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Abstract
Nonviral gene delivery methods are advantageous over viral vectors in terms of safety, cost, and

flexibility in design and application, but suffer from lower gene transfer efficiency. In addition to

modifications to nucleic acid design and nonviral carriers, new tools are sought to enhance trans-

fection. Priming is the pharmacological modulation of transfection efficiency and transgene

expression, and has demonstrated transfection increase in several compounds, for example, chlor-

oquine and glucocorticoids. To develop a library of transfection priming compounds, a high-

throughput screen was performed of the NIH Clinical Collection (NCC) to identify clinical com-

pounds that prime polyethylenimine (PEI) transfection. HEK293T cells were treated with priming

compounds, then transfected with enhanced green fluorescent protein (EGFP)-encoding plasmid by

PEI. After 48-hr culture, primed and transfected cells were assayed for transfection, cell prolifera-

tion, and cell viability by fluorescence measurement of EGFP reporter, Hoechst 33342 nuclei stain,

and resazurin metabolic assay. From the microscope image analysis and microplate measurements,

transfection fold-changes were determined, and compounds resulting in statistically significant

transfection fold-change were identified. NCC compounds were clustered using PubChem finger-

print similarity by Tanimoto coefficients in ChemmineTools. Fold-changes for each compound were

linked to drug clusters, from which drug classes that prime transfection were identified. Among the

identified drugs classes that primed transfection increases were antioxidants, GABAA receptor

modulators, and glucocorticoids. Resveratrol and piceid, stilbenoid antioxidants found in grapes,

and zolpidem, a GABAA modulator, increased transfection nearly three-fold. Literature indicate

interaction of the identified transfection priming drug clusters with mitochondria, which may modu-

late mitochondrial dysfunction known to be associated with PEI transfection.
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1 | INTRODUCTION

Gene delivery, the transfer of exogenous nucleic acids into cells to modify

gene expression, can be accomplished with either viral or nonviral meth-

ods. Viral transduction is highly efficient in vitro and in vivo, however,

transduction is limited by design constraints and safety concerns, a few of

which include: size of transgene,1 host immune response,2 and insertional

mutagenesis.3 Nonviral gene delivery methods often make use of chemical

strategies that rely on cationic carriers, which can associate with nucleic

acids to form complexes that achieve gene delivery.1 These materials offer
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advantages over viral methods of gene delivery, in safety, cost, fabrication,

and flexibility in design and application. However, compared to viral meth-

ods, chemical methods of nonviral gene delivery suffer from lower trans-

fection efficiency, especially in vivo.4 Many barriers to successful

transfection exist, with each contributing to the overall low efficiency of

nonviral gene delivery. Systemic barriers include serum stability, clearance,

and targeting,5 while cellular barriers to efficient transfection include cellu-

lar internalization, endosomal escape, nuclear transport, nuclear import,

and transcriptional and translational regulation.5

Carrier properties and optimization are the most important determi-

nants in the efficiency of chemical nonviral gene delivery strategies in

terms of facilitating delivery to and into cells. In 1995, Polyethylenimine

(PEI), a cationic polymer, demonstrated successful transfection in vitro

and in vivo in multiple cell types.6 General optimization of PEI transfec-

tion is accomplished through tuning of N:P ratio, the ratio of amine

groups in the PEI polymer to phosphate groups in the nucleic acid. N:P

ratio determines the overall size and charge of these PEI-nucleic acid

complexes and defines their ability to circulate in serum, internalize into

cells, and escape endosomes, and thus are primary determinants of PEI

transfection efficiency.6–8 Optimized PEI transfection achieves efficiency

of 50–80% in vitro depending on molecular weight of PEI, plasmid, and

cell type,8 compared to the 100% efficiency achieved by some opti-

mized viral transduction methods in vitro.9 Most attempts to improve

chemical methods of nonviral gene delivery involve modification of the

carriers, such as modification of PEI with PEG and targeting ligands8 to

increase serum stability and circulation or enhance specific uptake,

respectively. Although nonviral gene delivery methods continue to be

improved, they have not exceeded viral methods in gene transfer effi-

ciency and sustained expression in clinical trials.10

We propose pharmacological priming as an adjuvant strategy,

which can, in conjunction with innovations in carrier and nucleic acid

design, achieve clinically relevant nonviral gene transfer efficiency and

expression. Priming refers to the treatment of cells with chemical com-

pounds before, during, or after delivering carrier-nucleic acid complexes

to cells in order to improve some aspect of the gene transfer process.

Priming enhancement of transfection efficiency and transgene expres-

sion can be achieved through direct modulation of the barriers to gene

delivery, or indirectly through modulation of the cellular response to

transfection in terms of toxicity and altered gene expression.

Priming compounds for gene delivery have been used in the litera-

ture, mostly in the context of probing biological mechanisms of trans-

fection. For example, chloroquine is an antimalarial compound that has

been demonstrated to enhance nonviral gene delivery in transfections

across several nanoparticle carrier formulations,11 through buffering of

endosomes, aiding complexes in escaping endosomes and avoiding

lysosomal degradation.11,12 Glucocorticoid priming has been demon-

strated to enhance viral and nonviral gene delivery across multiple cell

types.13–15 Recent work showed that priming human mesenchymal

stem cells (hMSCs), a primary cell type that is typically difficult to trans-

fect, with dexamethasone (a synthetic glucocorticoid), increased trans-

fection efficiency and transgene expression up to 10-fold across

multiple donors.15 Furthermore, pharmacological priming, with activa-

tors and inhibitors of genes previously identified as differentially

expressed in successfully versus unsuccessfully transfected HEK293T

cells, was shown to enhance or decrease transgene expression,16–19

demonstrating that genomic targets can be modulated by priming to

enhance nonviral gene delivery. Several of these genes were related to

cell stress, indicating that in addition to overcoming the primary bar-

riers to transfection, nonviral gene delivery strategies may need to

modulate the overall cellular response to transfection to achieve higher

transfection efficiency and more sustained transgene expression.

While broad applicability of transfection priming to different car-

riers, nucleic acids, and cell types has not been established, a next step

in the development of this strategy is to search for other compounds

that have priming effects. Priming strategies can theoretically be used

to modulate any of the known barriers to transfection, from transport

mechanisms into the cell and to the nucleus, to transcriptional and

translational regulation and toxicity. To broadly search for potential pri-

ming mechanisms, a high-throughput, drug repurposing approach was

taken toward generating a library of compounds from the NIH Clinical

Collection (NCC)20 that possess clinically relevant bioavailability and

biocompatibility, and whose priming effects could be studied and used

to develop effective nonviral gene delivery strategies.

2 | MATERIALS AND METHODS

2.1 | HEK293T culture and transfection reagents

HEK293T cells (ATCC, Manassas, VA) were cultured in T-25 flasks

(Thermo Fisher Scientific, Waltham, MA) in Dulbecco’s Modified Eagle

Medium (DMEM) (Life Technologies, Carlsbad, CA) completed with

10% fetal bovine serum (Life Technologies), 1% Penicillin/Streptomycin

(Life Technologies), and 1% sodium pyruvate (Life Technologies). Cells

were incubated at 378C, 5% CO2, and passaged using 1 mM EDTA in

PBS (Sigma-Aldrich, St. Louis, MO) at 75–85% confluence approxi-

mately every 48 hrs.

The pEGFPLuc plasmid delivered in this transfection screen enco-

des for a fusion protein of enhanced green fluorescent protein (EGFP)

and luciferase, driven by a CMV promoter (Clontech, Mountain View,

CA). pEGFPLuc was propagated in E. coli, selected by kanamycin treat-

ment, isolated using Qiagen Giga Prep kits (Qiagen, Valencia, CA), pre-

pared in endotoxin-free TE buffer at 1 mg/ml, and subsequently stored

in frozen aliquots at 2208C. PEI (25 kDa branched PEI, Sigma-Aldrich)

was used for this transfection screen. PEI was prepared at 1 mg/ml, in

0.1 M sodium bicarbonate (pH 8.2), then stored in aliquots at 2808C.

2.2 | Priming compounds and fluorescence assay

reagents

The NIH NCC, which contains 725 compounds screened for transfec-

tion priming, were received in ten, 96-well plates, with 10 ll of each

compound at 10 mM in dimethyl sulfoxide (DMSO). To prepare ali-

quots, 2 ll of each compound were prepared in four 96-well aliquot

plates per original NCC plate, and kept frozen at 2208C. Hoechst

33342 fluorescent dye was used to stain cell nuclei and enable cell-

count by processing of fluorescence microscope images, while
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resazurin was used as a fluorescent metabolic indicator in this screen.

For cell staining, Hoechst 33342 stock solution was prepared from

lyophilized powder (Sigma-Aldrich), dissolved in ddH20 at a concentra-

tion of 10 mg/ml, and stored at 48C. Stock resazurin solution was pre-

pared from lyophilized resazurin sodium salt powder (Sigma-Aldrich),

dissolved in PBS at a concentration of 10 mg/ml, and stored at 48C.

2.3 | Transfection priming high-throughput screen

HEK293T cells were detached from culture flasks by EDTA, counted by

hemocytometer, and seeded at 25,000 cells/cm2 (8,000 cells per well in

80 ll) into 96-well plates. Four plates were seeded for each of the 10

plates of the NCC collection screened, for duplicate testing of the com-

pounds at 5 and 50 lM. Seeded plates were cultured at 378C, 5% CO2,

and approximately 17 hr after seeding two plates with cells, 40 ll of

each NCC compound were delivered into corresponding wells of both

seeded plates, at either 5 or 50 lM final well volume concentration.

Two columns (16 wells) of each plate received equivalent DMSO %

instead of NCC compound as priming vehicle controls. The primed

plates were then incubated for one hour at 378C, 5% CO2 before trans-

fection. For transfection, PEI was diluted in 1X Tris-buffered saline

(TBS) and added to pEGFPLuc diluted in 1X TBS. Complexes were

formed at an optimized (data not shown) N:P of 15 to deliver 0.17 lg

of pEGFPLuc in 21 ll of TBS to each well 1 hr after priming, followed

by incubation at 378C, 5% CO2 for 48 hr before staining and imaging.

The primed and transfected HEK293T plates were stained with

Hoechst and resazurin fluorescent dyes to enable subsequent nuclei

counts and viability assessments, respectively, multiplexed with the

EGFP fluorescent reporter for transgene expression. Staining solution

consisted of 17.5 lg/ml Hoechst 33342 and 10 lg/ml resazurin in Flu-

orobrite DMEM (Thermo Fisher Scientific). After rinsing cells with PBS,

100 ll of the staining solution was added to each well, followed by

incubation for 30 min at 378C, 5% CO2.

After incubation with the staining solution, plates were imaged using

a DMI3000B manual inverted microscope with DFC340FX digital cam-

era, EL-6000 mercury halide lamp for fluorescence excitation, and LAS

software V4.0 for digital image viewing and capture (Leica, Buffalo Grove,

IL). Filters for excitation and detection at the EGFP and Hoechst wave-

lengths (488 nm/509 nm and 355 nm/465 nm, respectively) were used

to take monochrome images of their fluorescence, in addition to phase

contrast images. Images were taken with a 5x objective at the center of

each well in 8-bit TIFF format and 1600x1200 pixels, with each pixel

having a greyscale value from 0 to 255. Consistent fluorescence excita-

tion lamp intensity and camera exposure settings were used to allow for

comparison of image intensities between wells in the same plate.

Macros in ImageJ,21 a Java-based image processing program, were

used to automate the mean fluorescence intensity measurements and

maxima counts for the processing of the thousands of images acquired

over the course of the screen. Average grey values of the Hoechst and

EGFP images were determined using the “Measure” plugin in ImageJ.

Total cells and transfected cells were counted for each well using the

“Find Maxima” plugin to count Hoechst stained nuclei and EGFP

expressing cells, respectively. The noise tolerance of the “Find Maxima”

plugin was adjusted to optimize detection and minimize misidentifica-

tion of nuclei and EGFP cells.

In addition to microscope imaging, EGFP, Hoecshst, and resazurin

fluorescence were measured by Synergy H1 plate reader (BioTek,

Winooski, VT), with excitation/emission settings of 475 nm/509 nm,

355 nm/464 nm, and 545 nm/590 nm, and gain settings of 100, 50,

and 50, respectively. Nine measurements were taken per well in a

three by three array equally spaced within the well, from which mean

intensities were calculated.

2.4 | Data processing

The goal of the data processing was to determine compounds that pro-

duced fold-changes in transfection, compared to vehicle controls. To

reduce potential fold-change bias resulting from initial seeding density

variation, vehicle control wells that had total cell-counts less than the

mean cell-count of vehicles controls as a whole for the plate were dis-

carded from consideration for calculations of fold-changes. There

remained up to 16 vehicle control wells per plate in the screen after fil-

tering (n�16). Image and plate reader data for each well were then

normalized by cell-count and their fold-changes determined relative to

these filtered vehicle control wells. EGFP measurements were normal-

ized into two separate measures: normalization by total cell-count and

normalization by transfected cell-count. Hoechst and resazurin meas-

urements were normalized by total cell-count.

Cytotoxicity filters were implemented to remove from consideration

compounds that were too toxic at the tested concentrations to warrant

further consideration in the screen. In the first toxicity filter, compounds

with normalized Hoechst-count fold-change of less than 0.2 were dis-

carded. In the second toxicity filter, compounds with Hoechst-count

fold-change two or three standard deviations below the plate-wide aver-

age of Hoechst-count fold-changes greater than 0.2 were also discarded.

A more stringent toxicity filter was used for the 5 lM concentration

(two standard deviations) than the 50 lM (three standard deviations).

The rationale behind this difference is that the 5 lM conditions contain

a lower concentration of priming compound and of the DMSO vehicle,

resulting in less cytotoxicity than the 50 lM conditions; therefore, a

more stringent filter was applied to the lower concentration.

Each compound was tested in a single well per plate, in duplicate

plates, at 5 and 50 lM concentrations. The duplicate normalized fold-

changes of these single wells from duplicate plates were grouped

(n52) for unpaired one-tailed t tests against grouped filtered vehicle

controls from the same duplicate plates (n�32 filtered vehicle control

wells from the duplicate plates associated with the tested compound

of n�16 control wells each), to obtain p values for EGFP, Hoechst,

and resazurin measurements of each compound at each concentration,

with an a-value for significance of 0.05. For each well, the assumption

of equal or unequal variance in the t test was estimated by F-test (one-

tailed, a50.05) for equality of variances between tested compound

and control wells. One-tailed t tests were used to score the screen

fold-changes, in spite of expected higher false positive rates than two-

tailed tests, to err on the side of caution in not rejecting potential pri-

ming compounds, and rely on the clustering results to support the
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single compound hit selection as well as future investigation of the

screen hits to reject false positives.

Given the large number of drugs to be tested in the NCC, we

chose to use a sample size of two for each concentration of each drug.

Two is the minimum number of samples for performing a t test22; more

importantly, the goal of this screen was to be the initial step in the

search for clinical compounds that could be repurposed toward trans-

fection priming, using a high throughput methodology to deliberately

test in small sample sizes, sacrificing power for breadth of small mole-

cules tested from the NCC.

2.5 | Hit selection and compound clustering

All NCC compounds that exhibited significant fold-increases or fold-

decreases in transfection, at either 5 or 50 lM, and were not filtered

for cytotoxicity, were identified as hits (a-value for significance of

TABLE 1 Highest fold-changes in transfection priming hits at 5mM of NCC compounds

Compound Drug type Transfectiona Cell-countb Hoechst-intensityc Resazurin-intensityd

Transfection
fold-increase

Zolpidem tartrate GABA receptor
modulator

3.05 0.52

Resveratrol Stilbenoid 3.04 0.55

Tropisetron
hydrochloride

Serotonin receptor
antagonist

2.67 0.97 0.91 1.07

Tranilast Anti-allergy 2.17 0.74 1.11 1.29

Lansoprazole Proton-pump
inhibitor

2.13 0.72 1.13 1.42

Nobiletin Flavonoid 2.08 0.61 1.23 1.21

Nitrazepam GABA receptor
modulator

2.03 0.53

Enalaprilat Angiotensin-
converting-enzyme
inhibitor pro-drug

2.00 0.55 1.35 1.51

Droperidol Dopamine receptor
antagonist

1.95 0.52

Mestanolone Androgen hormone 1.93 0.61 1.26

Transfection
fold-decrease

Epigallocatechin
gallate

Flavonoid 0.08 1.37 0.88

Ampiroxicam Nonsteroidal
anti-inflammatory drug

0.31 0.93 0.91 1.14

Nimodipine Calcium channel
blocker

0.35 0.90

(2)-Cotinine Nicotine metabolite 0.41 0.87 1.16

Ramipril Angiotensin-
converting-enzyme
inhibitor

0.42 0.98 0.92

Desloratadine Anti-histamine 0.50 0.86 1.19

Crotamiton Anti-itch 0.50 0.98 0.93

Guanidine Amino acid
metabolite

0.52 0.93 1.12

Letrozole Estrogen synthesis
inhibitor

0.52 1.00 0.87

Fluphenazine
hydrochloride

Dopamine receptor
antagonist

0.53 0.85 1.08 1.17

Note. Empty values indicate nonsignificant fold-change.
aTransfection fold-changes were calculated from duplicate averages of EGFP fluorescence, measured by EGFP cell-count (image processing) or EGFP
intensity (plate reader and image processing), relative to the same measurement averaged from the vehicle controls in each compound’s respective
plates. These measurements were normalized in two separate ways, total cell-count (determined by Hoechst-count), and transfected cell-count (deter-
mined by EGFP-count), for measurement of transfection per cell as well as transfection per transfected cell.
bCell-count fold-changes were calculated from duplicate averages of image processing measurements of Hoechst-count relative to the average
Hoechst-count measurements of vehicle controls in each compound’s respective plates. Cell-count fold-changes are shown for each hit presented as a
general toxicity reference, not to imply significant increase or decrease.
cHoechst-intensity fold changes were calculated from duplicate averages of plate reader or image processing measurements of Hoechst-intensity nor-
malized by total cell-count (determined by Hoechst-count), relative to the average Hoechst-intensity measurements of vehicle controls in each com-
pound’s respective plates.
dResazurin-intensity fold changes were calculated from duplicate averages of plate reader measurements of resazurin intensity normalized by cell-count
(determined by Hoechst-count), relative to the average resazurin-intensity measurements of vehicle controls in each compound’s respective plates.
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0.05). In addition, the hit selection of this screen also included examina-

tion of overall transfection fold-changes of grouped drug clusters to

identify drug classes for which the majority of compounds were hits

for transfection priming effects. NCC compounds were clustered

using the Chemmine Tools web platform for comparison of Pub-

Chem fingerprints by Tanimoto coefficients.23 Hierarchical clustering

was used to create a dendrogram based on single linkage fingerprint

similarity, while binning clustering grouped compounds based on

single linkage fingerprint similarity determined by Tanimoto coeffi-

cient thresholds of 0.4 to 0.9 (higher coefficient indicates greater

fingerprint similarity).

EGFP, Hoechst, and resazurin measurement fold-changes for each

compound at each concentration were linked to the NCC clusters by a

custom Perl script, which parsed the data files and grouped the data

into average fold-changes for each binned cluster. To analyze the hits,

the compounds which primed the 10 highest fold-increases or fold-

TABLE 2 Highest fold-changes in transfection priming hits at 50 mM of NCC compounds

Compound Drug type Transfectiona Cell-countb Hoechst-intensityc Resazurin-intensityd

Transfection fold-
increase

Tranilast Anti-allergy 3.63 0.55 1.24

Piceid Stilbenoid 2.63 0.69 1.17

5-Fluorocytosine Pyrimidine analogue 2.54 0.52 1.50 1.58

Cinanserin Serotonin receptor
antagonist

2.53 0.63 1.41

Zardaverine Phosphodiesterase
inhibitor

2.26 0.55 1.36

Nateglinide ATP potassium
channel closer

2.08 0.51 1.23 1.21

Eryped Macrolide antibiotic 1.99 0.72 1.26 1.26

Mestinon Cholinesterase
inhibitor

1.83 0.77 1.21 1.23

Acyclovir DNA polymerase
inhibition (anti-viral)

1.78 0.60

Stiripentol GABA receptor
modulator

1.77 0.72 1.23

Transfection fold-
decrease

Epigallocatechin
gallate

Flavonoid 0 0.80

Cefixime trihydrate b-lactam antibiotic 0.017 1.45 0.84

Cefdinir b-lactam antibiotic 0.032 1.35 0.88

Cefuroxime b-lactam antibiotic 0.039 1.39

Rolitetracycline Tetracycline
antibiotic

0.063 1.42 0.86

Cefatrizine propy-
lene glycol

b-lactam antibiotic 0.095 1.75 0.78

Tetracycline Tetracycline
antibiotic

0.139 1.08 0.85

Taxifolin-(1) Flavonoid 0.162 1.22 0.87

(1/2)-Epinephrine
hydrochloride

Adrenergic receptor
agonist

0.35 1.36 0.83

Isoquercitrin
Hyperoside

Flavonoid
Flavonoid 0.358 1.68 0.86

Note. Empty values indicate nonsignificant fold-change.
aTransfection fold-changes were calculated from duplicate averages of EGFP fluorescence, measured by EGFP cell-count (image processing) or EGFP
intensity (plate reader and image processing), relative to the same measurement averaged from the vehicle controls in each compound’s respective
plates. These measurements were normalized in two separate ways, total cell-count (determined by Hoechst-count), and transfected cell-count (deter-
mined by EGFP-count), for measurement of transfection per cell as well as transfection per transfected cell.
bCell-count fold-changes were calculated from duplicate averages of image processing measurements of Hoechst-count relative to the average
Hoechst-count measurements of vehicle controls in each compound’s respective plates. Cell-count fold-changes are shown for each hit presented as a
general toxicity reference, not to imply significant increase or decrease.
cHoechst-intensity fold changes were calculated from duplicate averages of plate reader or image processing measurements of Hoechst-intensity nor-
malized by total cell-count (determined by Hoechst-count), relative to the average Hoechst-intensity measurements of vehicle controls in each com-
pound’s respective plates.
dResazurin-intensity fold changes were calculated from duplicate averages of plate reader measurements of resazurin intensity normalized by cell-count
(determined by Hoechst-count), relative to the average resazurin-intensity measurements of vehicle controls in each compound’s respective plates.
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decreases in transfection at either 5 or 50 lM were determined (Tables

1 and 2), which were used to determine clusters of interest (Figure 2).

The grouped fold-changes in transfection of the clusters of interest

were examined to determine clusters for which the majority of member

compounds were hits for priming transfection (Table 3).

2.6 | Preliminary verification experiment

Preliminary verification experiments were performed for three of the

priming compounds identified (resveratrol, epigallocatechin gallate

[EGCG], and corticosterone), testing these hit compounds at 5 lM in

triplicate in 48-well plates, with number of seeded cells and volumes of

reagents added scaled by the well surface area increase from 96-well

plates (see complete description of the method in Supporting Informa-

tion). Transgene expression was assayed by luciferase assay, normal-

ized by total protein measured by BCA assay, in units of relative light

units per milligram of total protein.

3 | RESULTS

HEK293T cells were primed with 725 compounds from the NCC,

transfected with a plasmid encoding for an EGFP reporter protein using

25 kDa branched PEI, and assayed by fluorescence microscope imaging

and plate reader measurement of EGFP, Hoechst 33342, and resazurin,

to screen for compounds that enhance or decrease transfection, with-

out significant toxicity (see Supporting Information Tables S1–S4 for

the EGFP and Hoechst fluorescence intensity and count data of the

compounds listed in Tables 1 and 2). With an a-value for significance

of 0.05 for average fold-changes of duplicates and two toxicity filters,

the screen returned 441 priming compound hits at 5 mM with EGFP

fold-change ranging from 0.077 to 4.29, and Hoechst-count fold-

changes ranging from 0.22 to 1.45 (Figures 1A and 1B). There were

333 hits at 50 mM, with EGFP fold-change ranging from 0 to 3.63,

and Hoechst-count fold-changes ranging from 0.25 to 1.75 (Figures 1C

and 1D).

TABLE 3 Average fold-changesa of transfection priming hits from clusters of interest (Figure 2)

Transfection fold-increase hits Transfection fold-decrease hits

Cluster (#) Concentration # of hits Transfectionb Cell-countc # of hits Transfectionb Cell-countc

Hormones (54) 5 mM 34* 1.4360.22 0.736 0.15 3 0.8160.07 0.936 0.19

50 mM 15 1.3560.16 0.666 0.86 9 0.7460.12 0.846 0.24

Glucocorticoids (30) 5 mM 17* 1.3760.14 0.776 0.14 3 0.8160.07 0.936 0.19

50 mM 12 1.3760.15 0.676 0.10 3 0.8160.04 1.016 0.08

Tetracyclines (6) 5 mM 5* 1.2760.15 0.826 0.06 1 0.91 0.72

50 mM 0 3* 0.2660.27 1.076 0.36

Fluoroquinolones (8) 5 mM 5* 1.5460.24 0.646 0.17 0

50 mM 4 1.5660.25 0.636 0.11 2 0.6560.21 0.966 0.09

b-lactams (18) 5 mM 7 1.2560.17 0.936 0.13 2 0.6960.12 1.266 0.14

50 mM 5 1.2560.11 0.966 0.20 9* 0.4260.37 1.316 0.21

Cephalosporins (10) 5 mM 4 1.3360.19 0.856 0.09 1 0.61 1.36

50 mM 1 1.19 1.08 7* 0.3160.35 1.356 0.22

Macrolides (4) 5 mM 3* 1.2460.05 0.826 0.19 0

50 mM 2* 1.7260.39 0.636 0.12 2* 0.7460.18 0.856 0.42

Flavonoids and Stilbenoids (13) 5 mM 3 2.16 0.86 0.726 0.37 4 0.5260.33 1.046 0.51

50 mM 3 2.0460.61 0.696 0.09 4 0.3260.32 1.266 0.36

GABA modulators (9) 5 mM 7* 1.7460.63 0.666 0.14 0

50 mM 4 1.4160.25 0.726 0.04 0

Note. Nobileton, a flavonoid (Table 1), was not automatically grouped into the flavonoid and stilbenoid cluster (Figure 2) by the clustering algorithm; it
was manually added to the flavonoid and stilbenoid cluster for the calculation of cluster average fold-changes. Similarly, stiripentol (Table 2) and zolpi-
dem (Table 1) are GABAA receptor modulators which were not automatically clustered with the benzodiazepines (Figure 2); their fold-changes were
included into the GABAA modulator cluster for calculation of cluster average fold-changes (Table 3).
aAverage fold-changes are shown as mean6 standard deviation.
bTransfection fold-changes of hits from the same cluster were averaged. The transfection fold-changes of hits were calculated from duplicate averages
of EGFP fluorescence, measured by EGFP cell-count (image processing) or EGFP intensity (plate reader and image processing), relative to the same
measurement averaged from the vehicle controls in each compound’s respective plates. These measurements were normalized in two separate ways,
total cell-count (determined by Hoechst-count) and transfected cell-count (determined by EGFP-count), for measurement of transfection per cell as
well as transfection per transfected cell.
cCell-count fold-changes of hits from the same cluster were averaged. The cell-count fold-changes were calculated from duplicate averages of image
processing measurements of Hoechst-count relative to the average Hoechst-count measurements of vehicle controls in each compound’s respective
plates. Average cell-count fold-changes are shown for clustered hits as a general toxicity reference, not to imply significant increase or decrease.
*The majority of compounds in the cluster were hits for this fold-change.
#Denotes the number of NCC compounds in the cluster.
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At 5 mM, there were 369 hits with transfection fold-increases

(1.4560.34 fold-change, mean6 standard deviation) and 72 hits

with transfection fold-decreases (0.7360.17 fold-change) (Figures

1A and 1B). At 50 mM, there were 201 hits with transfection fold-

increases (1.4760.35 fold-change) and 132 hits with transfection

fold-decreases (0.6960.20 fold-change) (Figures 1C and 1D). To

identify the most effective priming compounds from the hundreds

of hits, the 10 compounds that resulted in the largest EGFP fold-

change, in fold-increase or fold-decrease in transfection, with

Hoechst-count fold-change no less than 0.5, were identified at 5 mM

(Table 1) and 50 mM (Table 2).

Linear regressions of EGFP fold-change versus Hoechst-count

fold-change were performed to determine correlations between trans-

fection priming and cell proliferation. There were negative correlations

between EGFP fold-increases versus Hoechst-count fold-change at

both 5 and 50 mM, with R250.467 and 0.401, respectively (Figures 1A

and 1C). There were no correlations of EGFP fold-decreases versus

Hoechst-count fold-change at either 5 or 50 mM, R250.003 and

0.056, respectively (Figures 1B and 1D).

To further analyze the transfection priming hits, drugs within the

NCC were clustered into groups of similar compounds by binning clus-

tering of PubChem fingerprints at Tanimoto clustering coefficient

thresholds ranging from 0.4 to 0.9. Cluster number increases as cluster-

ing coefficient for similarity is increased, from 300 clusters at clustering

coefficient 0.4, to 619 clusters at clustering coefficient 0.9. Based on

the identification of compounds that had the most increased or

decreased transfection fold-changes (Tables 1 and 2) clusters of inter-

est were identified (Figure 2), including antibiotics (tetracyclines,

b-lactams, and macrolides), flavonoids, stilbenoids, and GABA receptor

modulators. For these clusters of interest, average transfection fold-

changes and average Hoechst-count fold-changes were determined

(Table 3).

FIGURE 1 EGFP transfection fold-changes versus Hoechst-count fold-changes are shown for (A) 369 hits with fold-increases in transfec-
tion at 5 mM, (B) 72 hits with fold-decreases in transfection at 5 mM, (C) 201 hits with fold-increases in transfection at 50mM, and (D) 132
hits with fold-decreases in transfection at 50 mM. To examine effect of transfection priming on cell proliferation, linear regressions were
performed, demonstrating negative correlation for transfection fold-increases (AC) and no correlation for transfection fold-decreases (BD).
Regression slopes are displayed as the 95% confidence interval, along with R2 for goodness of fit. The dashed lines indicate the Hoechst-

count fold-change threshold of greater than 0.5 used in determining the largest transfection fold-increases and fold-decreases of hits in the
screen (Tables 1 and 2).
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3.1 | Antibiotics

Six antibiotics showed among the largest fold-decreases in transfection

at 50 mM in the screen, including four cephalosporin b-lactams and

two tetracyclines (Table 2), with transfection fold-decreases ranging

from 0.017 to 0.139, and associated cell-count and Hoechst-intensity

fold-changes ranging from 1.08 to 1.75-fold increase and 0.78 to 0.88-

fold decrease, respectively. One antibiotic, Eryped, was one of the ten

compounds that showed the highest fold-increase in transfection at 50

mM (Table 2), with fold-changes of 1.99, 0.72, 1.26 and 1.26, in transfec-

tion, cell-count, Hoechst-intensity, and resazurin-intensity, respectively.

From the clustering perspective, a majority of hits in the screened

b-lactam, tetracycline, and macrolide clusters were identified as hits

that showed a significant fold-decrease in transfection at 50 mM

(Table 3). No antibiotic clusters exhibited a majority of hits decreasing

FIGURE 2 Dendrograms illustrate hierarchical clustering of hormones (A), tetracyclines (B), fluoroquinolones (C), b-lactams (D), macrolides
(E), flavonoids and stilbenoids (F), and benzodiazepine GABAA receptor modulators (G), from the NCC, annotated with Tanimoto coefficients
to indicate degree of similarity between compounds in the clusters. Outlined in (A) are glucocorticoids, outlined in (D) are cephalosporins.
* indicates compounds which appear in Table 1 or 2.
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transfection at the 5 mM concentration. A majority of the screened flu-

oroquinolones and macrolides were identified as hits that produced sig-

nificant fold-increase in transfection at 50 mM (Table 3), and a majority

of the screened fluoroquinolones, macrolides, and tetracyclines demon-

strated significant fold-increase in transfection at 5 mM (Table 3).

3.2 | Flavonoids and stilbenoids

Four of the ten compounds that showed the largest fold-decrease in

transfection at 50 mM in the screen are flavonoids (Table 2), with trans-

fection fold-decreases ranging from 0 to 0.36, and associated cell-

count and Hoechst intensity fold-changes ranging from 0.8 to 1.68-

fold and 0.86 to 0.87-fold, respectively. One of these flavonoids,

EGCG, also showed 0.08, 1.37, and 0.88 fold-changes in transfection,

cell-count, and Hoechst-intensity, respectively, at 5 mM (Table 1). At 5

mM, nobiletin was one of the ten compounds that showed the highest

fold-increase in transfection, with fold-changes of 2.08, 0.61, 1.23, and

1.21 in transfection, cell-count, Hoechst-intensity, and resazurin-

intensity, respectively (Table 1).

Stilbenoids demonstrated among the highest fold-increases in

transfection observed in the screen. Piceid was one of the ten com-

pounds that showed the highest fold-increase in transfection at 50 mM

(Table 2), with fold-changes of 2.63, 0.69, and 1.17, in transfection,

cell-count, and Hoechst-intensity, respectively, while resveratrol was

one of the ten compounds that showed the highest fold-increases in

transfection at 5 mM (Table 1), with fold-changes of 3.04 and 0.55, in

transfection and cell-count, respectively.

3.3 | GABAA receptor modulators

GABAA receptor modulators demonstrated among the highest fold-

increases to transfection in the screen at both 5 and 50 mM. No

GABAA receptor modulators were identified as hits for fold-decreases

in transfection. Stiripentol was one of the ten compounds that showed

the highest fold-increase in transfection at 50 mM (Table 2), with fold-

changes of 1.77, 0.72, and 1.23, in transfection, cell-count, and

Hoechst-intensity, respectively. Zolpidem tartrate and nitrazepam were

two of the ten compounds that showed the highest fold-increase in

transfection at 5 mM (Table 1), with fold-changes of 3.05 and 2.03, and

0.52 and 0.53, in transfection and cell-count, respectively. From the

clustering perspective, a majority of the compounds in the GABAA

modulator cluster were hits exhibiting fold-increases in transfection at

5 mM (Table 3).

3.4 | Hormones

The hormone cluster had the most member compounds of all clusters

in the NCC collection, with 54 members, 30 of which are glucocorti-

coids. From the clustering perspective, the majority of glucocorticoids

and hormones demonstrated fold-increases in transfection at 5 mM

(Table 3). However, hormones were not among the compounds with

largest fold-increases or fold-decreases in transfection in the screen

(Tables 1 and 2).

4 | DISCUSSION

Nonviral gene delivery methods are not currently competitive with viral

transduction in clinical trials.10 Pharmaceutical priming has been shown

to improve transfection efficiency,11–19 although in the case of gluco-

corticoids for example, their priming mechanisms are not well under-

stood. Transfection priming effects of certain compounds are also likely

to be cell type and carrier specific, so there is a need to search for

more classes of priming compounds to generate a library of transfec-

tion priming candidates and better understand tunable priming mecha-

nisms. Preliminary research into transfection priming should seek

compounds that have a low development cost and are known to be

biocompatible and bioavailable. The particular collection of pharmaco-

logical compounds screened was the NCC from the NIH Small Mole-

cule Repository,20 which is provided to researchers to repurpose

clinically approved pharmaceutical compounds. NCC compounds have

known drug-like properties, with well-studied bioactivity, making the

NCC an ideal starting point for a high-throughput screen to discover

priming compounds for nonviral gene delivery.

4.1 | Overall screen results

Of the 725 NCC compounds screened for their effect on transfection,

hundreds had significant effects on transfection at 5 or 50 mM doses,

of which the most effective priming compounds were identified and

examined for clustered effects of several drug classes. The highest con-

centration tested in this screen was 50 lM, which was based on a pre-

vious high throughput screen that similarly screened, in vitro, for novel

chemoprotective compounds at 50 lM.24 Additional concentrations at

orders of magnitude lower concentration (5 and 0.5 lM) were consid-

ered in order to test for compounds which require more dilute concen-

trations to affect transfection fold-changes with minimal cytotoxicity.

In preliminary screens carried out at 0.5, 5, and 50 lM in our lab (data

not shown), the majority of potential hits were identified at 5 and 50

lM, therefore, these two concentrations were chosen for the complete

NCC screen.

It must be emphasized that within this screen, the priming com-

pounds and PEI/DNA complexes were in fact not added at the same

time, with the priming compounds delivered to cells 1 hr prior to deliv-

ery of the PEI/DNA complexes. This timing was selected based on pre-

vious studies,15–19 which demonstrated that priming compound effects

do not require codelivery with the transfection, and in fact were often

most potent when applied in a short window of time, including the 1-

hr time point, prior to transfection. The screen was conducted in dupli-

cate (n52) with normalization of transfection measures to minimize

artifacts.

Preliminary verification experiments were performed for three of

the priming compounds identified: resveratrol, corticosterone, and epi-

gallocatechin gallate. Resveratrol and EGCG were chosen to verify anti-

oxidants, a drug class that demonstrated among the largest

transfection fold-changes observed in the screen; furthermore, these

two drugs demonstrated opposite effects on transfection, given resver-

atrol was shown to increase transfection in the screen (3-fold at 5 lM),
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while EGCG knocked down transfection (13-fold at 5 lM) in the

screen. Corticosterone was chosen as one of the glucocorticoid hor-

mones in the NCC, a large class of priming compounds that exhibited

modest transfection fold-increases (corticosterone: 1.5-fold at 5 lM) in

the screen. In the verification experiments, these compounds were

tested in triplicate at 5 lM, with resveratrol exhibiting approximately

5-fold increase in transfection relative to control, corticosterone exhib-

iting approximately 3.5-fold increase, and EGCG exhibiting 38-fold

decrease; these further experiments agree with the screen results (see

Supporting Information Figures S1 and S2).

There was a negative correlation in screen hits between transfec-

tion fold-increases and cell-count fold-change, which may be related to

interference of priming compounds with normal cell processes, or

increased toxicity of EGFP as it is overproduced due to priming. Drug

clustering results indicate that certain compounds may be modulating

the cell response to PEI transfection; those clusters include antibiotics,

antioxidants, GABAA modulators, and glucocorticoids, as discussed

next.

4.2 | Antibiotics

From the results of the screen, antibiotic priming compounds were

shown to affect transfection, with many showing potent inhibition

(Table 2). Many protocols recommend transfection in medium without

antibiotics, as they are thought to decrease transfection or cell viabil-

ity.25,26 However, among the antibiotics in the NCC, antibiotic effects

on transfection were observed to be dose and antibiotic-class depend-

ent. At 50 mM, the majority of cephalosporin- and tetracycline-class

antibiotics screened resulted in large fold-decreases in transfection

(Table 3), while the fluoroquinolone-class did not show transfection

fold-decreases at 50 mM. At 5 mM, the majority of antibiotics in the

fluoroquinolone-, macrolide-, and tetracycline-class clusters resulted in

transfection fold-increases; the majority of b-lactam/cephalosporin

cluster antibiotics did not prime transfection fold-increases at 5 mM.

The mechanisms that cause the transfection priming effects of

antibiotics observed in the screen may be related to the primary off-

target of antibiotics in mammalian host cells, which is mitochondria.27

Modulation of mitochondrial dysfunction and oxidative stress response

could explain the effects antibiotics have on transfection, particularly

when utilizing transfection reagents that are known to affect mitochon-

dria, such as PEI. PEI has been shown to cause mitochondrial dysfunc-

tion through disruption of the mitochondrial membrane that can result

in oxidative stress and apoptosis.28 If the identified antibiotic classes

are inducing their priming effects through interaction with mitochon-

dria, it would be evidence that PEI-induced mitochondrial dysfunction

and associated autophagy can be modulated to either increase or

decrease transfection by design of the priming compound.

4.3 | Flavonoid and stilbenoid compounds

The priming effects observed in antioxidants tested from the NCC in

this screen provide further evidence that modulation of mitochondrial

dysfunction is a potent priming mechanism of PEI transfection. The fla-

vonoid nobileton showed 2-fold increase in transfection at 5 mM,

among the largest in the screen. Conversely, several flavonoids were

among compounds with largest fold-decrease in transfection at 50 mM;

EGCG exhibited the most potent fold-decrease in transfection of the

screen at both 5 and 50 mM, with fold-decreases of 0.08 and 0, and

cell-count fold-changes of 1.37 and 0.8, respectively (Tables 1 and 2).

The stilbenoids resveratrol and piceid, at 5 and 50 mM, respectively,

exhibited nearly 3-fold increases in transfection, which were among

the largest seen in the screen.

Like antibiotics, antioxidant transfection priming effects observed

in the screen can potentially be explained by interactions with mito-

chondria, however, in a manner that generally protects or improves

their function.29 Resveratrol is a natural phenol, specifically a stilbenoid,

with antioxidant properties, that can be found in grape skins.29 Piceid

is a another plant-derived stilbenoid, specifically a glucoside modifica-

tion of resveratrol. Resveratrol has been shown to rescue mitochon-

drial dysfunction and modulate autophagy,30 which could be beneficial

by mitigating the cytotoxic effects of PEI transfection,28 from PEI’s

toxic interactions with mitochondria, to oxidative stress induced by

transgene expression.16–19,31 If antioxidants are modulating transfec-

tion through mitochondria and oxidative stress response,32 the

observed antioxidant priming effects that potently increase or decrease

transfection provide additional evidence that the cellular stress

response to transfection is critical to overall transfection outcome,16–18

a response that is tunable by priming.

4.4 | GABAA receptor modulators

Like antibiotics and antioxidants, GABAA modulators were also identi-

fied by the screen as compound clusters in the NCC that resulted in

large transfection fold-changes, with the majority of GABAA modula-

tors (seven of nine compounds) increasing transfection at the 5 mM

concentration. Zolpidem, nitrazepam, and stiripentol were identified to

cause among the highest transfection fold-increases in in the screen: 3,

2, and 1.7-fold, respectively (Tables 1 and 2).

GABAA receptors are neurotransmitter receptors that are not

expressed in most cell types, so the mechanism behind priming effects

seen with the GABAA modulator cluster is not immediately apparent.

Benzodiazepines, stiripentol, and zolpidem are positive allosteric modu-

lators of the GABAA receptor found in neurons, however, they are

thought to act on different subunits.33,34 The GABAA receptor, or

some of the subunits, may be expressed in HEK293T cells, a plausible

possibility due to the proposed adrenal cortex origin of the HEK293T

cell line,35 which may explain the observed transfection priming effects

of GABAA modulators in the screen, although the potential mechanism

of interaction between GABAA receptor modulation and transfection

is not clear.

Another possibility that may explain the transfection priming

effects of GABAA modulators is interaction with the translocator pro-

tein, also known as the peripheral benzodiazepine receptor, which is

found in mitochondria membranes, and is thought to be involved in

steroidogenesis and redox regulation of mitophagy.36,37 This interac-

tion would be consistent with the concept of modulating mitochondrial
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dysfunction and cellular stress response to transfection as the mecha-

nism by which priming is occurring through antibiotics and antioxidants

(see above).

4.5 | Glucocorticoids and other hormones

Finally, the effects of glucocorticoids and other hormones in the NCC

were examined, as glucocorticoids have previously shown enhance-

ment of lipoplex-mediated transfection in hMSCs by over 10-fold.15

The hormone cluster was the largest cluster of drugs in the NCC, and

the majority of these hormones were glucocorticoids (Figure 2). In this

screen, the majority of hormones, and glucocorticoids specifically,

increased transfection at the 5 mM concentration, with average �1.4-

fold increases in transfection. This transfection fold-change is much

less than the 10-fold increases seen previously in hMSCs15 indicating

priming effects for at least certain compounds are dependent on cell

type and/or transfection reagent.

There are several plausible explanations for the transfection pri-

ming fold-increases observed in glucocorticoids and other hormones in

this screen. Glucocorticoids are hormones that are involved in the

body’s stress response, activating the glucocorticoid receptor, which

translocates to the nucleus and acts as a transcription factor.15 Upregu-

lation of certain genes by activated hormone receptors in response to

priming by hormones may play a role in the observed transfection fold-

changes in the screen, as it has previously been shown in gene expres-

sion profiling studies that pharmacological priming of genomic targets

can affect transfection.16–19 Activated glucocorticoid receptors may

also play a role in priming transfection by assisting internalization,

nuclear transport, and nuclear import of transfection complexes.

Finally, glucocorticoid priming effects in PEI transfection could be

occurring through interaction with mitochondria and autophagy,38,39

which would be further evidence that aligns with the hypothesis that

modulation of PEI transfection toxicity and cellular stress response are

the priming mechanisms for antibiotics, antioxidants, and GABAA

clusters.

4.6 | Mitochondrial dysfunction, oxidative stress, and

autophagy in PEI transfection

PEI is a cationic polymer carrier for nonviral gene delivery that serves

as a standard to which newly developed carriers are often compared,

as it reliably overcomes the primary barriers to transfection of cultured

mammalian cells: internalization, endosomal escape, and nuclear trans-

port,8 although not with the efficiencies found in viral vectors.9 Para-

doxically, PEI designs that are more effectively able to overcome

barriers to transfection also tend to be more toxic to the transfected

cell. For instance, high molecular weight (MW) and branched PEI com-

plexes have been demonstrated to transfect at higher efficiencies com-

pared to low MW and linear PEI complexes,40,41 but also exhibit higher

toxicity. Attempts to resolve this dilemma include bioresponsive link-

ages of low MW PEI into higher MW PEI-based polymers that will

degrade in the cell into less toxic lower MW constituents.40

PEI has been shown to be cytotoxic through its accumulation in

and interaction with mitochondrial membranes.28 Damage to mito-

chondria has been implicated in the intracellular inflammatory and

immune response42,43; PEI has been shown to be an effective adjuvant

for stimulating an immune response.44 Typical cellular responses to

mitochondrial damage are autophagy/mitophagy, apoptosis, and necro-

sis. Apoptosis and autophagy are mutually inhibitory,45 with apoptosis

leading to cell death, while autophagy possibly serves a protective role

in PEI cytotoxicity.46

Altogether, literature review of grouped screen hit compounds

suggests that many priming effects may be due to modulation of the

cellular oxidative stress response to PEI transfection, in particular mito-

chondrial dysfunction. It is plausible that certain antioxidants like

resveratrol29,30 rescue the cell from PEI-induced mitochondrial dys-

function through modulation of autophagy, improving transfection,

while certain antibiotics that reduce transfection, such as cephalospo-

rins,47 may be inhibiting transfection by increasing mitochondrial dys-

function and oxidative stress.

Gene expression profiling has shown that there is differential

expression in the cellular oxidative stress response associated with suc-

cessfully versus unsuccessfully PEI-transfected cells, through ATF3,

IREB2, and other gene pathways.16–19 The high-throughput screen

data in this current study support this finding, and suggest that modu-

lating the cellular stress response to PEI transfection by priming with

clinically approved compounds prior to PEI transfection can signifi-

cantly affect overall transfection efficiency and transgene expression in

vitro.

5 | CONCLUSIONS

With a high-throughput, drug-repurposing, and bio/cheminformatics

clustering approach, this screen of the NCC identified many individual

compounds that produce dramatic fold-changes in HEK293T transfec-

tion by PEI, and several classes of clinical drugs for which the majority

of compounds demonstrated priming effects. These hit compounds

and drug clusters should be verified and studied for investigation of

the priming mechanisms in detail that will improve our understanding

of the cellular response to transfection and how this response can be

pharmacologically modulated to improve transfection. The clustered

data suggest that several of these drug classes, such as stilbenoids and

flavonoid antioxidants, cephalosporin antibiotics, GABAA receptor

modulators, and others, may be priming transfection through modula-

tion of mitochondrial dysfunction, oxidative stress, and cell death proc-

esses caused by toxicity of PEI transfection. These compounds and

drug classes should be tested on additional cell types with alternative

nonviral carriers to generalize the priming effects towards potential

application as transfection adjuvants. For future in vivo studies, the 5

and 50 lM concentrations can serve as starting points in the optimiza-

tion of the delivery method and dose and release characteristics of

each priming compound to maximize transfection priming effects. Addi-

tionally, timing of the addition of the priming compound relative to the

DNA should be studied more extensively as a tunable priming
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parameter. Resveratrol and zolpidem had the highest fold-change

increases observed in the screen, at 3-fold; the potency of their priming

effect indicates their mechanisms may be critical to understanding how

nonviral gene delivery can be improved by priming.
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