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Abstract

Renin-angiotensin system (RAS) systemically or locally collaborates with tissue homeosta-

sis, growth and development, which has been extensively studied for its pharmacological

implications. This study was primarily aimed at finding and characterizing local RAS in rat

parotid, sublingual and submandibular glands. It was also hypothesized that vasoactive

drugs could affect the expression of RAS targets, as well as saliva flow and its composition.

Therefore, another objective of this study was to compare the effects of losartan (angiotensin

II receptor blocker) and isoproterenol (β-adrenergic receptor agonist). Forty-one Wistar rats

were divided into three groups and administered a daily intraperitoneal dose of saline, losar-

tan or isoproterenol solutions for one week. The following RAS targets were studied using

qPCR: renin (REN), angiotensinogen (AGT), angiotensin converting enzyme (ACE), ACE-2,

elastase-2 (ELA-2), AT1-a and MAS receptors, using RPL-13 as a reference gene. Morphol-

ogy of glands was analyzed by immunohistochemistry using REN, ACE, ACE-2, AT1, AT2

and MAS antibodies. The volume and total protein content of saliva were measured. Our

results revealed that ACE, ACE-2, AT1-a, AT2 and MAS receptors were expressed in all sali-

vary gland samples, but REN and ELA-2 were absent. Losartan decreased mRNA expres-

sion of RAS targets in parotid (MAS) and submandibular glands (ACE and both AT

receptors), without affecting morphological alterations, and significantly decreased saliva

and total protein secretions. Isoproterenol treatment affected gene expression profiles in

parotid (ACE, ACE-2, AT1-a, MAS, AGT), and submandibular (ACE, AT2, AGT) glands, thus

promoting acinar hypertrophy in serous acini, without significant changes in salivary flow or

total protein content. These drugs affected mainly acini, followed by duct systems and myoe-

pithelial cells, whereas blood vessels were not affected. In conclusion, there is a local RAS in

major rat salivary glands and losartan, an angiotensin II receptor blocker, affected not only

the RAS-target gene expression but also decreased salivary flow and total protein content.
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Introduction

The description of the Renin-angiotensin system (RAS) would allow an improved understand-

ing of homeostatic regulatory mechanisms, involving primarily vasodilation, water intake and

sodium balance. The RAS classically works through the following cascade: renin (REN, origi-

nated from the juxtaglomerular cells of the kidney) cleaves angiotensinogen (AGT, a protein

produced by the liver) into angiotensin-1 (Ang I: Asp1-Arg2-Val3-Tyr4-Ile5-His6-Pro7-Phe8-

His9-Leu10). Angiotensin converting enzyme (ACE, obtained from lungs) then cleaves the

Phe8-His9 bond to produce the vasoactive octapeptide angiotensin-2 (Ang II: Asp1-Arg2-Val3-

Tyr4-Ile5-His6-Pro7-Phe8). Ang II binds to angiotensin type 1 receptors (AT1) leading to vaso-

constriction, aldosterone secretion, fibrosis, proliferation, oxidative stress and inflammation

among others, which have been described previously [1,2].

Other components also influence these reactions through different mechanisms [3]. For

example, angiotensin-1-7 (Ang 1–7: Asp1-Arg2-Val3-Tyr4-Ile5-His6-Pro7) binds to MAS recep-

tors (MAS) which has vasodilatation, antiproliferative, antithrombotic and antifibrotic effects

[3,4]. In fact, 37 gene products have been described as an extended RAS [3].

Apart from the circulatory system, RAS also contributes to systemic development, which

seems to affect bone healing [5] and the immune system [6]. It is also known that RAS cascade

components can be locally synthesized in some other tissues [3], such as gingiva [7], adipose

tissue [8], and brain [9]; the latter exhibits controversial functions [10]. Studies indicate that

there could be local secretion in glands, which is regulated by the tissue’s RAS, as shown in

mice lacrimal glands [11], as well as in rat, mice and human adrenal glands [12,13].

RAS cascade is affected when the systemic blood pressure is unbalanced; therefore, antago-

nists or inhibitors of RAS components are usually prescribed to re-establish normal systemic

conditions. The most prevalent treatments of chronic hypertension comprise of ACE inhibi-

tors (ramipril, captopril, enalapril, fosinopril, lisinopril and quinapril) [14] and/or angiotensin

receptor (AT) blockers (losartan, candesartan, eprosartan, irbesartan, telmisartan and valsar-

tan) [15], which were shown to have comparable antihypertensive effects.

Selective blockades of RAS may affect tissue function; Losartan impairs aldosterone produc-

tion by the adrenal cortex [12], while valsartan increases mean tear production in lacrimal

glands [16] and captopril up-regulates thirst sensation and water intake [17]. The influence of

hypertension on salivary flow has been reported [18]. It is known that hypertensive and non-

treated rat models also exhibit impaired saliva flow [19] with s quantitative and qualitative

decrease in protein expression [20] and impaired local blood flow [18]. Since Ang-II-treated

rats also present with an increase in water and sodium intake [21], RAS sensitivity of local vas-

cular receptors could imply on a specific control of exocrine secretions as well as a direct role

in salt and water retention [18].

Another condition is acute hypertension (or acute stress), which is known to trigger the

release of adrenaline and noradrenaline, that bind to adrenergic receptors, resulting in many

effects, such as increase in heart rate, peripheral paling or flushing, release of energy sources,

mydriasis and inhibition of lacrimal and salivary gland secretions, among others [22].

Therefore, adrenergic receptors are related to saliva secretion, depending not only on sig-

nals from the central nervous system (CNS) but also from the circulatory system [23,24]. In

summary, vasoactive peptides and neuro signs cause muscarinic and α-adrenergic stimulation

to provide the fluid component of saliva. Afterward, β-adrenergic receptors coordinate with

the release of specific proteins for each type of salivary glands [24]. Isoproterenol (β-adrenergic

agonist) can reduce saliva release and increase the release of specific proteins due to a specific

adrenergic stimulation [25,26]. Although not prescribed for clinical usage [26], this drug is

used by researchers to understand stress adaptive mechanisms [25,27] and the mechanism
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through which it induces RAS components to coordinate with tissue fibrosis, proliferation and

protection, in the heart [28] and kidney [27].

In the context of salivary glands microscopic anatomy, it is important to note that, in

humans, parotid gland has a serous profile and is, responsible for majority of the stimulated

saliva flow, while the sublingual gland is predominantly mucous, and the submandibular gland

behaves as a mixed gland responsible for 60% of the unstimulated saliva secretion. While simi-

lar features are detected in human parotid and sublingual glands as those in rodents, rat sub-

mandibular glands are characterized by an exclusive serous profile that shows a major

potential to release growth factors from granular ducts [29]. Granular convoluted tubules

(GCT) are a unique characteristic of rodent submandibular glands and are able to release gran-

ules with a variety of biologically active polypeptides, with local and systemic functions [29].

The differences between species should be considered for further studies using animal models

to explain tissue physiology without the technical and bioethical limitations that apply to

experiments on human tissues.

The absence of saliva synthesis impairs quality of life and protection against oral diseases

[25,29]. Xerostomia could be a complaint in healthy patients although it is more often consid-

ered to be a consequence of chronic diseases or a collateral effect of their treatments, such as

hypertension [17,20], cardiovascular diseases, hyperthyroidism and diabetes mellitus [30].

Thus, the dry mouth has become a common complaint on a regular clinical basis.

Given the oral impact that RAS could have in coordinating with local homeostasis, the

hypothesis of the present study was that RAS components are synthesized in the salivary

glands and that pharmacological prescription of an AT1 receptor antagonist and a β-adrener-

gic receptor agonist modulates RAS expression and salivary secretion. Therefore, the present

study aimed at investigating RAS components produced locally in rat parotid, submandibular

and sublingual glands, to characterize whether or not they were local RAS or not. Secondly,

pharmacological approaches were used to promote two distinct alterations: an AT blocker

(losartan) was prescribed to elucidate local alterations caused by a RAS target blockade,

whereas a β-adrenergic agonist (isoproterenol) was taken as a positive control on the basis of

previous reports on alterations in salivary glands function and morphology [31,32]. Finally, in

order to evaluate the impact of such drugs in physiology and saliva secretion, the saliva volume

and total protein measurements were performed.

Materials and methods

All the methods were carried out under the guidelines of the National Research Council. All

the animal protocols were approved by the Ethics Committee for Animal Experiments of

Bauru School of Dentistry, University of São Paulo (#015/2013).

Preparation of animals

Forty-one 60-day-old male Wistar rats, weighing between 248–339 grams were obtained for

experiments from the Animal Breeding Center of the Bauru School of Dentistry, University of

São Paulo, and housed in temperature-controlled rooms, with free access to food and water.

The rats were divided into three groups, each receiving one specific pharmacological treatment

for a week, consisting of a daily intraperitoneal dose of saline (negative control group, n = 12),

losartan (10 mg/kg body weight (b.w.) [33], n = 14) or isoproterenol (20 mg/kg b.w. [31,32],

n = 15). Three rats from isoproterenol group died before the seventh day (S1 and S3 Tables),

and this could be expected since isoproterenol treatment is also used to induce experimental

chronic heart failure in rat models [34] and myocardial infarction [35] with different doses.

Losartan and isoproterenol promote alterations in the local renin-angiotensin system of rat salivary glands
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Immunohistochemistry and quantitative gene expression

For histological and qPCR analyses (targets are represented in Fig 1), 21 rats were used (for

each treatment group n = 7; by the last day of the experiment, 2 rats from isoproterenol group

died, being the only group with n = 5). Basal salivary secretion was inhibited by subcutaneous

injection of 0.5 mg/Kg b.w. of atropine sulfate (1.25% atropine solution, Prado Laboratory SA,

Brazil) on the last day, for all experiments, in order to revoke the sialogogue effect caused by

the drugs used for euthanasia [36]. It is important to mention that, to the best of our knowl-

edge, the effect of atropine in the expression of the local RAS in salivary glands is not yet

described and, in the present experiment, it affected all animals equally. After 10 minutes, the

animals were anesthetized by an intraperitoneal injection of ketamine chloride (55 mg/kg b.

w.) and xylazine chloride (10 mg/kg b.w.). Immediately, parotid, submandibular and sublin-

gual glands pairs were collected and divided into two groups. For the first group, the glands

were harvested, maintained in microcentrifuge tubes containing a solution for RNA stabiliza-

tion (RNAlater, Ambion, USA), and stored in the freezer at -80˚C until RNA extraction. The

second group (contralateral gland) was fixed in 10% neutral buffered formaldehyde (pH 7.2)

for 24 hours and processed using routine histological techniques for immunohistochemical

analysis. The animals were euthanized with excessive anesthetic dose, after gland harvesting.

Fig 1. Representation of the metabolic RAS cascade. Angiotensinogen and the peptide sequences are shown as a result of

specific enzyme cleavages, which are included next to their represented arrows. The receptors are represented as boxes on the

bottom and the function described is a result of the linked angiotensin binding. The RAS targets used in this study are

indicated with an asterisk. Graphic illustration is adapted from Ferrario and Strawn [1].

https://doi.org/10.1371/journal.pone.0217030.g001
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Total RNA isolation, cDNA synthesis and quantitative RT-PCR. Total RNA was iso-

lated from each gland using the RNeasy Mini Kit (Qiagen, Valencia, USA), according to the

manufacturer’s instructions, after weighing and separating 20–30 mg tissues. RNA quantity

and quality were measured using a spectrophotometer (NanoDrop 1000, Thermo Scientific).

Quanti Tect Reverse Transcription Kit (Qiagen, Valencia, USA) was used to perform reverse

transcription (RT) according to the manufacturer’s instructions. The contents of the kit were

mixed with RNA samples, followed by incubation of the reaction mixture at 37˚C for 30 min-

utes in a Veriti Thermal Cycler (Applied Biosystems, USA). Transcriptase was inactivated post

transcription by incubating the samples at 95˚C for 3 minutes. Transcripted samples with

cDNAs were stored in the freezer (-20˚C).

cDNAs were mixed with the Taqman gene expression master mix (Applied Biosystems,

USA) and gene specific TaqMan primer/probe sets (Table 1). A pilot study in our group did

not find expression of AT1b receptors in sublingual and submandibular glands (unpublished).

Therefore, this study focused on only the AT1-a and AT2 receptors (Fig 1).

Gene expression data analysis. Relative gene expression was quantified based on RPL13

as the reference gene, by subtracting the target’s threshold cycle (Ct) from RPL13’s threshold

cycle to obtain delta CT (ΔCt). Applied Biosystems assures 100% efficiency in the reactions

using their kits since these assays have been previously validated by the company. Therefore,

relative quantification (qPCR) was based on the following formula 1+ reaction efficiency−ΔΔCt

(2– ΔΔCt). Statistical analysis was performed with One-way ANOVA/ Tukey post-test for

parametric results, whereas Kruskal-Wallis/ Dunn’s post-test was applied for non-parametric

results. Differences were considered to be statistically significant at p< 0.05.

Immunohistochemistry

REN, ACE, ACE-2, AT1, AT2 and MAS were selected as targets for immunohistochemical

analysis. The glands were embedded in paraffin enriched with polymers (HistosecTM, Merck).

Four-micron thick sections were obtained and mounted on silane-coated glass slides (Dako S

3003). The paraffin sections were deparaffinized, re-hydrated and immersed in deionized

water for subsequent immunohistochemical procedures. Primary antibodies used for specific

staining of the RAS targets are listed in Table 2.

Slides were immersed in epitope retrieval buffer (10 mM sodium citrate and 0.05% Tween

20 at pH 6.0) in a pressure cooker at 15 psi/121˚C for 5 min. Endogenous peroxidase activity

Table 1. Primers used for quantitative gene expression.

Target Catalog number

AGT Rn00593114_m1

REN Rn00561847_m1

ACE Rn00561096_m1

ACE-2 Rn01416289_m1

AT1-a Rn00578456_m1

AT2 Rn00560677_s1

MAS Rn00562673_s1

ELA-2 Rn00561147_m1

RPL-13 Rn00821258_g1

AGT, angiotensinogen; REN, renin; ACE, angiotensin converting enzyme; AT, angiotensinogen II receptor; MAS,

MAS receptor; ELA, elastase. The primers are recommended by the qPCR kit manufacturer (Applied Biosystems,

USA).

https://doi.org/10.1371/journal.pone.0217030.t001
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was blocked for 10 min with hydrogen peroxide block (DHP-125, Spring Bioscience Corp)

and the serum proteins in a 7% milk solution (Molico1, Nestlé, Brazil) for 15 minutes. Tissue

sections were incubated in each primary antibody as specified in Table 2 for 1 hour in a wet

chamber. Slices were carefully rinsed in Tris-buffered saline (TBS) and incubated in Universal

Immuno-enzyme Polymer combining amino acid polymers with peroxidase and the Fab’ frag-

ment of the secondary antibody (N-Histofine1 Simple StainTM Rat MAX PO, Nichirei Biosci-

ences INC., Japan). Rat kidney was similarly processed and used as positive and negative

controls. Antibody diluent was used instead of the primary antibody for negative control. Sec-

tions were treated with 3,3’-diaminobenzidine tetrahydrochloride (DAB-125, Spring Biosci-

ence Corp) for 3 minutes and counterstained with Mayer’s hematoxylin for 3 minutes,

followed by viewing under the microscope. Immunolabeling patterns of the RAS targets in the

glands were determined using a light microscope (Axioskop, Carl Zeiss, Germany) and photo-

micrographs were taken with a high-resolution digital camera (AXIOCAM HRc; Carl Zeiss)

using a 40x oil immersion objective lens.

Salivary flow and total protein measurements

Nineteen rats (5 treated with saline, 7 treated with losartan and 7 treated with isoproterenol)

were used for salivary flow and total protein measurements the day after the last proposed

drug administration, as described previously by Benarde [37]and Bighetti [38]. Saliva was col-

lected during 15 minutes after the first drop noticed following pilocarpine injection. Total vol-

ume was calculated from the difference in weight between empty and saliva containing

Falcon1 50 mL tubes, considering saliva density as 1 mg/mL. The volume measurement was

further confirmed with precise pipetting (μL) of the samples. As noticed, rat body weight influ-

enced saliva secretion, therefore, the salivary flow rate was normalized and expressed as μL/

min/g body weight. For total protein measurements, the Bradford method was used. Both

saliva volume and saliva total protein tests were parametric, therefore data were expressed as

means ± standard deviation and analyzed by One-way ANOVA test/Tukey post-test. Differ-

ences were considered to be statistically significant at p< 0.05.

Results

Quantitative gene expression

All the glands used in this study did not express the targets of REN and ELA-2; however, the

expression of the targets ACE, ACE-2, AGT, AT1-a, AT2 and MAS was detected in all the sam-

ples with characteristic profiles in each gland. Comparison between the treatment groups

showed statistical differences.

Table 2. Origin, isotype, concentration and dilution of the primary antibodies used for the immunohistochemical staining.

Target Catalog N# Isotype Concentration Dilution�

REN Sc 27318 IgG goat 200 μg/mL 1/75

ACE ab 11734 IgG mouse 200 μg/mL 1/75

ACE-2 Sc 20998 IgG rabbit 200 μg/mL 1/50

AT1 Sc 1173 IgG rabbit 200 μg/mL 1/50

AT2 ab 19134 IgG rabbit 200 μg/mL 1/50

MAS Sc 390453 IgG mouse 200 μg/mL 1/75

RAS targets (SantaCruz Biotechnology): REN, renin; ACE, angiotensin converting enzyme; AT, angiotensinogen II receptor; MAS, MAS receptor; ELA, elastase.

�antibody diluent (ADS-125, Spring Bioscience Corp, Pleasanton, California, USA).

https://doi.org/10.1371/journal.pone.0217030.t002
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Parotid gland. Our data indicate that losartan treatment decreased the MAS expression,

but the other targets showed no statistical differences when compared with saline as control

(Fig 2). Isoproterenol reduced the expression of the majority of the targets with statistically sig-

nificant differences for ACE, ACE-2, AT1-a, MAS and AGT.

Sublingual gland. The sublingual gland was the least affected among all the glands stud-

ied, since slight but no significant statistical differences between both treatments were

observed when compared with saline.

Submandibular gland. The submandibular gland was the most affected by both treat-

ments, amongst all the other glands. While losartan decreased the expression of ACE, AT1-a

and AT2, whereas isoproterenol decreased the expression of AT2 and ACE and increased the

expression of AGT (Fig 2).

Immunohistochemistry

Negative and positive controls. The positive anatomical control used in this study was

the kidney because the presence of RAS components in the kidney is known a priori [3],

and it is not the target of the present experimental treatment. Fig 3 shows the RAS targets in

the granular cortex, with the characteristic expression of each target. REN expression was

observed in the juxtaglomerular cells and tubular cells. ACE was detected in the peritubular

capillaries, in the brush border of proximal tubules and the arterial adventitia, while ACE-2

was localized to the proximal and distal convoluted tubules. AT1 was detected in all tubular

cells, epithelial cells of Bowman’s capsule and vascular smooth-muscle cells, but AT2 was

localized only in tubular cells. MAS receptor was mostly found within the proximal convo-

luted tubules and was absent in the glomerulus. No signal was observed in the negative con-

trol of a kidney section by omitting the primary antibody, thus showing the specificity of

immunostaining of the targets.

Major salivary glands. RAS targets in three major salivary glands were detected by immu-

nohistochemistry in formalin-paraffin sections. Figs 4–6 showed that the localization and

intensity of immunostaining varied according to the type of gland and treatment.

The expression of RAS targets in salivary glands can be partially compared with mice lacri-

mal glands [39], especially when the epithelial cells of the duct systems are described. Also,

myoepithelial cells were detected in the three studied glands and immunostained for RAS tar-

gets, thus suggesting a local function on duct contraction.

In contrast to previous reports of mice submandibular glands [40] and previously described

by many authors [41,42], there is an absence of REN expression in the three salivary glands, in

both treated and untreated rats. Therefore, the latter was also considered as a negative control

in our procedure.

Parotid gland showed specific RAS targets marked in blood vessels, duct, and acinar cells.

ACE was observed in myoepithelial cells and blood vessels. ACE-2, AT1, and AT2 were pres-

ent in epithelial cells of the duct systems. MAS was present in the duct and acinar cells of the

saline and losartan groups, being the only target significantly affected by this drug. Isoprotere-

nol remarkably reduced RAS expressions in acinar cells but not in blood vessels and ducts,

based on immunostaining analysis.

The sublingual gland naturally showed major expression of mucous cells with the only

immunostains being observed in ducts, blood vessels and interstitial tissue. Besides REN, all

the RAS targets were observed in epithelial cells of the duct systems and myoepithelial cells

(the latter not being detected with ACE-2 immunomarkers). Therefore, no relevant alterations

seem to be induced by either losartan or isoproterenol treatment groups in the sublingual

gland.
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Fig 2. Relative quantification of each target in rat parotid, sublingual and submandibular glands. Data are

means ± standard deviation. One-way ANOVA/Tukey’s multiple comparison tests were performed for parametric

results whereas Kruskal-Wallis/ Dunn’s post-test was applied for non-parametric results. Differences were considered

statistically significant when p<0.05. Different letters indicate a statistically significant difference between groups and

when such differences were calculated between two groups but not in a third one as compared to both, the latter is
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In contrast to the other types of glands, the expression of RAS targets in the submandibular

gland was present in acinar cells, and was not restricted to ducts only as in the case of the

majority of the other glands. The GCT were heterogeneously stained, as clearly seen with MAS

immunomarkers. Comparison of the different treatments showed that the expression of acinar

cells was the most affected, as seen within losartan treatment for ACE, AT1 and AT2 groups.

Based on qPCR results, isoproterenol decreased the expression of the targets AT2, ACE in

acini. MAS expression remained restricted to GCT with an aspect of degranulated cytoplasm,

in all the treatments, similar to the study reported by Thulesen et al. [43].

ACE was the only target identified in the blood vessels, responsible for the immunostaining

of these cells for all salivary glands. It is important to note that none of the treatments impacted

the expression of these targets.

Salivary flow and total protein results

Both methods for the of salivary flow (weighing tubes before and after saliva collection (S1 Fig)

and pipetting the real volume in μL) resulted in similar data, statistical results, and analyzes.

Therefore, the real volume comparison was presented here as it was considered a more accu-

rate method of analysis. Total protein measurements are also represented in Fig 7.

Losartan reduced salivary flow and total protein secretion with a significant statistical dif-

ference when compared to saline (respectively, p = 0.0227 and 0.0415). However, no change

occurs in gland morphologies based on immunohistochemistry and mass (S2 Table).

Consistent with other studies [31,32], isoproterenol induced morphological alterations and

increased parotid and submandibular glandular mass (S2 Table). However, none of these

results significantly affected salivary flow (p = 0.0771) or total protein release (p> 0.999) when

compared with the control group. Notwithstanding, when compared with losartan, the salivary

represented as ab. Letters were not used in the graph when differences were not significant between saline, losartan

and isoproterenol.

https://doi.org/10.1371/journal.pone.0217030.g002

Fig 3. Positive and negative controls in immunohistochemical staining of RAS targets in the granular cortex of

the kidney. Immunostains are shown as a brown color in positive controls of REN, ACE, ACE-2, AT1, AT2 and MAS.

(x40 objective and scale bar = 50 μm).

https://doi.org/10.1371/journal.pone.0217030.g003
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Fig 4. Photomicrographs of immunohistochemical staining (brown) of RAS targets in rat parotid gland. Targets:

REN, ACE, ACE-2, AT1, AT2 and MAS were analyzed. Arrows indicated by colors: blue = ducts; yellow = acini;

red = blood vessels; black = epithelial cells of the duct system. No REN expression in parotid glands was observed

under all treatments. ACE is present in myoepithelial cells around intercalated ducts (indicated by blue arrowhead in

detail), acini (indicated by yellow arrowhead in detail) and in blood vessels (indicated by red arrowhead). ACE-2, AT1

and AT2 are present in epithelial cells of the duct system (indicated by black arrowhead), while MAS is present in duct

cells (black arrowhead) and acinar cells (blue arrowhead) in all treatments except for isoproterenol. Comparatively, the

parotid glands of the animals which received saline and losartan show a similar pattern of immunolabeling for RAS

targets but have more expression than in animals which received isoproterenol. (x40 objective and scale bar = 50 μm).

https://doi.org/10.1371/journal.pone.0217030.g004
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flow of isoproterenol-treated rats had no statistically significant difference (p = 0.773) and

total protein release showed significantly higher results (p = 0.0037). Therefore, it can be con-

cluded that isoproterenol promoted a saliva secretion with higher protein concentrations

amongst the studied groups.

Discussion

RAS components have been previously observed in salivary glands [41,44–48] and the present

study proposes a possible explanation through which local RAS in salivary glands collaborates

with saliva synthesis and tissue physiology. The vascular activity starts with local or systemic

AGT cleavage, as observed from our qPCR analyses, which showed mRNA expression in all

the glands studied. It is well known that after REN activity, ACE cleaves Ang I into Ang II in

order to obtain this important vasoactive peptide.

As presented in our results and previously described [41,42], REN was not found in any of

the analyzed glands (Figs 4–6). However, it has been shown in many species, including

humans [49], that Ang II synthesis is not restricted to these enzymes. Cathepsin G, tonin and

ELA-2 are enzymes responsible for alternative pathways in Ang II synthesis, replacing REN

and/or ACE. In addition, local REN in rats could result from bloodstream uptake.

Opposing the absence of this enzyme in rats, different mice strains express REN in sublin-

gual and mainly in submandibular glands, the latter noticed to be the main source of extrare-

nal REN in the majority of the studied mice [40]. This enzyme collaborates either locally, with

hormonal and gender dependency, or systemically, regulating plasma concentration and

blood pressure [50]. REN is an example of many targets with different expressions amongst

other species, therefore it is important to bear in mind that the metabolism of rat salivary

glands has its own characteristics when trying to prospect reasons for, i.e., human conditions.

Hence, when alternative enzymes were considered, none of the glands locally expressed

ELA-2 mRNA, so this alternative RAS pathway for Ang I cleavage into Ang II [51] was dis-

carded based on our results. Further investigations should target tonin, kallikreins and Cathep-

sin G in order to explain in further detail, how enzymes replace REN functions. There is

evidence for tonin and kallikreins in submaxillary glands and their corresponding systemic

REN levels, comparing normotensive and hypertensive rats [52]. Salivary glands are the main

site for the gene expression of kallikreins, which are also responsible for balancing classical

RAS with vasodilatation. They are located in convoluted tubes, intercalated ducts and in the

main excretory duct cells [50], which is similar to the findings of this study with respect to

many RAS targets. Therefore, RAS collaboration with homeostasis in these tissues could be

complementary to the kallikrein-kinin axis.

This association with other vasoactive systems was previously discussed, when captopril

caused dipsogenic effects in rats when bradykinin was studied as a stimulator of thirst [17].

ACE was predominantly detected in salivary myoepithelial cells, similar to lacrimal glands [39]

and other exocrine glands [53], contouring acinar and ductal epithelial cells in a stellate format

(ACE, blue arrow detail in Figs 4–6). They have both epithelial and smooth muscle cell fea-

tures. Therefore, it is proposed that their contractions would induce the secretory function of

Fig 5. Photomicrographs of immunohistochemical staining (brown) of RAS targets in rat sublingual gland. Targets: REN, ACE,

ACE-2, AT1, AT2 and MAS were analyzed. Arrows indicated by colors: blue = myoepithelial cell; black = duct cells; red: blood

vessels; yellow: acinar cells. No REN expression was observed in sublingual glands in all treatments. ACE is present in myoepithelial

(blue arrow), duct cells (black arrowhead) and blood vessels (red arrowhead). ACE-2, AT1, AT2, and MAS are present in epithelial

cells of the duct system (black arrowhead), myoephitelial cells (blue arrowhead) and more rarely in serous acinar cells (yellow

arrowhead) under isoproterenol treatment. Comparatively, the immunostaining patterns of the RAS targets are similar in the

sublingual gland in all treatments. (x40 objective and scale bar = 50 μm).

https://doi.org/10.1371/journal.pone.0217030.g005
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these acini, as previously noticed in lacrimal glands [39]. Indeed, the characterization of myoe-

pithelial cells presents novel perspectives on how salivary gland microtissues work, and there-

fore, proposes mechanisms for restoration of their function in hyposalivation [53].

Our results suggest that RAS mechanisms complying exclusively vasoconstriction and dila-

tion are not able to completely describe salivary glands local mechanisms on saliva release,

since the decrease of ACE expression in myoepithelial cells cannot explain lower salivary rates

by itself. We propose that local ACE, in addition to other cascades triggered by AT1 blockade,

would affect these cells contraction and further reduce saliva flow. It is partly proven since

both treatments decreased saliva secretion (isoproterenol almost reached statistical signifi-

cance with p = 0.0771) and had submandibular myoepithelial cells with attenuated ACE

expressions.

Complementary, polydipsia was not a side-effect related to treatment with captopril [17].

The primary polydipsia associated with the inhibition of ACE declined inner medullary aqua-

porin (AQP) 2, without significant change AQP3 and AQP4 expression. Our results suggest,

that RAS is involved in thirst regulation because AT1 blockade through losartan resulted in a

decrease in ACE expression and salivary flow.

Concerning RAS receptors, Matsubara et al. [48] used binding assays for rat submandibular

glands and observed that AT1 was predominant in comparison to AT2, although they authors

did not include AT1 subtypes (AT1-a and AT1-b) which were used in our study.

As mentioned in the Materials and methods section, we found that AT1-b was present only

in parotid glands in our preliminary experiment (unpublished data). Therefore, AT1-a subtype

was specifically studied to compare all salivary glands. In contrast to the previous study [48],

there were statistical differences between AT1 and AT2 expression levels in submandibular

glands of the saline and losartan groups (Fig 2). Since isoproterenol did not reduce AT1

Fig 6. Photomicrographs of immunohistochemical staining (brown) of RAS in rat submandibular gland. Targets: REN, ACE,

ACE-2, AT1, AT2 and MAS were analyzed. Arrow colors indicate as follows: blue = myoepithelial cell; black = duct cells; red = blood

vessels; yellow: acinar cells. GCT = granular convoluted tubule. No REN expression was observed in submandibular glands under all

treatments. ACE shows higher expression in blood vessels (red arrowhead) under all treatments. ACE expression in duct cells (black

arrowhead) and myoepithelial cells around intercalated ducts (blue arrowhead) and acini (yellow arrowhead) are higher in saline

treatment than those in rat glands treated with losartan and isoproterenol. ACE-2 is present in acinar cells (yellow arrowhead) and

the duct system (black arrowhead) except in the granular convoluted tubule cells (GCT). Mild ACE-2 expression in acinar cells can be

observed in rat glands treated with isoproterenol. AT1 and AT2 are present in acinar cells (yellow arrowhead) and striated/excretory

ducts (black arrow head), but only AT1 is expressed in GCT. AT1 is weakly expressed in rat glands treated with losartan and a strong

immunostain for MAS is observed only in the GCT. (x40 objective and scale bar = 50 μm).

https://doi.org/10.1371/journal.pone.0217030.g006

Fig 7. Salivary flow and total protein determination in control, losartan and isoproterenol groups. Data are presented as means ± standard deviation.

Different letters indicate a statistically significant difference (p<0.05) using One-way ANOVA/Tukey’s multiple comparison test for salivary flow analysis and

Kruskal-Wallis/Dunn test for total protein analysis.

https://doi.org/10.1371/journal.pone.0217030.g007
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expression in submandibular glands when compared to saline, the hypothesis that RAS collab-

orates with cellular growth induced by this drug remains sustained [48]. However, it is not a

sole cause since AT1 expression was inhibited by isoproterenol in parotid glands and hypertro-

phy was still noticed.

AT1 inhibition by losartan affected the submandibular gland gene expression exclusively,

and GCT was the most affected cell group (Fig 6). Since total protein measurements decreased

by this drug and GCT were important protein releasers, we suppose that the interaction of

Ang II with AT1 exerts a controlling function of GCT cells. We assume that because AT1 was

not equally affected by isoproterenol in GCT, and total protein in saliva was not decreased in

the same manner as in losartan-treated rats.

qPCR data also revealed that AT2 expression was affected by losartan and GCT marks were

attenuated. However, this alteration was not as remarkable as that for AT1 results. Since the lit-

erature is limited at describing RAS functions in salivary ducts, further studies should be

undertaken to comprehend the function of both angiotensin receptors.

MAS receptors were observed in all the studied duct systems (Figs 4–6). In parotid gland,

MAS expression was significantly decreased by both treatments, when compared to saline (Fig

1). In the sublingual gland, it was the only target which was increased by isoproterenol admin-

istration. Since this gland presents a mucous profile, it was expected to notice minor alter-

ations on general protein expression. However, parotid and sublingual glands expressed MAS

in ducts and acini, while the submandibular gland strictly expressed this target in GCT and

presented no alterations when compared to saline.

Specific conditions were observed with respect to pharmacological alterations. Compared

to saline, losartan did not affect glandular morphologies, although when parotid MAS and sub-

mandibular AT1, AT2 and ACE decreased, both salivary flow and total protein were affected.

For instance, there is not a specific pathway able to explain RAS targets as direct participants

of dilation or contraction of acini and ducts, as it is described for classical RAS in circulatory

tissues (Fig 1).

Despite the alterations on macro and microscopic measurements [31,32], as well as affect-

ing most of the RAS targets expression in parotid and submandibular glands, isoproterenol

was not able to evoke significant alterations on salivary flow and total protein secretion, thus

contradicting previous findings that reported an increased saliva output [43]. The expression

of the targets was diminished in acinar cells; therefore, these results could be related to the

maintenance of RAS expression in ducts. The impact of acinar alterations can be related to fur-

ther variations in saliva composition during a time noticed when hyperstimulation affected

salivary components, such as the Epidermal Growth Factor (EGF) synthesis and secretion in

submandibular glands, incomplete peptide processing and depletion of cellular mature stor-

ages [43].

When Ang II is injected in rats, water and sodium intake increases [21] while submandibu-

lar gland blood flow decreases [18]. For the moment, the alterations provoked by AT receptors

blockade are an increase of glandular blood flow [18] and potassium release in saliva [54].

Masajtis-Zagajewska et al. prescribed losartan for patients under dialysis to reduce thirst. In

contrast to our results, losartan increased the stimulated salivary flow, however with no effects

on xerostomia for treated patients. Therefore it was not recommended as an alternative to

reduce water intake [54]. Since interdialytic weight gain was the same for treated and untreated

patients, we assume that the water consumption was the same for both groups, and the amount

of water intake would not be the cause of up or down regulation of saliva secretion induced by

losartan. As rat and human results were contradictory when measuring saliva flow, more stud-

ies should be performed to confirm whether this is a species-related cause and has clinical

relevance.
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A mechanism of saliva inhibition that should be considered is that losartan enhances local

blood flow in salivary glands but systemically reduces blood pressure [18]. Fazekas et al. [18]

did not perform any salivary measurements, however since RAS blockade mildly affected local

blood vessels receptors, the systemic circulation could be responsible for lower supplies for

saliva synthesis.

In fact, each salivary gland demonstrates its own mechanism in self-modulation, as noticed

when AGT expression was almost null in parotid glands treated with isoproterenol while it

was significantly increased in submandibular glands of the same treatment.

To the best of our knowledge, the present study is the first to conclude that there is a local

RAS in rat major salivary glands that collaborates with saliva synthesis and components. This

could be assured since specific blockade of AT1 with losartan impaired saliva flow and total

protein release, even without major alterations in macro and microscopic glandular features.

In contrast, β-adrenergic stimulation with isoproterenol increased glandular mass and pro-

moted cellular hypertrophy without causing significant differences in salivary and protein

secretions.
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S1 Fig. Salivary volume measured as the differences between tubes before and after saliva
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Tukey’s multiple comparison tests were performed. Differences were considered statistically

significant when p<0.05. Different letters indicate a statistically significant difference between

groups and, when such differences were noticed between two groups but not in a third one as

compared to both, the latter is represented as ab.
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S1 Table. Rat weight (grams) after 7-day injection of saline, losartan and isoproterenol.

Rats used for qPCR/immunohistochemistry analysis. � indicate rats in isoproterenol group
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deviation. One-way ANOVA/Tukey’s multiple comparison tests were performed. Differences

were considered statistically significant when p<0.05. Different letters (a or b) indicate a statis-

tically significant difference between groups, whereas equal letters indicate the absence of such

differences. Letters were not used when differences were not significant between saline, losar-
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before the experiment was ended.
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Visualization: Thiago José Dionisio, Carlos Ferreira Santos.

Writing – original draft: Isadora Prado Cano, Tânia Mary Cestari, Flávio Augusto Cardoso
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