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The relationship between circadian rhythm and epilepsy has been recognized for

decades. Yet many questions underlying the complex mechanisms of their interaction

remain elusive. A better understanding on this topic allows the development of accurate

seizure-detection algorithm and alternative precise therapeutic strategies. Preclinical

laboratory studies based on epileptic animal models, with controllable epileptogenic

pathology and an array of intervention strategies, shed light on the bidirectional effects

between circadian rhythm and epileptic seizures as well as their underlying mechanisms.

Here, we reviewed findings on the interaction between circadian rhythm and epileptic

seizures in the preclinical setting. We present the possible mechanisms at molecular,

cellular and circuitry levels. We propose that future experimental designs should take into

account the relationship between circadian rhythm and epilepsy as well as the underlying

mechanisms in different types of animal models, which may have a translational

significance as stepping stones for clinical benefits.

Keywords: circadian rhythm, sleep, epilepsy, animal model, mechanism

INTRODUCTION

Circadian rhythm is one of the most basic rhythms in every organism, giving rise to our
night-and-day variations in vital activities, especially mammals. The circadian rhythm can both
physiologically and pathologically affect the brain in multiple aspects, among which the regulation
of sleep/wake cycle (1–3) is considered the most important. Physiologically, the maintenance
of sleep/wake rhythm, especially the ultradian rapid eye movement/non-rapid eye movement
(REM/NREM) sleep cycle, is important for various daily activities in human beings. Pathologically,
especially in epilepsy, the close relationship between circadian rhythm and epileptic activities has
been recognized for years and emerges with an ever-increasing importance (4). On the one hand,
epileptic activities are usually presented in a circadian pattern (5). A better understanding of the
pattern would contribute to an accurate prediction of seizure onset and the development of closed-
loop treatments in the future (6, 7). On the other, the epileptogenic pathology might interfere
with the normal circadian rhythm especially the sleep/wake cycle, thereby exerting a large impact
on people’s daily living and even resulting in severe consequences (8). Despite the great progress
have been already achieved through clinical studies, our knowledge regarding the underlying
mechanism of circadian rhythm and epilepsy remained far from adequate, mainly limited by the
confounding factors in observational studies (such as genetic variations, anti-epileptic medications,
and psychiatry comorbidities) (4). The limitation, however, could be well-circumvented by bench
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research using epileptic animal models and multifaceted
intervention strategies, which provides valuable insights into the
underlying mechanisms (9). In this review, we describe how
did the circadian rhythm and epileptic activities influence each
other based on evidence from laboratory studies employing
different epileptic animal models. We summarize the possible
mechanisms at the molecular, cellular and circuitry level. Lastly,
the perspective with a translational insight are provided for a
greater basic-clinical integration in the future.

SLEEP ACTIVITY AND CIRCADIAN
RHYTHM-DEPENDENT EPILEPTIC
ACTIVITIES

The circadian timing system in the human body regulates the
timing of the sleep-wake cycle and modulates brain activities
(10). Physiologically, the dynamic excitation-inhibition balance
of brain network as well as the secretion of hormones such
as cortisol or melatonin follows a circadian rhythm are both
related with the sleep-wake cycle. Similarly, the epileptic
brain also exhibits a day-and-night variation in its excitation-
inhibition balance, due to the different brain excitability in
the active (mainly wakefulness) and inactive (mainly sleep)
phases (4, 11).

Sleep Activity Influences Seizure
Susceptibility in Animal Models
Kindling Models
In animal studies, the different seizure susceptibility in sleep
and wakefulness was first studied in kindling models. In 1982,
Calvo et al. reported that rats receiving amygdaloid kindling
stimulations during REM sleep had a delayed progression of
kindling process than those receiving kindling stimulations
during wakefulness (12). Another study examining the seizure
susceptibility in light/dark phases also showed that electric
induced seizure thresholds were higher in the dark phase
compared with those in the light phase (13). This is further
verified by Kumar et al., who showed that increasing the
REM sleep resulted in a decreased seizure susceptibility in
kindled rats (14). The influence of sleep activities on kindled
seizure susceptibility was further studied using paradoxical sleep
deprivation (PSD). In the 1980s, Shouse and his colleagues
performed a series of experiments on amygdaloid kindled
temporal lobe epilepsy (TLE) cats to study the effect of PSD
on epileptic seizures. They found that the loss of both REM
and NREM sleep caused by PSD could increase the seizure
susceptibility (15–17).

Other Epileptic Models
The effect of sleep on seizure susceptibility is also verified
on acute models. In 1988, Vale and Leite performed PSD
on mice. Similar to kindled animals, this manipulation
increased the susceptibility to pentylenetetrazol-induced acute
seizures (18). PSD could also increase seizure activities
in a genetically epileptic WAG/Rij rats. The number of
spike-wave discharges increased during the early period of

the 12 h-long PSD, and then returned to the baseline
level (19).

Taken together, based on existing studies in different models,
it has been shown that sleep patterns can directly modulate the
susceptibility of seizures. Sleep deprivation, although may induce
other many complex physiological changes, could increase
seizure susceptibilities.

Epileptic Seizures Occur With Circadian
Rhythmicity in Chronic Models
Chronic Temporal Lobe Epileptic Models
As clinical studies suggested, most seizures occur in a temporal
pattern following the circadian rhythm (5, 20, 21). To further
study the effect of circadian rhythm on epileptic seizures, chronic
models of epilepsy were used. Unlike the models of acute
seizures (9, 22), chronic models usually exhibit spontaneous
recurrent seizures (SRS) after experiencing chemical convulsant
or electrical stimulation induced status epilepticus (SE), which
mimics the seizure presentation in patients (23–25). With the
advent of digital technology, the development of long-term
EEG recording contributed to an ever deeper understanding
of the circadian pattern of epileptic seizures in chronic models
of epilepsy. Relevant studies were also consecutively reported
since the 1990s. Cavalheiro et al. reported that rats experiencing
pilocarpine induced SE showed a higher seizure frequency
in the light phase (26). Following that, a comparison study
performed by Quigg et al. also demonstrated that seizures
occurred more often during light phase in both rats and humans
(27). The circadian distribution of spontaneous seizures was
further reported in kainate acid or electrical stimulus induced
chronic epileptic rats. Also in those studies, a higher possibility
of seizure occurrence in the light phase were presented as well
(28–32). Another study by Pitsch et al. further revealed a striking
clustering of spontaneous seizures at the transition from the light
to dark period in pilocarpine treated mice (33). Even after light
deprivation, the occurrence of seizures still showed a circadian
pattern (2). However, contradictory results exist as well, some
studies reported that seizure frequency in pilocarpine-treated
rats was unrelated to the circadian rhythm. The discrepancy
might be due to the different age of animals used in different
studies (34). Till now, we may conclude that the majority of
findings, mostly from chronic TLE models, support a circadian
distribution of seizures. Furthermore, seizure activities are more
prominent in the light phase, which is the inactive period of
rodents (Figure 1).

Other Chronic Epileptic Models
Apart from the classic chronic TLE models, experiments were
carried out in other types of epileptic models which exhibited SRS
as well (35, 36). Interestingly, the findings were contradictory to
those in TLEmodels. Just as Stewart et al. proposed, in an atypical
absence epilepsy model where absence seizures originate from
the neocortex, the duration of seizure-like discharges reached two
peaks at the onset of dark and light phase (35). The same group
further studied this issue in an Aldh5a1 gene deficient epileptic
mice. It is a gene encoding Mitochondrial NAD+-dependent
succinate semialdehyde dehydrogenase [SSADH] enzyme that
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FIGURE 1 | Simulative circadian distribution of spontaneous recurrent seizures

in chronic TLE models. The distribution of spontaneous recurrent seizures is

not totally random in different phases but shows a circadian pattern in epileptic

rodents. The seizures occur more often in the light phase.

catalyzes the last step of the GABA shunt pathway (37, 38).
In this study, genetically deficient mice showed generalized
tonic-clonic seizures in their early life, and the seizure rhythm
in the Aldh5a1−/− mice occurred with a 24 h periodicity
and reached the peak during the early dark phase (36). So
far, no direct evidence explained the discrepancy of circadian
seizure occurrence between different animal models of epilepsy.
The distinct locations of seizure onset zones may contribute
to this and emerges as an interesting issue to study on in
the future.

To conclude, cumulative results supported a circadian
variation of seizure occurrence or seizure susceptibility in
epileptic animals throughout the day. However, contradictory
findings are found in different animal models, the different
types of epilepsy and seizure onset zones would influence the
circadian pattern of seizures (39–42). Chronic TLE animals
usually display a higher chance of seizure occurrence in the
light phase, videlicet, the inactive period (Table 1). However,
it has been reported that seizure occurrence was mainly
in relation to wakefulness for TLE patients (43, 44). The
possible reasons to explain this discrepancy may be the
differences in the causes of epileptogenesis and brain circuits
between human and rodents. However, both results from
TLE animals and patients revealed the circadian distribution
of seizures, which suggest those models as useful tools for
translational studies aimed at seizure prediction based on
circadian rhythm or the development of chronotherapies.
Unlike classic chronic TLE models, in an Aldh5a1−/− knock
out mice which showed spontaneous motor seizures, the
spontaneous seizure activities occurred daily in a non-random
pattern and reached two peaks at the onset of dark and light
phase (36). Although a few studies focused on other types
of epilepsy, more efforts are needed to study the circadian
pattern of seizures in other types of animal models such as
neocortical or frontal epilepsy which are also common types in
clinical practice.

TABLE 1 | Summary of circadian epileptic seizures in chronic TLE models.

Studies Model Animals Circadian

seizures

(Y/N)

Seizure occurs

prominently in

which phase

Cavalheiro et al. (26) Pilocarpine Rat Yes Light phase

Quigg et al. (27) Electric

stimulus

Rat Yes Light phase

Hellier and Dudek

(31)

Kainate

acid

Rat Yes Light phase

Quigg et al. (28) Electric

stimulus

Rat Yes Light phase

Raedt et al. (32) Kainate

acid

Rats Yes Light phase

Tchekalarova and

Pechlivanova (29)

Kainate

acid

Rat Yes Light phase

Bajorat et al. (34) Pilocarpine Rat No N/A

Sedigh-Sarvestani

et al. (30)

Tetanus

toxin

Rat Yes Light phase

Pitsch et al. (33) Pilocarpine Mice Yes Transition from light

to dark phase

EPILEPSY INFLUENCES SLEEP AND
CIRCADIAN RHYTHM IN ANIMAL MODELS

Epilepsy Influences Sleep in Kindling
Models
Epileptic seizures could also in turn alter sleep cycle or even
circadian rhythm under the influence of epileptogenic pathology.
Many studies provided evidence on the altered sleep activities
caused by epileptic seizures. The influence of epileptic seizures
on sleep-wakefulness was first reported in kindling models of
epilepsy. Since 1980s, studies performed on kindling rats or cats
reported that REM sleep activities were inhibited by electrical-
stimulation induced seizures (45–47). In 1998, however, Raol
and Meti performed a systematic study about sleep activities in
amygdaloid kindled rats and reported contradictory results. They
found that stage 5 seizures could increase the duration of deep
slow-wave sleep (SWS) and decrease the duration of both the
NREM sleep and wakefulness (48). The discrepancymight be due
to the different time of day when stimulations were given, just
as Yi et al.’s reported on amygdala kindling seizures. Kindling
stimulation given at the beginning of the light phase decreased
both SWS and REM sleep, while kindling stimulation given at the
dark phase increased SWS but had no effect on REM sleep (49).

Epilepsy Influences Sleep in Chronic TLE
Model
In chronic TLE models, indisputable results have presented the
altered sleep activities. By analyzing 6 h long (6–12 a.m.) sleep
architecture in rats 15 weeks after electrical stimulation induced
SE. Bastlund et al. found an increase in the average time spent
in wakefulness, and a decrease in the time spent in paradoxical
sleep (50). A later study further analyzed distribution of sleep-
wake phases during 24 h in pilocarpine treated rats. The epileptic
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rats showed reduction of attentive wakefulness concomitant with
increased SWS (51).

Epilepsy Influences Sleep in Genetic
Epileptic Model
The altered sleep architecture is also found in several genetic
epileptic models. Just as in WAG/Rij rats with spontaneous
absence seizures, like TLE models, both NREM sleep and
the sleep cycle were disrupted by epileptic activities (52). In
Kcna1-null mice with SRS, durations of both NREM and
REM sleep was less than those in WT mice (53). Meanwhile,
in a mouse genetical mouse model of Dravet syndrome
(DS), a rare epilepsy syndrome, Kalume et al. reported sleep
impairment in DS mice as well, including reduced delta power
and sleep spindles and increased brief wakefulness in NREM
sleep (54).

In brief, epileptic activities undoubtedly influence the
architecture of both sleep and wakefulness. Different animal
models may show contradictory results, probably due to
the diverse brain regions involved in epileptogenesis,
which may affect the circadian activities in different ways.
The data from animal studies reproduce many relevant
features observed in clinical patients and thus highlight
the role of these models in studying sleep dysfunction
in epilepsy.

Epilepsy Influences Other Type of
Circadian Rhythm
Besides sleep activities, the influence of epileptic seizures on
other circadian activities has also been reported. In 2001, by
using radio telemetry as a measurement of the temperature
on hippocampal kindled rats, Quigg et al. demonstrated that
electrically-induced seizures shifted the circadian temperature
rhythms (CRT) which was different from the typical light-
induced phase shifts. In their study, the CRT in the first
postictal 24 h were more complex and polyrhythmic than
preictal conditions (55). As proposed by Smith et al., seizures
could also affect the amplitude but not phase of the circadian
clock. They applied a maximal electroconvulsive stimulation at
different time-points of the day on hamsters. To their surprise,
only the level of circadian locomotor activity but not the
phase were significantly attenuated (56). Pilocarpine induced
SE has also been reported to influence circadian rhythms. In
mice treated by pilocarpine, the circadian EEG was transiently
suppressed for several days after SE (33). A recent study
further reported altered circadian rhythms in a model of sudden
unexpected death in epilepsy. In this study, using passive
infrared actigraphy to access circadian rest-activity patterns
in epileptic rodents, Wallace et al. found disrupted diurnal
and circadian rest-activity patterns characterized by prolonged
circadian periods (53).

To conclude, animal models could reliably show an altered
circadian rhythm and sleep activities as induced by epileptic
seizures. The similarity to clinical conditions demonstrates
that these models can be used to study the sleep disturbance
and the disrupted circadian rhythm in epilepsy. Potential

treatments for epilepsy-related sleeping disorders can be
tested with these models. Valuable data obtained from
these animal models would provide adequate grounding
to help epileptic patients who suffer from sleep disorders
as comorbidities.

EPILEPSY-INDUCED CHANGES IN
CIRCADIAN RHYTHM AND SLEEP
ARCHITECTURE: THE POSSIBLE
MECHANISMS

Altered Oscillatory Expression of
Rhythm-Related Molecules in Epileptic
Animal Models
“Clock” proteins including BMAL (brain and muscle, ARNT-
like)1 and CLOCK (circadian locomotor output cycles kaput)
in the hypothalamic suprachiasmatic nucleus (SCN) are
autoregulators of circadian rhythm in mammals (57, 58).
The feedback loops of these “clock” proteins lead to the
establishment of circadian rhythms. For example, CLOCK
and BMAL1 form heterodimers activate the transcription of
downstream genes such as Period (Per1) and Cryptochrome
(Cry1). BMAL1 reaches its peak of expression at mid-night,
while the transcription of Pers and Crys (anti-phase to BMAL1
expression) reach their peaks during mid to late day. Pers
and Crys along with other proteins form heteromultimeric
complexes and directly abrogate the transcriptional activity of
the CLOCK-BMAL1 complex, further leading to lowered Pers
and Crys mRNA levels. This feedback loop along with others is
the most important components of physiological day-and-night
clock (59).

Several studies showed thatmutations or deletion in these core
proteins could impact circadian rhythms (60–62). In epilepsy,
a study based on kindled mice showed that BMAL1 knock-
out not only eliminated the circadian difference of seizure
susceptibility, but also directly lowered the seizure threshold
(13). These results suggested the involvement of “clock” proteins
in circadian epileptic activities and even epileptogenesis. Other
studies on the oscillatory expressions of clock genes in epileptic
animals further revealed its importance in a dynamic manner.
In Kcna1 knockout epileptic mice, ketogenic diet was shown
to improve the disturbed diurnal rhythmicity (63), which
may be due to the circadian clock’s phase shift mediated by
SirT1 (a key factor involved in metabolism and life span,
which interacts directly with CLOCK genes) (64). Further
studies by Wallace et al. first provided direct evidence on the
relationship of clock proteins and changed circadian rhythm in
epileptic Kcna1-null mice. In their studies, all the epileptic mice
manifested disrupted diurnal and circadian rest-activity patterns,
and showed a reduced oscillatory expression of several clock
proteins (Clock, Per1, and Per2) and diurnal Sirt1 mRNA in the
anterior hypothalamus (53). The abnormal circadian rhythms
in other neurogenerative diseases were also found to be closely
related with an attenuation of oscillatory expressions of clock
genes (65–67). Thus, the altered oscillation of clock genes is
connected with altered circadian rhythms in epilepsy (Figure 2).
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FIGURE 2 | Disrupted expression of “clock” genes in epilepsy. In the normal condition, “clock” genes including BMAL1 and CLOCK show a diurnal oscillatory

expression with a peak at mid night. In epileptic condition, the oscillatory expression of “clock” genes is reduced and thus leads to altered circadian rhythm.

However, whether the conclusion can be generalized to epilepsies
caused by various factors and pathologic processes needs
further validation.

Besides “clock” genes, there are other molecules in the
mammals’ brain regulating circadian rhythms through a
circadian pattern of expression. Study of the 24 h expression
pattern of these molecules in epileptic animal models might
provide clues to the circadian epileptic activities. Retinoic acid
receptor-related orphan receptor alpha (RORα) is a member of
a nuclear receptor superfamily and plays an essential role in
regulating the circadian rhythm (68). In mammals, the RORα

is a crucial molecule in the regulation of BMAL1 expression.
In hypothalamic SCN, RORα shows an oscillatory expression,
leading to the circadian pattern of BMAL1 expression (69),
thereby directly influencing the circadian rhythm. In 2015,
Rocha et al. attempted to study the daily pattern of RORα

expression in chronic epileptic rats. They found that pilocarpine
induced SE could decrease the mRNA expression of RORα

in the hippocampal area at both the light and dark phases,
whether it be the acute and the silence (no SRS is present in
animals) period, or at the 3 h point post the lightning-off in the
chronic period (70). The evidence provides clues that acute SE
could robustly influence the expression of RORα, leading to a
permanent alteration in its circadian expression pattern in the
chronic period. The change might explain the altered circadian
rhythms in epileptic models.

Melatonin is another important molecule synthesized and
released in the pineal gland by a circadian manner, reaching a
high level at night (71). Melatonin regulates circadian rhythms
through an action on its membrane receptors (MT1 and MT2)
(72). Clinical studies have demonstrated that melatonin could
alleviate sleep disturbance and reduce circadian alterations in
epileptic patients (73–75); Moreover, one study on treatment-
naive active epileptic patients showed an increase of melatonin
production in epileptic patients and a circadian pattern with a
phase difference between patients and normal people (76). Rocha
et al. studied the relationship between melatonin receptors and
circadian changes in pilocarpine treated rats. They examined
the 24 h profile of mRNA and protein expression of MT1

and MT2 receptor in different phases of pilocarpine models.
In the chronic phase during which rats expressed SRS and
an altered circadian rhythm, mRNA expression levels of both

receptors return to levels close to control, however, presenting
a different daily profile (77). In detail, MT1 receptor mRNA
expression only decreased in the zeitgeber time point (ZT) 0
which is the transition phase of the light/dark cycle, and MT2
receptor mRNA expression increased at nighttime (ZT18). These
biochemical results in animals revealed an altered expression
of circadian rhythm related molecules in the chronic phase of
epileptic models, which further suggested a close relationship
between these molecules and the altered circadian rhythm in
epilepsy. However, systematic experiments employing various
intervention strategies along with detailed behavioral recordings
are still needed.

Involvement of Other
Non-Rhythmic-Related Molecules in
Epileptic Animal Models
Neuroinflammation is widely involved in many neurological
conditions including sleeping activities (78). Interleukin-1β (IL-
1β), one of the most important neuroinflammatory cytokines, is
reported to be closely related with epiletogenesis according to
numerous studies (79–82). In the epileptic brain, seizures up-
regulated the concentration level of IL-1β and the expression of
IL-1 receptors, which further contributed to epileptic seizures or
other comorbidities (80). Besides, IL-1β has an divergent effect
on NREM sleep with different doses (83, 84). Therefore, IL-1β
may mediate the epilepsy-induced sleep disturbances in epileptic
patients. Yi et al. firstly revealed the crucial role of IL-1β and IL-1β
receptor in epilepsy-induced sleep disruption. They performed
kindling stimulation at the onset of dark phase, when SWS was
induced along with an increased IL-1β mRNA expression in
the brain. Administration of IL-1β receptor antagonist (IL-1ra)
blocked the SWS induced by kindling (49). The involvement
of IL-1β in an altered sleep architecture in epilepsy is further
verified by Huang et al. They performed amygdaloid kindling
stimulation at the particular ZT13 in both IL-1β receptor type
1 (IL-1R) KO mice and wildtype (WT) mice. In WT mice,
kindling stimulation at ZT13 significantly enhancedNREM sleep,
contrary to that observed in IL-1R KO mice (85). Yet no
difference of seizure susceptibility between WT and KO mice
were found. In consideration that changed IL-1β levels could
directly affect seizure susceptibility, whether the involvement of
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IL-1β in epilepsy-induced sleep disruption is caused by its direct
effect on seizures needs further investigation.

Hypothalamic and Thalamic Pathology
Underlies Changed Sleep Architecture in
Epileptic Models
The ascending arousal system is governed by neural pathways
originating from well-defined cell groups in specific regions.
The pathway has two branches, the first originating from
hypothalamic suprachiasmatic nucleus (SCN), which is the
crucial region in the modulation of circadian rhythms (86).
Photic inputs are received in the SCN, which further convey the
timing information by transcription-translation autoregulatory
feedback loop of “clock” proteins, thereby affecting cellular
functions including excitability (87). Then the information is
outputted through the monoaminergic neurons of hypothalamic
SCN to downstream nucleus such as cerebral cortex, which
forms the ascending arousal system in the brain (88, 89).
Evidence from animals demonstrated that hypothalamus lesions
could directly induce long-lasting sleepiness or even somnolence
(90, 91). Meanwhile, the endogenous hypothalamic dysfunctions
were reported in epilepsy (92–95). Therefore, the hypothalamic
pathology in epilepsy might result in disturbances of sleep
and circadian rhythms. Sanabria et al. examined light induced
Fos-protein expression in the SCN of the hypothalamus in
epileptic rats, and the Fos-like immunoreactivity induced by
photic stimulation was significantly reduced in chronic epileptic
rats (96). Those results indicate that in chronic epileptic rats,

light induced response was altered in the hypothalamus, which
might reflect altered circadian rhythms. In 1999, Quigg et al.
further reported the change of circadian rhythm of temperature
(CRT) in epileptic animals, which was associated with a decreased
neuronal density in anterior and posterior hypothalamus (97).
A further study by Bastlund et al. confirmed the hypothalamic
pathology in epileptic rats which showed a changed sleep
architecture (50). They revealed that spontaneous epileptic rats
following electrical stimulation induced SE showed a high
percentage of seizures at sleep, which might be associated with
neuronal cell loss in the dorsomedial hypothalamus.

Besides hypothalamic pathway, another ascending arousal
pathway is controlled by thalamus. The crucial thalamic nuclei
such as the reticular nucleus of the thalamus (RNT) has a role in
gating wakefulness (98). Neural activities in some specific regions
of the thalamus governs sleep activities (99, 100). Abnormal
neural activities caused by epileptogenic pathology might thus
result in sleep impairment. In 2015, Kalume et al. uncovered
the reduced excitability in RNT interneurons in an epileptic
mouse model with DS, and reported its association with sleep
impairments (54). In their study, mice with DS, a common
childhood-onset epilepsy syndrome, displayed an abnormal sleep
architecture depending on activities of inhibitory GABAergic
neurons in RNT. Reduced Nav current in the GABAergic
RNT neurons led to the reduced rebound neural firing
following hyperpolarization, which resulted in the disturbance of
sleep architecture.

All those previous studies unveiled an evident association
between hypothalamus and thalamus abnormalities and the

FIGURE 3 | Schematic of the circuitry experiments in thalamus and hypothalamus for studying the mechanisms of changed circadian rhythm and sleep in epileptic

models. Combined multifaceted techniques including electrophysiology recording, optogenetics, and viral tracing can help to reveal the possible circuitry mechanism

and provide potential precise treatment targets for disrupted circadian rhythm and sleep in epilepsy.
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altered circadian rhythm or sleep disturbance in animal
models of epilepsy. Nevertheless, how the pathological
hypothalamus or thalamus, along with the related neural
circuits, contribute to the disturbance in sleep and circadian
rhythms requires further investigation (Figure 3). Future
studies, with an array of modern techniques, would
enable a deeper understanding of the interaction between
certain brain regions and circadian rhythm dysfunctions
in epilepsy.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Cumulative evidence from animal studies have revealed a close
relationship between circadian rhythm and epileptic activities.
Evidence from animal studies, using models of chronic TLE,
showed an altered temporal distribution of seizures similar
to that observed in TLE patients, with a higher frequency of
seizures in the light phase. On the other hand, seizure activities
would also influence sleep-wake cycles, sleep architecture, and
circadian rhythm. It may be attributed to an altered expression
of rhythm-related or other non-rhythmic molecules, together
with hypothalamus or thalamus pathologies. The advancement
of technology and animal models gives animal studies a greater
translational value. Therefore, animal models could be harnessed
as useful tools to study the relationship between circadian rhythm
and epilepsy.

Previously, most studies on the circadian distribution of
epileptic seizures were performed on animal models of chronic
TLE.More efforts should be spent on accurate seizure predictions
based on circadian rhythms and also the development of closed-
looped seizure control systems, which is currently studied by
some ongoing clinical research (101). Animal studies, with its

translational value, can yet provide clues at the molecular, cellular
and circuitry level. In particular, epilepsy is gradually considered
as a disorder of abnormal neural networks (102). Although
accumulating findings provide valuable clues at molecular
and cellular levels, molecular and cellular mechanisms are still
integrated at the level of brain networks, and the microcosmic
perspective might restrict the understanding of epilepsy-induced
circadian rhythm dysfunction. Delightfully, accumulating
evidence revealed the crucial role of the hypothalamus and
thalamus in circadian epileptic activities. Employment of
advanced techniques including optogenetics, viral neuronal
tracing et al. would allow a deeper understanding of circadian
epileptic activities at the circular level. Individualized treatments
for epilepsy-related circadian disturbances would also benefit
from those animal studies as well.

In sum, animal studies could be well-harnessed when
studying the relationship between circadian rhythm and epilepsy.
Endeavors to bridge the gap between bench and bedside would
greatly assist in the diagnosis, prediction and treatment of
circadian epileptic activities.
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