D1 plays a rate-limiting role in G/S transition [33,34]. Thus, our observations imply an ef-
fect of transgenic expression on cell proliferation, consistent with previous results. Overall,
the levels of cyclins at each time point are crucial, and alterations in cell cycle regulatory
proteins influence cell cycle progression and, consequently, stem cell proliferation.

The BM-rMSCs collected from the transgenic rats could be induced to differentiate
into adipocytes, osteocytes, or chondrocytes, as confirmed through staining with multi-
ple reagents [35–37] and through RT-PCR, which revealed increased mRNA expression
of adipogenic, osteogenic, and chondrogenic markers. Therefore, these results indicate
that transgenic DsRed and Cre expression does not affect the adipogenic, osteogenic, or
chondrogenic potential of MSCs.

The Cre/loxP system is extensively utilized for spatial or temporal regulation of gene
function in rats and mice [38–41]. In vivo observation of cell fusion or transdifferentiation
by using the Cre/loxP system has been performed and the Cre/loxP system is regarded
as a useful way [42–44]. Here, we proposed transgenic rat models by using the Cre/loxP
technology and DsRed/emGFP dual-color fluorescence to test the possibility of cell fusion
and transdifferentiation after the transplantation of BM-rMSCs into organs. Fusion or
transdifferentiation products can be detected through the IVIS (in vivo imaging system)
spectrum. Furthermore, the IVIS spectrum enables the imaging of bioluminescence intensity
throughout an animal, not only in regions of interest. Molecular imaging can be used to
locate Cre-expressing rMSCs after delivery in vivo, thus enabling imaging at desirable time
points. Nevertheless, the transgenic rats grew at a much slower rate than the WT rats, as
indicated by age and weight data (Table S1). This growth-inhibitory phenomenon was
consistent with the studies which showed that growth inhibition occurred as the expression
of Cre recombinase in mammalian cells. Although numerous studies have investigated the
overexpression of pluripotent genes in MSCs [45–49], few studies have explored transgenic
expression within transgenic models, particularly by using the Cre/loxP system. Therefore,
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we investigated BM-rMSCs obtained from transgenic rats to ensure the models were
suitable for in vivo application.

This study has a few limitations. First, the RFP-transduced rMSCs we used cannot
fully represent the effect on cell proliferation compared to transgenes with loxP sites. The
use of the same cassette but with the removal of loxP sites in rMSCs needs to be further
executed. Second, the evidence on disrupted cell cycle progression requires an advanced
investigation. The determination of cell cycle length is a key element in elucidating the
parameters of cell growth kinetics. Third, as data show in Figure 1, the transgene expression
level in distinct organs had some difference. Therefore, the use of this Cre/loxP-based
strategy and DsRed/emGFP dual-color fluorescence in conjunction with the IVIS spectrum
is noteworthy that this system may limit the application for detecting fusion products.
Furthermore, fusion products take time to generate signals. The DsRed gene and the stop
codon should be removed to initiate the transcription and translation of the GFP gene.
Otherwise, the aforementioned delay hinders the immediate detection of fusion. Thus, our
findings may underrepresent the actual frequency of cell fusion.

5. Conclusions

The proliferation of BM-rMSCs obtained using the Cre/loxP-based system decreased,
and cell cycle progression was hindered because of decreases in the levels of cell cycle–
related regulators. This effect was consistent with the inhibition in growth of transgenic
models. However, the stemness and differentiation ability of the BM-rMSCs of transgenic
rats were unaffected; thus, our models can aid in the understanding of the behavior of
MSCs after stem cell treatment.
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analysis of tissue organs in DsRed transgenic rats through visualization of fluorescent detection.
Figure S4: Schematic diagram of the analytical data for cell counting. Figure S5: Cre and loxP system
for testing the hypothesis of cell fusion or transdifferentiation in transgenic models. Table S1: Weight
to age-in-week comparison for wild-type and transgenic rats. Table S2: Primers used for reverse
transcription polymerase chain reaction for specific gene expression.
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