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Abstract

Alzheimer’s disease (AD) is one of the major causes of dementia. The pathogenesis of the disease is not entirely understood, but the
amyloid � peptide (A�) and the formation of senile plaques seem to play pivotal roles. Oligomerization of the A� is thought to
 trigger a cascade of events, including oxidative stress, glutamate excitotoxicity and inflammation. The kynurenine (KYN) pathway is
the major route for the metabolism of the essential amino acid tryptophan. Some of the metabolites of this pathway, such as 
3-hydroxykynurenine and quinolinic acid, are known to have neurotoxic properties, whereas others, such as kynurenic acid, are puta-
tive neuroprotectants. Among other routes, the KYN pathway has been shown to be involved in AD pathogenesis, and connections
to other known mechanisms have also been demonstrated. Oxidative stress, glutamate excitotoxicity and the neuroinflammation
involved in AD pathogenesis have been revealed to be connected to the KYN pathway. Intervention at these key steps may serve as
the aim of potential therapy.

Keywords: Alzheimer • kynurenine • oxidative stress • glutamate excitotoxicity • neuroinflammation

J. Cell. Mol. Med. Vol 14, No 8, 2010 pp. 2045-2054

© 2010 The Authors
Journal compilation © 2010 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd

doi:10.1111/j.1582-4934.2010.01123.x

Guest Editor: B.O. Popescu

Alzheimer Review Series

Alzheimer’s disease

Alzheimer’s disease (AD) is one of the most common causes of
dementias. A recent report forecast that the prevalence of AD
was set to rise to 35.6 million people globally by 2010 [1, 2],
with the imposition of an enormous financial burden. The key
feature of the disease is the progressive deficit in several cogni-
tive domains [3–7], paralleled by regionally specific brain atro-
phy [8–11].

The first breakthrough towards an understanding of the pathome-
chanism of AD was the identification of amyloid �-peptide (A�) 
in the meningeal vessels of AD patients and later in the senile plaques
[12–14]. A� is the product of the degradation of the amyloid precur-
sor protein (APP), the gene of which is located on chromosome 
21 [15–18]. The APP is cleaved by �- and �-secretases. Mutations
of the presenilin 1 and 2 (the subcomponents of �-secretase), [19]

and the APP [20–24] result in the accumulation of the amyloido-
genic form of A� and the clinical picture of AD, but the genetically
determined form of the disease is relatively rare. However, the
oligomerization of A� seems to be the pivotal step in the patho-
genesis of AD but the role of it was also questioned recently [25].
An intimate interaction between the oligomerization of A� and
several other pathomechanistic mechanisms leads to the hyper-
phosphorylation of �-proteins, the formation of neurofibrillary
tangles, synaptic degeneration, oxidative stress, microglial and
astrocytic activation, activation of the apoptotic cascade, cell
death and transmitter deficiency (Figs 1 and 2). The aim of ther-
apeutic approaches is to modify one or other of these individual
steps, generally by anti-amyloid, neuroprotective or neu-
rorestorative means.
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The kynurenine pathway

Neuroactive kynurenines

The kynurenine (KYN) pathway is the major route for the metabo-
lism of the essential amino acid tryptophan (TRP) [26], the final
product of which is nicotinamide adenosine dinucleotide (NAD)
(Fig. 3). The first stable metabolite of the pathway is KYN, which
is transformed either by KYN aminotransferase (KAT) to kynurenic

acid (KYNA) or by KYN hydroxylase to 3-hydroxykynurenine (3-
OH-KYN), which is further metabolized to quinolinic acid (QUINA),
the precursor of NAD (Fig. 3). These metabolites are usually
referred to as neuroactive KYNs [27, 28]. KYNA is an antagonist
of the strychnine-insensitive glycine-binding site of the N-methyl-
D-aspartate (NMDA) receptor [29, 30], a weak antagonist of �-
amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and
kainite receptors [31] and also an inhibitor of the �7 nicotinic
receptor [32], which is involved in the pre-synaptic regulation of
glutamate (L-Glu) release. Conversely, the neuroinhibitory effect
of KYNA is concentration dependent: in nanomolar concentra-
tions, it facilitates field excitatory postsynaptic potentials (EPSPs)
[33]. QUINA is neurotoxic [34], and has been shown to be a direct
activator of NMDA receptors [35], to modulate the release or reup-
take inhibition of L-Glu [36] and to be involved in lipid peroxida-
tion [37, 38] and the production of reactive oxygen species (ROS)
[38, 39]. 3-OH-KYN also leads to cell death involving apoptotic
features by generating ROS [39–42].

Enzymes of the kynurenine pathway

The rate-limiting step of the KYN pathway is TRP–KYN transfor-
mation, which is catalysed by indoleamine 2,3-dioxygenase (IDO)
(Fig. 3.). IDO is known to be expressed by activated astrocytes,
microglia and infiltrating macrophages [43], but neuronal expres-
sion has also been demonstrated [44].

The key enzyme in the production of putative neuroprotective
KYNA is a transaminase. Four isoforms of KAT have been identi-
fied in the mammalian brain [45], which contribute differently to
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Fig. 2 Interactions of the major routes of the AD
pathomechanism. The three main cellular compo-
nents – the neuron, astrocyte and the microglia –
are depicted in the figure. The central mechanism
in the pathomechanism of AD is the aggregation
of A�, which in turn activates several  parallel but
interacting pathomechanistic  pathways: oxidative
stress, neuroinflammation, �-hyperphosphoryla-
tion, glutamate excitotoxicity.

Fig. 1 Schematic outline of the pathomechanism of AD.
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KYNA production in the different species [46]. The substrate
 profile, pH optimum and localization are different for the four iso-
forms. The pH optimum of KAT I and KAT III is relatively high, at
around 9.5 to 10.0, whereas KAT II operates best at physiological
pH and has a relative substrate specificity for KYN. KAT II is there-
fore the major biosynthetic enzyme of KYNA production in the
brain. However, recent results indicated that the higher pH opti-
mum of KAT I may well be due to methodological issues [47, 48].

Immunohistochemical studies indicated that KAT I and II are local-
ized preferentially in the astrocytes [49, 50], whereas KAT IV
(mitochondrial aspartate aminotransferase) is also present in
 neurons [51].

Importantly, downstream enzymes of the KYN pathway, such
as 3-hydroxyanthranilate oxygenase, which leads to QUINA
production, are expressed in the microglia, macrophages and astro-
cytes, but not in the neurons [52–54]. KYN hydroxylase seems to
be an exception as it is not expressed in the astrocytes [55].

Relations of kynurenines 
to the pathomechanism of AD

Altered activation of the kynurenine pathway in AD

Alterations in the KYN pathway has been identified in several neu-
rological and more specifically neurodegenerative diseases [56,
57], such as Huntington chorea [58], Parkinson’s disease
[59–62], multiple sclerosis [63, 64], focal dystonia [65] and
migraine [66–69]. An increasing body of evidence indicates that
the KYN pathway is involved in the pathogenesis of AD [70, 71].
Baran found slight decreases in the KYN and 3-OH-KYN levels in
patients with pathologically confirmed AD [71]. A markedly
increased content of KYNA was found selectively in the caudate
nucleus and the putamen, which was correlated with increased
KAT I activity. The level of aspartate aminotransferase in the cere-
brospinal fluid (CSF) was found to be elevated in AD patients [72].
The mitochondrial form of the enzyme was identified as KAT IV
[46]. The serum and red blood cell KYNA levels were decreased in
AD patients, but there was no alteration in the KAT I or II activity
[73]. Furthermore, the serum KYN/TRP ratio was found to be
increased in AD patients, indicating and enhanced activity of IDO,
the first key enzyme of the pathway [70]. Interestingly the
TRP/KYN ratio also proved to be correlated with the cognitive per-
formance of the patients [70]. Another study demonstrated lower
KYNA concentration in the lumbar CSF in AD patients [74]. No
alteration in QUINA was found either in the CSF [74] or in the
examined cortical, subcortical or cerebellar structures [75].
A�1–42 induced the expression of IDO and a significant increase in
QUINA in human macrophages and microglia [76], but no similar
effect of A�1–40 was found [77]. A human AD brain preparation
involving a subset of senile plaques displayed IDO and QUINA
immunoreactivity, and these plaques were characterized by high
microglia and reactive astrocytic contents [44].

Connection of oxidative stress and kynurenines

The central nervous system (CNS) is prone to oxidative stress-
caused damage as it is rich in polysulphated fatty acids, has a high
metabolic oxidative activity, has a high content of transition 
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Fig. 3 The KYN pathway of the tryptophan metabolism. International
Classification Number of the depicted enzymes: tryptophan 2,3-dioxygenase:
EC 1.13.11.11; formamidase: EC 3.5.1.9; kynurenine-3-hydroxylase: 
EC 1.14.13.9; kynurenine aminotransferase: EC 2.6.1.7; kynureninase: EC
3.7.1.3; 3-hydroxyanthranilic acid oxidase: EC 1.13.11.6; quinolinic phos-
phoribosyltransferase: EC 2.4.2.19.
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metals and also exhibits relatively little antioxidant mechanism.
Several lines of evidence indicate that oxidative stress has a key
role in the pathogenesis of AD and especially in the initiation of
pathological processes in sporadic AD [78–80]. In vitro studies
have shown that A� in aqueous solution fragments and generates
free radicals [81]. Post-mortem and animal model studies have
confirmed the oxidative stress hypothesis by revealing signs of
oxidative damage: changes in antioxidants (Cu/Zn superoxide dis-
mutase [SOD] and glutathione reductase) [82], lipid peroxidation
[83], free carbonyls [81] and peroxynitration [84]. A direct con-
nection between A� and free radicals was proved by McLellan 
et al., who demonstrated the co-localization of free radical-
induced fluorescent staining with dense core plaques, but not with
diffuse plaques in an in vivo transgenic mouse model and in 
ex vivo human AD tissue [85].

A close connection between APP/A� and the mitochondria
had already been established. The APP and A� were found to be
associated with the mithochondrial membrane [86, 87] and to
bind to the mitochondrial matrix protein [88]. A�1–42 inhibits
cytochrome oxidase activity in a Cu-dependent manner [89].
Devi et al. found that the APP accumulates in the protein import
channels of the mitochondria of AD patients and inhibits entry of
the nuclearly encoded cytochrome c oxidase subunits in associ-
ation with a decreased cytochrome activity and increased H2O2

production [90]. Similarly, Sirk et al. showed that A�25–35 in a
sublethal dose can inhibit the import of nuclearly encoded pro-
teins to the mitochondria and that a sustained period of inhibited
protein import leads to a reduced mitochondrial membrane
potential and an increased level of ROS production [91].
Furthermore, A�  promotes permeability transition pores in mito-
chondria [92], this effect seeming to be dependent on
cyclophilin D as cyclophilin-deficient mitochondria are resistant
to A� and Ca2�-induced  mitochondrial swelling and permeabil-
ity transition [93].

In contrast, BACE an aspartyl protease with �-secretase
 activity [94, 95] can be induced by oxidative stress [96], which in
turn leads to a proportional elevation of the carboxyl-terminal
fragments of APP. This draws attention to the possible initiating
role of oxidative stress in the pathogenesis of sporadic AD.

QUINA is known to cause an increased level of lipid peroxida-
tion [37, 97], an effect that seems to be NMDA receptor dependent:
MK-801, an NMDA receptor antagonist, can completely abolish
QUINA-induced lipid peroxidation [97]. Another study raised the
possibility that the lipid peroxidation effect of QUINA depends on
iron and is likely to involve iron chelation by QUINA [98]. QUINA
not only induces oxidative stress through the production of ROS,
but also appears to influence the antioxidative mechanisms. The
concentrations of reduced (GSH) and oxidized (GSSG) glutathione
were decreased and increased, respectively, whereas the level of
glutathione peroxidase remained stable, indicating a non-
enzymatic conversion of GSH to GSSG [99]. The same study also
showed that the cytosolic Cu/Zn SOD activity decreased, whereas
the mitochondrial Mn SOD was unchanged after intrastriatal
QUINA treatment [99], signifying the immediate cytoplasmatic
effects of QUINA. Although ROS production seems to be a general

feature of QUINA treatment, the lipid peroxidation effect is region-
ally specific in rat synaptosomes: the striatum and hippocampus
displayed increased production of peroxidized lipids after QUINA
treatment [38]. Furthermore, lipid peroxidation and oxidative
stress could be antagonized by N�-nitro-L-arginine, a selective
antagonist of nitrogen monoxide synthase [100]. N�-nitro-L-
 arginine was further shown to diminish KYNA synthesis by reduc-
ing the activities of KAT I and II [101, 102].

The importance of ROS production in QUINA toxicity was also
demonstrated by the finding that free radical scavengers are able
to attenuate the functional structural and behavioural effect of
QUINA toxicity [103, 104].

Glutamatergic excitotoxicity

The key feature of glutamatergic neurotransmission is the rapid
and efficient removal of L-Glu from the synaptic cleft with high-
affinity transporters to prevent receptor over stimulation. L-Glu is
taken up by the astrocytes, converted to L-glutamine, transported
to the neurons and then recycled to L-Glu and finally packed into
synaptic vesicles for reuse. Pathological accumulation of L-Glu
leads to prolonged, tonic activation, sustained local depolarization
and the influx of cations that trigger the further release of L-Glu.
This vicious circle triggers intracellular events [105], primarily
swelling of the neurons because of the increased cation concen-
tration and consequent water influx, and secondly a delayed Ca2�-
dependent neuronal degeneration [106]. Neuronal degeneration is
mediated by calpain I, which brings about cytoskeletal breakdown
[107]. Phospholipases break down the cell membranes and gen-
erate arachnoidal acid [108], the metabolism of which generates
free oxygen radicals and initiates apoptosis [109]. It has been
shown that the NMDA receptor is closely linked to protein phos-
phatase 2A (PP2A), and stimulation of the NMDA receptor leads to
the dissociation of PP2A and a reduction of the phosphatase activ-
ity [110]. This NMDA receptor-mediated mechanism may be
involved in �-hyperphosphorylation, a key step in the formation of
neurofibrillary tangles [111].

As mentioned above, QUINA is the direct activator of NMDA
receptors [35] and the neurotoxicity of the compound in sub-
physiological concentrations is blocked by the NMDA receptor
blockers MK-801 and memantine [112]. The neurotoxicity of
QUINA was related in this experiment to the depletion of NAD�,
the activation of poly(ADP-ribose) polymerase, extracellular 
lactate dehydrogenase release and the induction of inducible and
neuronal nitric oxide synthase [112]. The other possible mecha-
nism by which QUINA induces AD pathology is PPA2-mediated 
�-phosphorylation, which can be abrogated by memantine [111].
Interestingly, this effect of memantine seems to be unrelated to
the glycine or L-Glu binding site of the NMDA receptor as PP2A
inhibition-induced hyperphosphorylation could not be prevented
by the NMDA antagonist 5,7-dichlorokynurenic acid or by D(-)-2-
amino-5-phosphopentanoic acid [113].

QUINA was shown to increase the basal L-Glu release in an
NMDA receptor-mediated manner [36, 114].
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QUINA not only modulates the release of L-Glu but also inhibits
the uptake of L-Glu to the astrocytes, which is considered to be
one of the major processes in maintaining the L-Glu concentration
below toxic levels [36]. A recent experiment demonstrating that
KYN pre-treatment, which presumably leads to the production of
KYNA in the astrocytes, is able to prevent the neurotoxic effect of
L-Glu is indicative of the potential beneficial effect of KYN in neu-
rodegenerative diseases [115].

Inflammation

An increased amount of reactive microglia is commonly found in
the brain of AD patients [116, 117]. Most of them are around the
A�-containing compact plaques [118–120]. Both immunohisto-
chemical and in vivo imaging studies have revealed microgliosis-
related signal changes in AD [121]. Furthermore, Edison et al.
found that PET detected microglia activation, but not the amyloid
burden correlated with the cognitive performance of the patients
[122]. A role of the microglia has been proposed in the degrada-
tion of A� [123], but microglial activation also leads to activation
of the complement system and the release of cytokines,
chemokines and acute phase proteins (for reviews see
[124–126]), which might also play a role in AD pathogenesis.

The KYN pathway is known to be involved in inflammatory
processes with various mechanisms. Inflammation due to focal
poliovirus is accompanied by the up-regulation of IDO, the rate-
limiting step in the KYN pathway that results in increased levels of
QUINA, KYN and KYNA [127, 128]. It has also been demonstrated
that the sources of QUINA are the macrophages and to a lesser
degree microglia. A human foetal brain culture consisting of neu-
rons and astrocytes transformed TRP to KYN when stimulated by
�-interferon, but QUINA was formed only when macrophages
were added to the culture [127, 129]. The abilities of macrophages
and microglia to produce QUINA differ [130]; this is related to the
lower expressions of three key enzymes of the KYN pathway in the
microglia: IDO, kynureninase and KYN hydroxylase [131]. A� is
known to induce phenotypic activation of the microglia and also to
modulate the acute and chronic expression of pro-inflammatory
genes [132, 133] that may produce potentially toxic products.
Interestingly, besides many other pro-inflammatory genes, the
expressions of the enzymes of the KYN pathway are also signifi-
cantly altered by A� [124, 132]. Importantly, only A�1–42, but not
A�1–40 or A�25–35 activated THP-1 cells (a human monocytic cell
line) [134]. Administration of �-interferon after A�1–42 pre-treat-
ment, but not interleukin-1b, tumour necrosis factor-� or inter-
leukin-6, induced the expression of IDO [134]. Microarray analy-
sis of the gene expression profile of the A� stimulated microglia
indicated an average increase of more than 40-fold (278-fold by
real-time PCR) in IDO production at 24 hrs, which remained sig-
nificantly elevated at 96 hrs [132]. Similarly, the expression of
kynureninase was elevated (3.6-fold), but not that of KAT II. These
data show that A� stimulation of the microglia shifts the KYN
pathway in the direction of the production of neurotoxic QUINA
relative to the putative neuroprotectant KYNA. In a recent study by

Guillemin et al., IDO and QUINA were overproduced in human AD
hippocampus preparations [44]. Immunoreactivity of IDO and
QUINA was detected in the microglia and astrocytes and also in
the neurons. The intracytoplasmatic vesicular neuronal QUINA
immunoreactivity is thought to be a result of the uptake rather
than the de novo neuronal synthesis of QUINA as it was earlier
shown that the neurons produce IDO, but not QUINA [135].
Further, the astrocytes lack KYN hydroxylase and consequently the
uptake of QUINA might be part of the neuroprotective mechanism
[43]. Additionally, QUINA induces astrogliosis and the production
of chemokines such as interleukin 1�, MCP-1 (CCL2), RANTES
(CCL5) and interleukine-8 (CXCL8) [136–139].

A future therapeutic approach:
 modulating the kynurenine pathway

The foregoing data indicate the significant involvement of the KYN
pathway in the pathogenesis of AD. The key seems to be the shift
in the TRP metabolism in the direction of neurotoxic agents and
the relative reduction of neuroprotectant products. This shift has
profound, but surely not independent effects on different patho-
mechanistic pathways in AD: oxidative stress, L-Glu neurotrans-
mission and inflammation. Re-establishment of the physiological
metabolite ratios, or even a shift of the TRP metabolism in the
neuroprotectant direction may serve as a potential therapeutic
approach [27, 140]. Synthetic KYNs such as KYNA are of limited
therapeutic use as they penetrate the blood–brain barrier only
poorly [141], an exception being 4-Cl-KYN that readily enters the
brain and is transformed to 7-Cl-KYN by KAT [142]. The systemic
administration of 4-Cl-KYN increased the level of 7-Cl-KYN in the
hippocampus and reduced the kainite-induced seizure activity
[142]. Similarly, 4-Cl-KYN reduced the neurotoxic effect of QUINA
in the rat hippocampus and striatum [143, 144]. In contrast, the
synthetic KYN derivative, NMDA antagonist 5,7-dichlorokynurenic
acid did not attenuate PP2A inhibition-induced �-hyperphospory-
lation [113]. A substantial effort is being made to develop 
new KYNA derivatives that cross the blood–brain barrier 
[145]. We recently demonstrated that a novel KYN analogue, 
2-(2-N,N-dimethylaminoethylamine-1-carbonyl)-1H-quinolin-4-
one hydrochloride, exhibits features similar to those of KYNA
[146]. In the micromolar range, its administration decreased the
amplitude of the field EPSPs in the CA1 region of the hippocam-
pus. Preclinical and subsequent clinical investigations of the com-
pound are needed to evaluate its usefulness in neurodegenerative
diseases such as AD.

Another possibility via which to increase the level of neuropro-
tectant KYNA is to modulate the activities of the individual
enzymes of the KYN pathway. Nicotinylalanine, an agent that
inhibits kynureninase and KYN hydroxylase activity, administered
together with KYN and probenicid (an inhibitor of organic acid
transport), increased the brain KYNA level and inhibited QUINA-
induced neurotoxicity [147, 148]. Another such enzyme is KYN
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hydroxylase, loss of function mutation of which in yeast reduces
mutant huntingtin fragment toxicity [149]. Ro 61–8048, a high-
affinity inhibitor of KYN hydroxylase significantly reduced the
mutant huntingtin-induced production of 3-OH-KYN, but not that
of QUINA production, and did not ameliorated ROS production
[149]. In a recent study Amori et al. selectively inhibited KAT or
KYN hydroxylase and reported the reduction of 3-OH-KYN –
QUINA and KYNA production, respectively [150]. Interestingly
pre-treatment with intrastriatal QUINA UPF 648 not only
decreased the levels of 3-OH-KYN and QUINA, but also moderately
elevated KYNA production [150].

Concluding remarks

There is appreciable evidence that the neurodegeneration in AD is
mediated, at least partly, by neurotoxic products of the KYN path-
way. Possible therapeutic approaches could be to reduce the
expression of these neurotoxic agents or to increase the produc-
tion of putative neuroprotectant KYNA or make use of its ana-
logues. However, the specific involvement of the KYN pathway in
AD, it also has to be emphasized that neurodegenerative diseases

share several common features. Among other common mecha-
nisms the shift in the KYN pathway seems to be general over dif-
ferent neurodegenerative diseases [27, 56, 58, 62–65] and such,
neuroprotective therapies influencing the KYN pathway may be
beneficial in several neurological pathologies.

Further research is needed to elucidate the exact role of the
KYN pathway in the pathomechanism of these neurodegenerative
processes in an effort to promote the development of novel ther-
apeutic agents.
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