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Abstract
CD44, a transmembrane receptor reported to be involved in various cellular functions, is

overexpressed in several cancer types and supposed to be involved in the initiation, pro-

gression and prognosis of these cancers. Since the sequence of events following the block-

age of the CD44-HA interaction has not yet been studied in detail, we profiled xenograft

tumors by RNA Sequencing to elucidate the mode of action of the anti-CD44 antibody

RG7356. Analysis of tumor and host gene-expression profiles led us to the hypothesis that

treatment with RG7356 antibody leads to an activation of the immune system. Using cyto-

kine measurements we further show that this activation involves the secretion of chemo-

attractants necessary for the recruitment of immune cells (i.e. macrophages) to the tumor

site. We finally provide evidence for antibody-dependent cellular phagocytosis (ADCP) of

the malignant cells by macrophages.

Introduction
CD44 is a transmembrane receptor reported to be involved in various cellular functions like
adhesion, homing, migration and extravasation [1–3]. It is overexpressed in several cancer
types [4–6], and there is also evidence that its expression is involved in the initiation, progres-
sion and prognosis of these cancers [7–11]. Although the CD44 protein is a rather simple
transmembrane molecule (single-chain, single-pass transmembrane receptor), its complexity is
the result of multiple isoforms [12,13], which arise by the alternative splicing of variant exons
1–10 (v1-v10). Exon v1 is not expressed in human cells since it contains a stop codon. Further-
more, CD44 isoforms are highly N- and O-glycosylated proteins [14,15]. Signaling through
CD44 involves the formation of complexes with various receptors which have also been
involved in cancer, such as cMET, EGFR, HER2 and VEGFR [16–19], as well as the interaction

PLOSONE | DOI:10.1371/journal.pone.0159716 July 27, 2016 1 / 16

a11111

OPEN ACCESS

Citation: Maisel D, Birzele F, Voss E, Nopora A,
Bader S, Friess T, et al. (2016) Targeting Tumor Cells
with Anti-CD44 Antibody Triggers Macrophage-
Mediated Immune Modulatory Effects in a Cancer
Xenograft Model. PLoS ONE 11(7): e0159716.
doi:10.1371/journal.pone.0159716

Editor: Nikos K Karamanos, University of Patras,
GREECE

Received: March 4, 2016

Accepted: July 7, 2016

Published: July 27, 2016

Copyright: © 2016 Maisel et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All RNASeq files are
available from the SRA database (BioProject
accession number PRJNA322118).

Funding: Roche Innovation Center Munich provided
support in the form of salaries for authors DM, FB,
EV, AN, SB, TF, BG, SW, and VR, but did not have
any additional role in the study design, data collection
and analysis, decision to publish, or preparation of
the manuscript. The specific roles of these authors
are articulated in the "Author Contributions" section.
Selventa Inc. provided support in the form of salary
for author DL, but did not have any additional role in

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0159716&domain=pdf
http://creativecommons.org/licenses/by/4.0/


with its main natural ligand, hyaluronic acid (HA) [20,21]. We have recently shown that block-
ing CD44-binding to HA with RG7356, an anti-CD44 antibody directed against the constant
region of CD44, prevents tumor cell adhesion in vitro and leads to tumor growth inhibition in
several in vivo xenograft models [22]. Furthermore, in a previous global phospho-proteomic
analysis we showed that treatment with RG7356 leads to a significant down-regulation of the
MAPK cascade after 4.5 hours [23]. However, the detailed sequence of transcriptional changes
and subsequent events following the blockage of the CD44-HA interaction has not yet been
studied in detail.

Here, we aimed to elucidate the mode of action of RG7356 to understand the tumor micro-
environment changes triggered by this antibody. For this purpose, we profiled xenograft
tumors by RNASeq which allows assessment of treatment-specific effects on both human
tumor and mouse stroma cells in a single expression profiling experiment. We show that
RG7356 has an immune stimulatory effect whereas cytokine measurements suggest that this
effect is mainly driven by macrophages. We further provide evidence that the immune-stimula-
tory nature of the molecule is FcγR-dependent and that antibody-dependent cellular phagocy-
tosis (ADCP) constitutes its main mode of action.

Results

RNA sequencing reveals differences in immune response activation
between the tumor and the host
Using a global phospho-proteomics analysis, we have previously shown that treatment with
RG7356 triggers the modulation of the MAPK pathway in an MDA-MB-231 xenograft model,
where RG7356 (1mg/kg) leads to 85% tumor growth inhibition (TGI) [23]. In a subsequent set
of experiments we aimed to understand the extent of the observed phospho-proteomic changes
and their relevance in differential gene expression. Interestingly, a combined gene-expression
and phospho-proteomics analysis suggested an activation of the immune system in this
immune-deficient (SCID/bg) xenograft model in response to treatment with RG7356 (S1
Materials and Methods). In order to test if the observed immune response involves only the
host’s stroma and the limited immune cell infiltrate, or also the tumor cell line of human origin,
an analysis of both human and mouse immune modulators is necessary. This would addition-
ally shed some light on the underlying mechanisms leading to the activation of an overall
immune response and the interplay between tumor and host. On the other hand, since RG7356
is not mouse cross-reactive, the secretion of murine cytokines cannot be initiated by direct
binding of RG7356 to CD44 on immune cells but can be either FcγR-mediated and/or indi-
rectly triggered by tumor-derived immune modulators. With this in mind, we chose an experi-
mental setup including an analysis pipeline enabling the measurement of both the tumor’s and
the host’s gene-expression profile at the same time (S1 Fig).

In brief, MDA-MB231 xenografts were grown for 64 days until median tumor volume
reached approximately 250 mm3 before treatment with RG7356 was started. In order to eluci-
date the role of the Fc moiety of RG7356, which–as an IgG1 –bears immune effector functions,
an “Fc-silent” version of this antibody was also included in the study, in which RG7356 was
expressed as IgG4. Whole tumors were then excised at 4, 8 and 168 hours post-treatment, RNA
was extracted and sequenced using Illumina RNA sequencing (RNASeq) which, in contrast to
array platforms, allows the measurement of mouse and human RNA patterns in a single exper-
iment. The detailed RNAseq data analysis workflow can be found in Material and Methods.
Briefly, reads were aligned against the mouse and human transcriptomes and reads that
mapped to both transcriptomes were discarded from further analysis. Gene expression levels
(RPKMs) were computed as proposed by Mortazavi et al [24] and DESeq [25] was then used to
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identify differentially regulated genes between the conditions of interest. As depicted in Fig 1A,
we observed time-course-dependent human gene-expression profiles with a high number of
acute changes occurring at early time points and almost no significant changes 168 hours post-
treatment (Fig 1A, left panel). This pattern was also observed for the murine genes with about
twice as many differentially expressed transcripts detected (Fig 1A, right panel). In contrast,
almost no significantly differentially expressed genes were observed after treatment with the
IgG4 antibody (Fig 1B, S5 and S6 Tables).

Focusing on these fast and transient events, we used QIAGEN’s Ingenuity1 Pathway Anal-
ysis (IPA) [26] to perform a functional characterization of the observed changes at 4h and 8h.
Using IPA’s Downstream effects analysis we observed that in both, the tumor and the host, the
same biological processes and functions were affected by RG7356. These included–but were

Fig 1. RG7356 treatment leads to a deregulation of genes in both tumor and host at early time points. (A) Number of differentially expressed human
and mouse transcripts at 3 different time points of anti-CD44 treatment bearing the IgG1 backbone compared to vehicle control. (B) Number of differentially
expressed human and mouse transcripts at 3 different time points of anti-CD44 treatment bearing the IgG4 backbone compared to vehicle control. (C)
Heatmap view of predicted activity of biological processes obtained from IPA1 downstream processes analysis. Activated processes are shown in different
shades of orange, inhibited processes are shown in different shades of blue. If no activity assessment was possible, the biological process is shown in grey.

doi:10.1371/journal.pone.0159716.g001
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not limited to–an inflammatory response, cellular movement and immune cell trafficking (S2
Fig, left panel) and were all predicted to be strongly activated (Fig 1B and S2 Fig, right panel).
Furthermore, enrichment analysis of canonical pathways revealed that, in both the tumor and
the host, the most highly enriched pathways are connected to an inflammatory response (S3
Fig).

When ranking the modulated processes based on their activation scores, it seems likely that
the tumor response is driven by the activation, migration and differentiation of immune cells
(Table 1, full list in S1 Table), while the host’s response is mainly driven by cell recruitment
and survival (Table 2, full list in S2 Table).

In addition, the tumor’s and the host’s affected pathways also differentiate on the gene level,
which suggests that despite being involved in the same biological processes a differential set of
genes is responsible in activating the biological answer in either the tumor or the host (S4 Fig).
The lists of genes driving the predicted activation of the immune response can be found in S3
and S4 Tables.

For the tumor (S3 Table), an up-regulation of NFκB target genes was observed (e.g. IL-6,
IL-8, ICAM1, S5 Fig) as well as of cytokines typically expressed by epithelial cells or fibroblasts
involved in the first events of an immune response. In particular, an up-regulation of genes
related to the activation of macrophages (e.g. CSF-1, CSF-2, CSF-3, CXCL10, IL-8, IL-1β and
IL-15) was detected. On the other hand, amongst the modulated murine genes, deregulation of
cytokines and receptors secreted and expressed by different types of immune cells (e.g. CCL2,

Table 1. Tumor responses to RG7356 involve activation, migration and differentiation of immune cells.

Diseases or Functions Annotation p-Value Predicted Activation State Activation z-score

cell movement 5,07E-18 Increased 4,882

migration of cells 3,98E-17 Increased 4,493

activation of blood cells 2,48E-20 Increased 4,098

activation of cells 1,16E-21 Increased 3,951

activation of leukocytes 3,86E-20 Increased 3,935

differentiation of cells 1,13E-12 Increased 3,877

migration of mononuclear leukocytes 8,88E-14 Increased 3,794

activation of phagocytes 1,37E-14 Increased 3,785

cellular homeostasis 5,37E-13 Increased 3,767

10 most significantly modulated processes resulting from IPA’s Downstream effects analysis, sorted by activation z-score.

doi:10.1371/journal.pone.0159716.t001

Table 2. Host responses to RG7356 involve recruitment of immune cells and cell survival.

Diseases or Functions Annotation p-Value Predicted Activation State Activation z-score

cell survival 1,03E-12 Increased 4,525

cell viability 2,00E-12 Increased 4,306

recruitment of blood cells 6,64E-23 Increased 3,889

recruitment of leukocytes 3,97E-22 Increased 3,776

migration of granulocytes 3,34E-16 Increased 3,775

recruitment of granulocytes 5,20E-19 Increased 3,460

recruitment of phagocytes 1,73E-20 Increased 3,443

migration of neutrophils 3,75E-15 Increased 3,402

migration of cells 1,41E-25 Increased 3,399

10 most significantly modulated processes resulting from IPA’s Downstream effects analysis, sorted by activation z-score.

doi:10.1371/journal.pone.0159716.t002
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CCR1, CCRL2, CXCL1 and CXCL6) were observed, pointing to second-line events of an
immune response. In addition, an up-regulation of macrophage receptors involved in cell acti-
vation and recruitment (e.g. CD80, CD86, CSF3R, CSF2RB and CD209) was observed 8 hours
after treatment (S4 Table) possibly indicating an increased presence of activated macrophages
in the tumor at this point in time. The difference between deregulation of genes in the tumor
and the host can be exemplified by two processes involving phagocytes (Fig 2B): while activa-
tion of phagocytes is seen in the tumor (left), recruitment of phagocytes is stimulated in the
host (right). An overlay of the deregulated genes in the tumor (red genes) shows almost no
overlap with the genes deregulated in the host.

Based on these findings, as well as the fact that macrophages are described to be the main
immune cell type in SCID/bgmice reacting to xenotransplantations [27], we hypothesized that treat-
ment with RG7356 antibody leads to a macrophage-mediated activation of the immune system.

Cytokine release profiling shows clear pattern of tumor- and host-
mediated effects
Based on the results from the mRNA data analysis, a major difference between cytokines
released by either the host or the tumor is expected. In order to test this on the protein level, a
Luminex assay was performed using two cytokine panels, representing the human tumor and
the murine host. These panels included 29 and 27 cytokines, respectively with 22 overlapping
analytes (S7 Table). Because RNASeq data suggested that the prominent acute changes decline
after 168 hours, we compared early (8 hours) and late (168 hours) events (S1 Fig).

The obtained data was clustered and, in accordance to previous findings, tumor and host
show a distinct cytokine pattern where deregulation of cytokine expression occurs early in time
followed by a decline to baseline levels at the later time point (Fig 3A). Further statistical analy-
sis identified significant effects associated to the factors species, compound and time (S8

Fig 2. Tumor and host responses to RG7356 are driven by a different set of genesNetwork view of two activated processes in the tumor (left) and the
host (right). The overlaid gene expression values are Fold Changes derived from the tumor analysis.

doi:10.1371/journal.pone.0159716.g002
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Table). All analytes that were measured in both human and mouse, showed a significant differ-
ence between species, except for PDGF-bb. Moreover, ten of these analytes also showed a sig-
nificant difference between compounds and over time, originating mostly from a deregulation
in one of the species. The main changes occurring in the tumor involve an up-regulation of
GM-CSF, IL-8 and IP-10 (the latter two only measured for human; S6 Fig), which are known
specific chemo attractants for immune cells, e.g. macrophages [28–30]. On the other hand,
upon treatment a different set of cytokines is preferentially up-regulated by the host, such as
IL-1β, MCP-1, Eotaxin, MIP-1a, MIP-1b, IL-4, IL-13, IFN-γ, IL-3 and KC (the latter two only
measured for mouse; S7 Fig). These cytokines are typically secreted by monocytes and macro-
phages upon stimulation [31] and are crucial for mounting an effective innate immune
response [32]. Fig 3 provides examples of two modulated cytokines for either the tumor

Fig 3. Tumor and host samples show distinct cytokine secretion profiles upon RG7356 treatment. (A) Cluster analysis of Luminex cytokine panel.
Samples were analyzed at 8 and 168 hours after treatment in both human- and mouse-specific assays. Rows represent analytes, columns represent
samples. Only analytes covered by both panels were used for clustering. Circles represent human samples, triangles represent mouse samples; open and
solid symbols represent 8 and 168 hours of treatment, respectively, while color codes depict the different treatment groups. (B) and (C) Side-by-side
comparison of human (left) and mouse (right) analyte concentrations (pg/ml) for the three different treatments. Shown are concentrations for GM-CSF (B) and
MIP-1a (C).

doi:10.1371/journal.pone.0159716.g003
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(GM-CSF, Fig 3B) or the host (MIP-1a, Fig 3C), which are increased specifically upon treat-
ment with RG7356, as effector-function competent IgG1, and not by the IgG4.

In addition, the pharmacodynamics of MIP-1a and MCP-1, two molecules especially
secreted by macrophages [33] was quantitatively monitored by ELISA in a time-course experi-
ment. As depicted in Fig 4A and 4B, analytes were up-regulated at 4.5 hours of treatment and
steadily decreased over time to control levels and therefore confirmed the results obtained
from both RNASeq and Luminex analyses.

RG7356 leads to phagocytosis of tumor cells by macrophages
Since the RNA profiling data and the cytokine measurements suggested that macrophages
might be involved in RG7356’s mode of action, we next performed an ex vivo analysis of the
tumor infiltrate by flow cytometry. As shown in Fig 5A, although MDA-MB-231 are not
heavily infiltrated tumors (~3% tumor infiltrate; data not shown), most of the viable immune
cells present in the tumor microenvironment are indeed tumor-associated macrophages
(TAMs), defined as CD11b+F4/80high cells.

Therefore, assuming that these particular cells are the real key players of the immune
response against the tumor upon RG7356 treatment, we aimed to functionally characterize
their role by conducting a series of phagocytosis assays. For this, bone marrow progenitor cells
were isolated from healthy mice, differentiated into macrophages in vitro and subsequently co-
cultured with fluorescently-labeled MDA-MB-231 or HCC-1937 cells in the presence or
absence of RG7356 (at two different concentrations) or IgG isotype control. The HCC-1937
cell line was chosen as a negative control since it is also derived from breast malignant tissue
but, when grown as a xenograft and unlike MDA-MB-231, shows no response to anti-CD44
treatment (18% TGI; S8 Fig). The macrophage phagocytic activity was assessed by flow cytom-
etry and a phagocytic index was calculated as described in Material and Methods.

As shown in Fig 5B, phagocytosis of MDA-MB-231 cells in the presence of RG7356 already
occurs after 30 min in a dose-dependent manner. Furthermore, in order to visualize and con-
firm the phagocytic activity of macrophages in the presence of RG7356-opsonized tumor cells,

Fig 4. The increased amounts of MIP-1a and MCP-1 decline to baseline levels after one week. Time-course study of MDA-MB231
xenografts over one week after treatment with RG7356. MIP-1a (A) and MCP-1 (B) concentrations were analyzed in obtained tumor lysates by
ELISA.

doi:10.1371/journal.pone.0159716.g004
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live imaging was performed. In this case, the same two cell lines were CMFDA-labeled and
incubated with RG7356 or an irrelevant IgG, and further cultivated together with CMTMR
orange-labeled macrophages, as described in more detail in Materials and Methods. Fig 5C and
S1 and S2 Videos clearly show that tumor cells are indeed engulfed by macrophages and not
just attached to their membranes. Moreover, and as expected, only MDA-MB-231 cells pre-
incubated with RG7356 are phagocytosed (Fig 5C, upper left panel) while neither the isotype
control (right panels) nor RG7356 on the non-responder HCC-1937 cell line (lower left panel)
led to phagocytosis. In addition, the specific decrease in the total number of CFMDA-positive
cells at 7.5 hrs confirms that tumor cells are indeed depleted from the co-cultures (Fig 5D). No
phagocytosis was seen when using the anti-CD44 IgG4 antibody or an irrelevant but binding
IgG1 antibody (i.e. anti-CD45) (data not shown).

Fig 5. RG7356 treatment leads to phagocytosis of tumor cells. (A) Ex vivo analysis of MDA-MB-231 xenograft immune infiltrates. Left panel: percentage
of CD45+CD11b+ myeloid cells in total infiltrate. Right panel: tumor-associated macrophages (F4/80high) and myeloid-derived suppressor cells (F4/80low) as
percentage of the myeloid compartment. (B) RG7356-opsonized MDA-MB-231 and HCC-1937 cells were pre-incubated with macrophages and
phagocytosis was assessed by flow cytometry after 30 min as described in Material and Methods. Results represent the outcome of 3 independent
experiments. (C) MDA-MB-231 (upper panels) and HCC-1937 (lower panels) cells were pre-incubated with RG7356 (left panels) or isotype control (right
panels) and cultured together with macrophages, as described in Materials and Methods. Pictures were taken every 30 min for 10 hours (see S1 and S2
Videos). Pictures shown here correspond to the 0.5h time point and are representative of at least 3 independent experiments. Arrowheads indicate engulfed
tumor cells. Macrophages are shown in yellow, tumor cells in green. (D) Time-course quantification of total tumor cells (CFMDA signal) in MDA-MB-231/
macrophages co-cultures in the presence of RG7356 (open circles) or isotype control (filled circles).

doi:10.1371/journal.pone.0159716.g005
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Discussion
In this paper, we have analyzed the biological processes involved in the acute response to treat-
ment with RG7356, an anti-CD44 antibody that binds to the constant region of CD44.
Together with our previous findings [23], this work provides further insights into the cascade
of events upon treatment with RG7356. Recent reports regarding anti-CD44 therapies mostly
cover either inflammatory diseases and diabetes [34,35], or rather concentrate on the clinical
aspects of oncological treatments [36]. Here, we provide evidence that one of the main cellular
events following CD44-targeting results in macrophage-mediated phagocytosis of tumor cells.
Using RNA sequencing and protein measurements of both tumor and host, we initially
hypothesized that treatment with RG7356 not only affects the CD44-dependent tumor biology
[23], but also modulates the malignant microenvironment by up-regulating cytokines and
chemo-attractants responsible for the activation and recruitment, respectively, of tumor-asso-
ciated macrophages (TAMs). Furthermore, these RG7356-specific effects seem to be on the
one hand FcγR-dependent (since using the effector-function silent IgG4 version of the same
antibody abolishes the immune modulatory reactions), and on the other hand are CD44-speci-
fic since an anti-CD45 binding IgG1 does not lead to phagocytosis (data not shown). Although
TAMs are known to promote tumor progression [37], it has recently been shown that they
maintain Fc-dependent anti-tumor functions and are able to phagocytose tumor cells in the
presence of monoclonal antibodies targeting specific tumor antigens [38]. RG7356, therefore,
belongs to such a group of antibodies that are able to influence the characteristic plasticity of
TAMs in order to unmask their anti-tumor potential.

In Weigand et al. [23], we have shown that treatment with RG7356 results in the down-reg-
ulation of the MAPK pathway at 4.5h after treatment, which seems contradicting to the activa-
tion and initiation of an immune response that we observed in the present gene-expression
study. However, we have analyzed further phospho-proteomics data of very early time points
after treatment (0.5h and 1.5h, S1 Materials and Methods). Here, an activation of the MAPK
cascade can be observed which results into an activation of the immune response observed at
4h and 8h in the tumor and the microenvironmet. The following down-regulation of signaling
events as presented in Weigand et al. [23] then translate into a receding immune response and
within a week, all levels are back to normal.

The reasons why the HCC-1937 cell line is not responsive to treatment with RG7356 remain
unclear. Very recently, we have shown that there is a strong correlation between the predomi-
nant CD44 isoform and RG7356-mediated tumor growth inhibition [22], where the co-expres-
sion of any variable exon (“CD44v”) on a tumor cell is predictive for unresponsiveness,
probably due to favorable cellular gained functions that arise from CD44v interactions in cis
with other survival relevant receptors. For example, it has been shown that CD44v is able regu-
late the redox status in cancer cells by stabilizing the xCT protein (a glutamate-cystine trans-
porter) which, in turn, promotes tumor growth [39]. Therefore, it is conceivable that, in this
kind of cases, the tumor cells rely on this new gained function for survival and inhibiting the
CD44-HA interaction remains biologically less relevant. Furthermore, HCC-1937 cells not
only do carry the CD44v isoform but, in addition, secrete significantly low levels of hyaluronic
acid, which is also associated to the isoform status and efficacy to treatment [22]. These obser-
vations together with the fact that HA is described as a strong activator of the immune response
[40–42] might explain the present observations.

In summary, taken together these data indicate that upon binding to CD44+ tumor cells in
vivo RG7356 triggers the secretion of chemo-attractants that are necessary for the recruitment
of immune cells (i.e. macrophages) to the tumor site, finally leading to antibody-dependent cel-
lular phagocytosis (ADCP) of the malignant cells by macrophages. These RG7356-specific
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effects are Fc-receptor dependent and seem to take place very early during treatment as they
recede to baseline levels within a week.

Materials and Methods

Cell lines and culture
MDA-MB-231 cells (ATCC) were grown in DMEM supplemented with 2mM L-Glutamine,
10% heat-inactivated FBS and 1mM sodiumpyruvate. HCC-1937 cell line (DSMZ) was grown
in RPMI-1640 without phenol-red supplemented with 10% heat-inactivated FCS + 2mM L-
glutamin +penicillin/streptomycin. All media and supplements were purchased from PAN
Biotech (Aidenbach, Germany). All cell lines were authenticated by the providers and culti-
vated for periods no longer than 6 months or re-authenticated by the PCR-based STR method.

Xenograft studies
Immunodeficient SCID/bg mice were purchased from Charles River (Sulzfeld, Germany). Ani-
mals used in experiments were between 8 and 16 weeks of age. All animal experiments were
approved by the Government of Upper Bavaria (permit number 55.2-1-54-2532.2-26-09) and
performed according to the Directive 2010/63/EU of the European Parliament and of the Council
on the protection of animals used for scientific purposes. Experimental techniques including
humane endpoints were described in detail under this permit and all procedures were following
strictly these definitions. In vitro passage number 4–5 were used for inoculation. 0.5 x 107

MDA-MB-231 cells, were injected subcutaneously into the right flank of mice. At day 64 after
tumor cell inoculation, when tumors were 234mm3 in median, mice were randomized and allo-
cated to study groups. Therapeutic compounds or vehicle (20mMHistidine, 150mMNaCl,
0.01% Tween 80) were administered intraperitoneally at the indicated doses. Tumor volume
(TV) was measured and calculated according to the NCI protocol (TV = (length x width2) / 2),
where length and width are long and short diameters of tumor mass in mm3. At necropsy,
tumors were excised and immediately shock frozen in liquid nitrogen.

RNA sequencing
Total RNA was purified from fresh-frozen Mouse xenograft tumor samples by RNeasy Mini
Kit (QIAGEN Cat. No. 74104, 74106). In brief, the entire sample was homogenized in RLT
buffer using the Tissue Lyser (QIAGEN). After homogenization total RNA was extracted by
following the RNeasy Mini Kit standard protocol. The quantity and quality of the RNA was
analyzed using the NanoDrop Spectrophotometer and the Labchip Gx, respectively. For
sequencing library preparation 1μg total RNA was used for the Illumina TruSeq RNA Sample
Preparation Kits v2 (Illumina Cat. No RS-122-2001/2) by following the manufactures instruc-
tions. In brief, Poly-A RNA was purified and fragmented followed by first and second strand
cDNA synthesis. After end repair and adenylation the Illumina adapters were ligated and the
libraries were PCR amplified. Libraries were then quantified by SYBR Green (Kapa Biosystems,
KK4602) PCR using Illumina specified oligos: 1.1–5’-AATGATACGGCGACCACCGAGA
T-3’ and 2.1 5’- CAAGCAGAAGACGGCATACGA -3’. The PCR was run using the cycling
protocol: 2 min at 95C then 40 cycles of 15 seconds at 95C and 30 seconds at 60C. After indi-
vidual library quantification and dilution in Tris-Cl (10mM, pH 8.5) with 0.1% Tween 20
libraries were randomized and mixed in equimolar amounts. Libraries were clustered using the
TruSeq PE Cluster Kit v3 on the c-bot (Illumina). After clustering the samples were sequenced
on the HiSeq2000 (Illumina). Sequencing was done as 50 nucleotide paired-end yielding on
average 30 Mio. reads per sample (min. 25 Mio., max. 35 Mio. reads).
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Statistics and bioinformatics analysis
RNASeq data analysis. Despite generally higher sensitivity and the possibility to analyze

alternative splicing, the big advantage of using RNASeq over chip platforms in the xenograft
setting is the fact that both species can be profiled at the same time in one single experiment
(compared to two chip experiments that would have to be performed). Further, possible cross-
mapping and cross-hybridization effects (in the chip setting) can be efficiently removed by
RNASeq data analysis whereas for Affymetrix analyses they are much harder to identify and
interpret. All RNASeq samples passed quality control in terms of number of reads per sample
and read quality. Short reads were aligned to the human and mouse transcriptome (based on
Ensembl v60) using Bowtie2 [43]. Based on the alignment we identified reads mapping to both
transcriptomes at the same time and discarded them from further analysis. On average we
found 70% of the reads to map to either transcriptome, with 7% of the reads mapping to both
organisms which were subsequently filtered out. Across all samples, about 80% of the reads
mapped to human, while 20% mapped to mouse which likely represents the quantity of human
tumor cells compared to mouse stroma and immune cells. We then computed RPKM values
for each gene as described by Mortazavi et al. [24] using the genes composite length, i.e. the
sum of the length of all non-overlapping exon groups, as normalization factor using in-house
tools. In order to identify differentially regulated genes we used the DESeq software package
[25].

Pathway and biological function analysis. For pathway analysis purposes, we used Inge-
nuity Pathway Analysis (IPA). Built-in Fisher’s Exact Test was used for enrichment analysis of
canonical pathways, Downstream Effects Analysis (DEA) was used for prediction of activation
of biological processes. DEA was used as described in [44].

Luminex data analysis. The analysis of the Luminex data was initiated with a cluster anal-
ysis for descriptive analysis of the data using Ward’s method. Additionally, a statistical linear
model including the factors compound, time, species and all pairwise interactions was fit to the
data of each analyte. The benefit of this method is the potential to assess the effects of all factors
on the data simultaneously. Of main interest were significant effects of species, compound and
time; interactions of these factors gave additional information on the behavior of a specific ana-
lyte. All analyses were performed using the software JMP (SAS Institute Inc., Version 10.0).

Luminex cytokine panel
For the analysis of the cytokine expression pattern and change during treatment MDA-MB-
231 tumor xenograft samples were collected 8 and 168 hours after single treatment with
RG7356,<CD44> IgG4 or vehicle. Lysates were generated and measured for human and
mouse cytokines using commercial available cytokine multiplex assay kits from BioRad (Bio-
Plex Mouse Cytokine Assay and Bio-Plex Human Cytokine Assay). Tests were done according
to manufacturer’s protocol using a BioPlex 200. In total, 29 human and 27 mouse cytokines of
interest were evaluated with 22 overlapping analytes.

ELISA assay with tumor lysates
Excised and weighed tumors were mechanically homogenized in liquid nitrogen using mortar
and pestle. After homogenization and prior to thawing of the powdered tissue tumor lysis
buffer (1000 μl per 100 mg of tumor tissue, composition: 10 mM Tris buffer at pH 8.0, 137 mM
NaCl, 1% Triton X-100, 10% glycerol, 10 μg/ml aprotinin, 10 μg/ml leupeptin, 1 mM PMSF,
0.4 mM orthovanadate) was added. The material was carefully mixed and transferred to
Eppendorf tubes and allowed to thaw completely for 15 min. at 4°C. Subsequently the lysate
was centrifuged for 15 min. at 20,000g and 4°C. After removal of the fat layer the supernatant
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was separated from the solid pellet material, split in aliquots and stored at -80°C until analysis.
An aliquot was assessed by BCA-assay (Thermo Scientific #23223) giving protein concentra-
tions in the range of 5–10 mg/ml.

Concentrations of mouse MIP-1alpha and MCP-1 were detected using the corresponding
ELISA kits from R&D Systems (MMA00 and MJE00) according to the manufacturer’s
instructions.

Ex vivo analysis of tumor infiltrates
Explanted tumors were immediately transferred to RPMI1640-containing plates on ice and cut
into 2–4mm pieces using scalpel. An enzymatic digestion was then performed during 30min at
37°C in medium containing Dispase II (1 mg/ml; Roche), Collagenase I (1mg/ml; Sigma) and
DNAse I (0.01%; Roche). Samples were passed through a 70 μm-cell strainer, centrifuged,
resuspended in medium and passed through a 40 μm-cell strainer. After one more washing
step, cells were resuspended in FACS buffer (PBS containing 3% FCS and 2mM EDTA) and
incubated with CD16/CD32 Fc Block (BD) before staining with the following specific antibod-
ies (or their corresponding isotype controls): CD45-APC, CD11b-BV570, MHCII-FITC,
CD163-PE, Ly6G-PerCP-Cy5.5, F4/80-PE-Cy7 and Ly6C-APC-Cy7, for 20min on ice (all anti-
bodies from Biolegend). Finally, cells were washed and resuspended in FACS buffer containing
1 μg/ml DAPI and measured at a FACS Canto II (BD).

Phagocytosis assays
For flow cytometry assays, mouse macrophages were generated by isolating bone marrow cells
from healthy 5-week old C57BL/6 mice and culturing them on 10 cm UpCell plates (Nunc) for
7 days in DMEMmedium (PAN Biotech) supplemented with 10% FCS (Gibco), 2mM L-Gluta-
mine (PAA), Penicilin/Streptomycin (Roche), and 10 ng/ml recombinant mouse M-CSF (Bio-
mol) before being activated for 24h with 100 ng/ml LPS (Sigma). Tumor cells were labeled with
2 μMCMFDA green (Life Technologies) for 1h before plating them together with the activated
macrophages at a 1:2 ratio (tumor:macrophage) in the absence or presence of control or anti-
CD44 antibodies at the given concentrations. Co-cultures were incubated for 30min and then
cells were detached, washed and stained using an anti-CD11b BV570 antibody (Biolegend) to
label the macrophages. DAPI was finally added for viable/dead gating, samples were measured
at FACS Canto II and data analyzed using FlowJo software (TreeStar). A similar set of assays
was performed using human macrophages, generated as stated below, yielding the same results.
The phagocytic index (PI) was calculated according to the following formula: PI = (total num-
ber of engulfed cells/total number of counted macrophages) × (number of macrophages con-
taining engulfed cells/total number of counted macrophages) × 100, where the total number of
engulfed cells was calculated as the difference between the initial and final counts of tumor
cells, and the CD11b+CMFDA+ double positive cells were considered as the number of macro-
phages containing engulfed cells. Two-way ANOVA was performed for statistical analysis and
the Bonferroni’s method was used for multiple testing correction.

For live imaging, human peripheral blood mononuclear cells (PBMC) were isolated from
whole blood by Ficoll centrifugation followed by negative isolation of human monocytes using
the Monocyte Isolation kit II fromMiltenyi. The obtained monocytes were stimulated with
20ng/ml rh-MCSF (Biomol) for 6 days in UpCell dishes (Nunc), then medium (RPMI-1640
without phenolred + 10% heat-inactivated FCS + 2mM L-glutamine + penicillin/streptomycin)
was aspirated and fresh medium containing 20ng/ml rh-MCSF and 10ng/ml rh-IL-10 (RnD
Systems) was added. After incubation for further 24h at 37°C, macrophages were detached,
stained with 5 μMCMTMR Orange (Life Technologies), seeded at 1x104 cells/well in 96er
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microtiter plates and further incubated at 37°C for 24h. Tumor cells were stained with 2μM
CMFDA Green (Life Technologies) on assay day. After staining and detaching, target cells
were incubated with 10μg/ml anti-CD44 antibody or huIgG1 isotype for 30min at RT. After
two washing steps with PBS to remove excess antibody, cells were fixed with 4% paraformalde-
hyde for 15min at RT. Finally, 5x103 tumor cells were pipetted to each well onto the macro-
phages. Plate was immediately spun down and images were recorded every 30 min for 10 hours
using a Perkin Elmer Operetta HTS (a minimum of 15 fields/well/time point were recorded).
The total number of CMFDA-positive cells was monitored using the Harmony software and
statistically analyzed by Two-way ANOVA and the Bonferroni’s multiple comparison test.
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