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Abstract: Sugars, which are important signaling molecules, regulate diverse biological processes in
plants. However, the convergent regulatory mechanisms governing these physiological activities
have not been fully elucidated. MODIFIER OF snc1-1 (MOS1), a modulator of plant immunity,
also regulates floral transition, cell cycle control, and other biological processes. However, there
was no evidence of whether this protein was involved in sugar responses. In this study, we found
that the loss-of-function mutant mos1-6 (mos1) was hypersensitive to sugar and was characterized
by defective germination and shortened roots when grown on high-sugar medium. The expression
of MOS1 was enhanced by sucrose. Hexokinase 1, an important gene involved in sugar signaling,
was upregulated in the mos1 mutant compared to wild-type Col-0 in response to sugar. Furthermore,
the mos1 mutant accumulated more anthocyanin than did wild-type Col-0 when grown on high-sugar
concentration medium or under high light. MOS1 was found to regulate the expression of flavonoid
and anthocyanin biosynthetic genes in response to exogenous sucrose and high-light stress but with
different underlying mechanisms, showing multiple functions in addition to immunity regulation in
plant development. Our results suggest that the immune regulator MOS1 serves as a coordinator in
the regulatory network, governing immunity and other physiological processes.
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1. Introduction

Sugars not only serve as energy sources in plants but also as hormone-like molecules in regulating
many important physiological processes, including metabolism [1,2], seed germination [3], and biotic
and abiotic stress responses [4,5]. Many sucrose-insensitive or -hypersensitive mutants have been
screened to identify genes involved in sugar signaling [6–9]. By studying these mutants, it has
been recognized that sugars have crosstalk with other signals, such as light [10], hormones [11,12],
stresses [12], and nutrients [13,14]. Sugar signaling is usually triggered by glucose [15], although
sucrose is the main type of sugar for systemic transport in plants [16].

Sugar signaling pathways are conserved in eukaryotes [17]. Hexokinases (HXKs), a group of
identified glucose sensors, also govern glucose phosphorylation and regulate sugar responses [10].
In Arabidopsis, HXK1 mutants are insensitive to glucose, and HXK1 has been reported to coordinate
sugar, light, and hormones to control plant growth [10]. TREHALOSE-6-PHOSPHATE SYNTHASE
(TPS), which is involved in the HXK-dependent glucose signaling pathway, catalyzes the biosynthesis of
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trehalose-6-phosphate from UDP-glucose and glucose-6-phosphate [18]. Overexpression of AtTPS1 in
Arabidopsis reduces the sensitivity to glucose [10,18]. G-protein-coupled receptors (GPCRs) identified
in sugar signaling pathways can perceive sugar. Regulators of G-protein signaling (RGS) can activate
the GTPase to drive G-protein into the inactive heterotrimer [19]. In Arabidopsis, glucose alters
the interaction between G Protein Alpha Subunit1 (GPA1) and RGS1, consequently activating the
hydrolysis of GTP and mediating sugar signal transduction [20]. Plant SNF1-RELATED KINASE (SnRK)
proteins belong to a conserved SUCROSE-NONFERMENTING 1 (SNF1)/AMP-activated protein kinase
(AMPK)/SnRK1 family, which plays important roles in metabolism regulation by sensing cellular energy
charge [21–23]. SNF1 KINASE HOMOLOG 10 (AKIN10) and AKIN11, two Arabidopsis SnRK proteins,
are reported to have important roles in sugar signaling pathways [12]. Recently, an evolutionarily
conserved energy sensor TARGET OF RAPAMYCIN (TOR) complex has been demonstrated to link
sugar signaling with meristem activation in Arabidopsis [24]. Sugar signals tightly coordinate the
production and mobilization of sugars to regulate plant metabolism and development [25].

Moreover, environmental stresses would increase the accumulation of soluble sugars. Sucrose
is necessary for producing anthocyanin, and sugars are closely associated with the regulation of
anthocyanin biosynthesis [26,27]. As a class of secondary metabolites of flavonoids, anthocyanins
are widely found in plants [28]. Anthocyanins absorb light in a certain wavelength range and
play roles in the prevention of photoinhibition [29]. Anthocyanins are also antioxidants and
confer multiple tolerances against abiotic and biotic stresses, including cold, UV, pathogens,
and insects, by ROS scavenging [30]. The biosynthesis of anthocyanin in plants begins with
the conversion of phenylalanine into coumarate-CoA by phenylalanine ammonia lyase (PAL),
cinnamate-4-hydroxylase, and 4-coumarate: CoA ligase, which are common steps shared by many
secondary metabolic pathways [31]. The subsequent biosynthesis processes can be divided into early
and late stages. In the early biosynthesis stage, coumarate-CoA is catalyzed consecutively by chalcone
synthase (CHS), chalcone isomerase (CHI), flavanone-3-hydroxylase (F3H), flavonoid-3′-hydroxylase
(F3′H), and flavonoid-3′5′-hydroxylase (F3′5′H) to form three types of dihydroflavonols [32].
In the late biosynthesis stage, dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS),
and UDP-glucose flavanol 3-O-glucosyl transferase are specific enzymes mediating anthocyanin
biosynthesis from dihydroflavonols [32]. The FLAVONOL SYNTHASE (FLS) gene encodes a flavonol
synthase that catalyzes the formation of flavonols from dihydroflavonols [33]. Genes participating
in these two steps are called anthocyanin biosynthesis genes (ABGs). MYB-type transcription factors
(TFs), basic helix–loop–helix (bHLH)-type TFs, and WD40-repeat TFs form MBW complexes to regulate
the biosynthesis of anthocyanins [34]. The expression of genes encoding the MBW complex subunits is
strongly induced by such factors as sugars, hormones, and environmental stresses, which subsequently
activate the transcription of ABGs [35,36].

Currently, emerging evidence has shown that sugars are involved in immunity [4,37].
MODIFIER OF snc1-1 (MOS1), a modulator of plant immunity, positively regulates the NLR genes
SUPPRESSOR OF npr1-1 and CONSTITUTIVE 1 (SNC1). MOS1 is responsible for the autoimmunity
phenotype in bonzai1 (bon1) and snc1 [38,39] by binding to the promoter region of SNC1 to activate
its expression by interacting with TCP TFs [40]. MOS1 was also found to regulate floral transition
by interacting with Suppressor of FRIGIDA 4, a transcriptional activator of Flowering Locus C [39].
Moreover, MOS1 plays roles in endoreduplication regulation [39]. These results show that MOS1 acts as
an intermediary regulator to coordinate growth and defense in a complicated network. CONSTITUTIVE
EXPRESSION OF PR GENES5 (CPR5) is a regulator of growth and defense and acts in a resistance
pathway dependent on Non-expresser of Pathogenesis-Related genes 1 (NPR1), a sugar hypersensitive
mutant hypersenescence1 allelic to the cpr5 mutant [41]. However, there is no evidence of whether MOS1
is involved in sugar responses.
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Mutant mos1 has been reported to have delayed flowering, increased ploidy level, and changed
rosette size and other mutant phenotypes [39,40]. A previous study revealed that MOS1 antagonized
MAD1 activity by interacting with MAD2 in endoreduplication regulation [40]. MAD2 loss-of-function
mutants have defects in early seedling development, and these defects can be rescued by exogenous
sugars [42]. Therefore, it is possible that exogenous sugar treatment also affects mos1 seedling
development. To characterize the roles of MOS1 in plant development, in this study, we investigated the
responses of mos1 mutants, wild-type Col-1, and mos1 complementation lines #1 and #2–9 under different
sugar concentrations, including the germination rate, the expression of MOS1, a sugar-responsive
gene Subunit 3 of ADP-Glucose Pyrophosphorylase (APL3) [43], and other genes involved in the sugar
response pathway, i.e., HXK1 and TPS1 in the HXK1-dependent pathway [10,18], RGS1 and GPA1 in
the RGS pathway [20,44], AKIN10 and AKIN11 in the SNF1-RELATED KINASE1 pathway [22,23,45,46],
and SUGAR-INSENSITIVE 3 encoding an E3 ligase in an independent sugar-response pathway [47].
We found that the MOS1 knockout mutant mos1 exhibited hypersensitive responses to sugar.
We hypothesized that MOS1 might participate in sugar signaling pathways and other processes
related to sugar signaling. The HXK1 gene involved in sugar signaling pathways showed enhanced
expression in the mos1 mutant in response to sugar. As sucrose is known as a positive factor in
the accumulation of anthocyanin pigments [2] and high light stress can also boost the biosynthesis
of anthocyanin [27], we speculated that MOS1 might also be involved in sugar- and light-induced
anthocyanin biosynthesis. Then, we analyzed anthocyanin accumulation in wild-type Col-0 and mos1,
#1, and #2–9 grown on medium supplemented with different concentrations of sugar and grown in
the same soil medium but under different light intensities and found that MOS1 is involved in the
regulation of anthocyanin biosynthesis triggered by sugar and light by affecting the expression of ABGs
and FLS. This finding suggests that MOS1 has multiple roles in organizing sugar signaling and immune
responses, thereby functioning as a coordinator in developmental, biotic, and abiotic stress responses.

2. Results

2.1. mos1 Mutant Was Hypersensitive to Sugar during Early Seedling Development

When mos1 mutant and wild-type Col-0 seeds were sown on medium supplemented with
exogenous sugars, there was no difference in the germination rates of the mos1 mutant from that of
wild-type Col-0 when sown on half-strength Murashige and Skoog (MS) medium supplemented with
0.8% sucrose (w/v) (normal medium; Figure S1). However, when seeds were sown on half-strength
MS medium supplemented with 4% glucose, the germination rate of the mos1 mutant was reduced to
40% (Figure 1A,B), while the germination rate of wild-type Col-0 was 94% (Figure 1A,B). A similar
germination phenotype was observed when seeds were sown on medium supplemented with 6%
sucrose (Figure S1). However, when mos1 and wild-type Col-0 seeds were sown on half-strength
MS medium supplemented with 4% mannitol (equimolar concentrations of glucose), no significant
difference in germination rates was observed between them (Figure 1A,B), indicating that the defective
germination of mos1 sown on medium supplemented with 4% glucose or 6% sucrose was not caused
by osmotic stress but by sugars.

Furthermore, we investigated the expressions of APL3 under different sugar treatments.
The expression level of APL3 in mos1 was similar to that of wild-type Col-0 when seedlings were
grown on half-strength MS supplemented with 6% mannitol (Figure 1C), while it was 160% higher in
mos1 when grown on half-strength MS supplemented with 6% sucrose (Figure 1C). These results were
consistent with a previous study [48] and indicated that the mos1 mutant was sensitive to sugar.
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medium with 4% M or 4% G. Different  letters above  the bars  indicate significant differences  (one‐way 

ANOVA/Bonferroni  p  <  0.001).  (C) qRT‐PCR  analysis of APL3  expression  in Col‐0  and mos1  seedlings 

grown on half‐strength MS medium with 6% M or 6% S. Quantification was normalized to ACTIN2. Error 
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significant difference compared with the corresponding Col‐0 (one‐way ANOVA/Bonferroni p < 0.001). (D) 
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Figure 1. Hypersensitive phenotypes of mos1 in response to sugars. (A) Representative images of the
germination of Col-0 and mos1, #1, and #2-9 grown on half-strength MS medium with 4% mannitol (M)
or 4% glucose (G). (B) The germination rates of Col-0 and mos1, #1, and #2–9 grown on half-strength MS
medium with 4% M or 4% G. Different letters above the bars indicate significant differences (one-way
ANOVA/Bonferroni p < 0.001). (C) qRT-PCR analysis of APL3 expression in Col-0 and mos1 seedlings
grown on half-strength MS medium with 6% M or 6% S. Quantification was normalized to ACTIN2.
Error bars indicate standard error (SE) of two independent biological replicates. The asterisk indicates a
significant difference compared with the corresponding Col-0 (one-way ANOVA/Bonferroni p < 0.001).
(D) Relative root lengths of 7-d-old Col-0 and mos1, #1, and #2–9 seedlings grown on half-strength MS
medium with 0.8% sucrose (S), 2% M or 2% G.

To confirm whether the absence of MOS1 is responsible for sugar hypersensitivity in the mos1
mutant, we generated the MOS1 rescue construct pMOS1::MOS1:GFP and obtained two independent
complementation lines, pMOS1::MOS1:GFP mos1–6 #1 (#1) and pMOS1::MOS1:GFP mos1–6 #2–9 (#2–9)
(Figure S2). These two lines partially rescued the defect germination rate of mos1 grown on medium
supplemented with sugar (Figure 1A,B and Figure S1), confirming that the knockdown of MOS1 is
responsible for the defective germination rate and contributes to the sugar hypersensitivity of mos1.

As high-sugar treatment also affected root elongation [25], we analyzed the root lengths of the
wild-type Col-0 and mos1, #1, and #2–9 seedlings grown on medium containing different concentrations
of sugar for 7 d. The root lengths of mos1 were comparable to the wild-type when seedlings were grown
on normal medium or half-strength MS with 2% mannitol (Figure 1D). However, when seedlings were
grown on half-strength MS with 2% glucose, the roots of mos1 were shorter than those of wild-type
Col-0 (Figure 1D). Complementation lines #1 and #2–9 both showed normal root elongation, as with
the wild-type (Figure 1D). This finding confirmed that the shortened root in mos1 was due to the loss
of function of MOS1.
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2.2. Expression of MOS1 Is Induced by Sucrose

As mos1 showed hypersensitivity to sugars, to explore the role of MOS1 in sugar signaling
pathways, the expression of the MOS1 gene in wild-type Col-0 under different concentrations of
sucrose was investigated. Compared to the seedlings grown on normal medium, the expression level
of MOS1 in seedlings grown on medium supplemented with 6% sucrose increased by 270% (Figure 2A).
To elucidate the expression pattern of MOS1 in response to exogenous sucrose, the transgenic plants
pMOS1:GUS harboring the β-glucuronidase (GUS) reporter gene under the promoter and the first exon
of MOS1 [39] were used. Histochemical analysis showed that the expression of GUS driven by the
MOS1 promoter was related to the developmental stages of leaves and sucrose concentrations. When
seedlings were grown on normal medium, strong GUS signals were detected in the emerging tissues,
but only notably weak GUS signals were detected in the mature tissues. However, when seedlings
were transferred to medium containing 6% sucrose, the intensity of the GUS signal was stronger, with
obvious GUS signals being detected in the mature tissues (Figure 2B). These results showed that the
expression of MOS1 is promoted by exogenous sucrose.
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Figure 2. MOS1 expression in response to sugar. (A) qRT-PCR analysis of MOS1 expression in
10-d-old Col-0 seedlings grown on half-strength MS medium with 0.8% sucrose (S), 6% mannitol
(M), or 6% S. Quantification was normalized to ACTIN2. Error bars indicate the standard error (SE)
of two independent biological replicates. The asterisk indicates a significant difference compared
with seedlings grown on half-strength MS medium with 0.8% sucrose (one-way ANOVA/Bonferroni
p < 0.001). (B) Representative images showing the β-glucuronidase activity of the pMOS1::GUS line
grown on half-strength MS medium with 0.8% S or 6% S. Scale bars = 1 cm.

2.3. MOS1 Affects the Expression of HKX1 in Response to Sugar

According to the qRT-PCR results, the expression of seven genes in several well-established
sugar-response pathways was unchanged in both wild-type Col-0 and the mos1 mutant in response to
sucrose, except for HKX1 and AKIN11 (Figure 3). The transcription of AKIN11 was downregulated by
sucrose in both wild-type Col-0 and mos1 mutants, which made it difficult to determine whether the
transcription change was associated with MOS1. However, the transcription of HKX1 was significantly
upregulated by sucrose in the mos1 mutant and unchanged in wild-type Col-1 (Figure 3). This finding
suggested that the mos1 mutation may influence the HKX1-dependent sugar response pathway.
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Figure 3. Sugar related gene expression analysis in Col-0 and mos1. qRT-PCR analysis of the expression
of genes involved in sugar-response pathways in Col-0 and mos1 grown on half MS at 3 hours after
6% sucrose (Suc+) or 6% mannitol (Suc-) treatment. Quantification was normalized to ACTIN2. Error
bars indicate SE of two independent biological replicates. The asterisks indicate a significant difference
between Suc+ and Suc- in each genotype (Student’s t-test p < 0.001).

2.4. MOS1 Represses Anthocyanin Biosynthesis Induced by Sugar and High-Light Stress

When seedlings were grown on normal medium, mutant mos1 had comparable anthocyanin
content to wild-type Col-0. However, when seedlings were grown on medium supplemented with
3% glucose or 6% sucrose, mos1 accumulated 2.5- and 2-fold more anthocyanin than wild-type Col-0,
respectively (Figure 4). In addition, complementation lines #1 and #2–9 accumulated similar amounts
of anthocyanin pigments to wild-type Col-0 under all conditions (Figure 4).

Additionally, the accumulation of anthocyanin in response to high light in wild-type Col-0 and
mos1, #1, and #2–9 were analyzed concurrently. As shown in Figure 5, the anthocyanin content in
mos1 was similar to that in wild-type Col-0 under normal conditions. After high-light treatment,
mos1 accumulated anthocyanin pigments three times those in wild-type Col-0, while the contents
of anthocyanin pigments in complementation lines #1 and #2–9 were similar to those in wild-type
Col-0 (Figure 5). This finding indicated that MOS1 could repress anthocyanin biosynthesis induced by
sucrose and high-light stress, although the mechanisms governing the effect warrant further analysis.

2.5. MOS1 Affects the Expression of Genes Related to Anthocyanin Biosynthesis in Response to Sugar and High
Light

To discover the molecular regulatory mechanisms of MOS1 on anthocyanin accumulation,
the transcription of six early ABGs (PAL, C4H, CHS, CHI, F3H, F3′H), three late ABGs (DFR, ANS,
LDOX), FLS, and two components of MBW complex, PAP and TT8, were analyzed. After treatment with
6% sucrose, the expression levels of PAL and F3H and F3′H in mos1 were 50%, 96%, and 109% higher
than those in wild-type Col-0, respectively, and the expression levels of DFR, LDOX, and UF3GT in mos1
were 180%, 207%, and 124% higher than those in wild-type Col-0, respectively (Figure 6A,B). However,
the expression levels of DFR, LDOX, and UF3GT in mos1 treated with 6% mannitol were similar to
those in wild-type Col-0 (Figure 6A,B). Moreover, after sucrose treatment, the expression level of FLS
was 60% lower in mos1 than in wild-type Col-0, although its expression was also lower upon treatment
with 6% mannitol (Figure 6C). Correspondingly, after treatment with 6% sucrose, the transcript levels
of PAP1 and TT8 were 400% and 62% higher than those in wild-type Col-0, respectively, but there was
no difference after treatment with 6% mannitol (Figure 6D).
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Figure 4. Anthocyanin accumulation induced by sugar in different lines. (A) Representative images of
phenotypes of Col-0 and mos1, #1, and #2–9 grown on half-strength MS medium with 0.8% sucrose
(S), 6% S, or 3% G. Scale bars = 1 cm. (B) Anthocyanin content in the seedlings of Col-0 and mos1,
#1, and #2–9 grown on half-strength MS medium with 0.8% S or 6% S. (C) Anthocyanin content in
the seedlings of Col-0 and mos1, #1, and #2–9 grown on half-strength MS medium with 0.8% S or 3%
G. Error bars indicate SE of two independent biological replicates. The asterisks indicate significant
differences compared with Col-0 under the same treatment (one-way ANOVA/Bonferroni p < 0.001).
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Figure 5. Anthocyanin accumulation under high light in different lines. (A) Representative images of the
phenotypes of Col-0 and mos1, #1, and #2–9 grown in soil after high-light treatment. Scale bars = 1 cm.
(B) Anthocyanin content in the seedlings of Col-0 and mos1, #1, and #2–9 grown in soil under high light
(HL) or normal light (as CTRL). Error bars indicate the standard deviation (SD) of three measurements.
The asterisk indicates a significant difference compared with Col-0 under the same treatment (one-way
ANOVA/Bonferroni p < 0.001).

The expression of most ABGs in mos1 was equivalent to that in wild-type Col-0 under both normal
and high-light conditions, except for CHS. The expression abundance of CHS after high-light treatment
in mos1 was 54% higher than that in wild-type Col-0 (Figure 7A,B). In addition, the expression of FLS
in mos1 after high-light treatment was similar to that under normal light, while it was increased in
wild-type Col-0 after high-light treatment (Figure 7C). This finding indicates that MOS1 affects the
expression of FLS. Moreover, the expression of PAP1 and TT8 was similar in the wild-type Col-0 and
mos1 under both normal and high-light conditions (Figure 7D). Although the responses of these genes
to high light and sucrose were different in mos1, we can still conclude that MOS1 might regulate the
accumulation of anthocyanin under sugar and light treatment by influencing the expression of some
ABGs but through different regulatory mechanisms.

3. Discussion

Sugar signaling plays important roles in plant development and abiotic and biotic stress
responses [7]. In this study, we found that the absence of the MOS1 gene function caused
intense responses to sugars, as characterized by a reduced germination rate and shortened roots.
Correspondingly, the expression of the glucose-responsive marker gene APL3 was increased (Figure 1),
and MOS1 could respond to exogenous sucrose (Figure 2). This finding indicated that MOS1 was
a negative regulator of sugar responses and that there might be transcriptional feedback to control
the responses within a certain range. The higher expression of HXK1 in response to sucrose in mos1
than in wild-type Col-0 (Figure 3) suggested that MOS1 may influence sugar responses by regulating
the transcriptional level of HXK1. HXKs have been identified as glucose sensors in many plant
species, and recently, HXK1 was discovered to have multiple functions [9], i.e., promoting anthocyanin
biosynthesis in apple by stabilizing a bHLH TF [49]. In agreement with this finding, mos1 accumulated
more anthocyanin than wild-type Col-0 when exposed to exogenous sugars (Figure 4).
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Figure 6. Expression analysis of anthocyanin biosynthesis genes in response to sucrose. qRT-PCR
analysis of the expression of early ABGs (A), late ABGs (B), FLS (C), and TFs (D) in 10-d-old Col-0
and mos1 after 6% mannitol (CTRL) or 6% sucrose (6%S) treatment. Quantification was normalized
to ACTIN2. Error bars indicate SE of two independent biological replicates. The asterisks indicate
significant differences compared with the corresponding Col-0 (one-way ANOVA/Bonferroni p < 0.001).
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Figure 7. Expression analysis of anthocyanin biosynthesis genes in response to light. qRT-PCR analysis
of the expression of early ABGs (A), late ABGs (B), FLS (C), and TFs (D) in 14-d-old Col-0 and mos1
seedlings grown on soil under normal (CTRL) or 24 h high-light (HL) treatment. Quantification was
normalized to ACTIN2. Error bars indicate SE of two independent biological replicates. The asterisks
indicate significant differences compared with the corresponding Col-0 (one-way ANOVA/Bonferroni
p < 0.001). NS, not significant.

In addition to sugars, anthocyanin biosynthesis is triggered by multiple stresses [2,5,27,50].
The overaccumulation of anthocyanin pigments in the mos1 mutant under sugar and high-light stress
compared to wild-type Col-0 (Figures 4 and 5) indicated that MOS1 negatively regulates anthocyanin
biosynthesis. Sugar activated the expression of several ABGs (Figure 6) [43], which was more
pronounced in mos1 (Figure 6). As mos1 exhibited increased sensitivity to sugars, the overaccumulation
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of anthocyanin pigments could be a consequence of the enhanced sugar response. Sugars also
enhanced the expression of FLS [2,33] (Figure 6C); as a hypersensitive mutant, mos1 should have a
higher expression of FLS. However, mos1 had a significantly lower expression level of FLS than did
wild-type Col-0 (Figure 6C), and the lower expression level of FLS led to dihydroflavonol accumulation
as substrates for subsequent anthocyanin biosynthesis. This finding indicates that MOS1 has other
mechanisms independent of sugar signals in regulating anthocyanin biosynthesis.

Moreover, the regulatory mechanisms of MOS1 in anthocyanin biosynthesis under sugar and
light stresses might be different. Upon high-light treatment, only the expression of CHS in the mos1
mutant was higher than that in the wild-type, while under 6% sucrose, several ABGs but no CHS had
different expression levels between the mos1 mutant and wild-type Col-0 (Figures 6 and 7). Moreover,
the expression of FLS in CTRL under sugar treatment was different from that under light treatment
(Figures 6 and 7), which might be due to the pretreatment in the dark before transport to medium
containing different sugars compared to no pretreatment before transfer to chambers with different
light intensities. Additionally, the expression of FLS was not induced by high-light treatment in mos1
(Figure 7C). All these pieces of evidence indicate the specific function of MOS1 in the transcriptional
regulation of FLS. A MOS1-interacting protein [40], TCP15, represses anthocyanin biosynthesis under
high light [51], suggesting that TCP15 and MOS1 might also be involved in anthocyanin biosynthesis
as well as immune responses. TCP15 affects the expression level of PAP1, TT8, and DFR under high
light [51], while MOS1 showed no influences on PAP1, TT8, and DFR under high light (Figure 7).
That might be because the regulation mechanisms of TCP15 and MOS1 on anthocyanin synthesis do not
overlap completely, just like in immune responses [40]. Additionally, we used different sampling time
points from Vialo et al. [51], while the effects of TCP15 had been found to be related to the irradiation
time [51]. However, MOS1 showed negative regulations on the expression of PAP1, TT8, and DFR
under 6% sucrose (Figure 6). The expressions in the early part of the high-light treatment and the
global gene expression changes with RNA-seq will be conducted in further studies, which will be
beneficial for obtaining a better understanding of the regulation of MOS1 and the interactions of MOS1
and TCP15 on anthocyanin biosynthesis combined with genetic analysis.

Similar to anthocyanin biosynthesis, plant defense responses are affected by many factors, such
as hormones, sugars, and light [52–55]. Recently, there has been increasing evidence supporting
the contribution of sugar signals to plant immune responses. HXK1 plays positive roles in immune
regulation, and the glucose phosphorylation capacity of HXK1 has been found to be essential for cell
death and defense responses in the MIPS (myo-inositol 1-phosphate synthase) mutant [37]. MOS1
also plays positive roles in immunity, but the mos1 mutant has normal defense responses [37,39,40].
Thus, there is a possibility that the enhanced HXK1 expression in mos1 may be a compensation
mechanism to maintain proper immune responses, and MOS1 might be the convergent regulator
involved in the sugar-immunity regulation network.

Some studies also suggested that anthocyanin could take part in immunity in plants, but the
precise underlying mechanism remains uncharacterized [56,57].

As MOS1 showed functions in anthocyanin accumulation (Figures 4 and 5), it may be worthwhile
to identify convergent regulators in anthocyanin biosynthesis and immune response crosstalk,
which may provide new insights into the coordinated network between immunity and other
physiological processes.

4. Materials and Methods

4.1. Plant Materials and Growth Conditions

Arabidopsis thaliana Col-0 ecotype (available in Arabidopsis information service, N1092), the mos1-6
mutant (mos1) derived from Col-0 by gamma irradiation, and pMOS1:GUS created in a previous
study [38] were graciously provided by Dr. J Hua (Cornell University, USA). Two complementary
lines, pMOS1::MOS1: GFP mos1–6#1 (#1) and pMOS1::MOS1: GFP mos1–6 #2–9 (#2–9), were created
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and identified in this study by Z.W. and L.Y. All plants were grown in chambers with 50% humidity at
22 ◦C and under 12-h light (light intensity: 150 µmol m−2 s−1) and 12-h dark.

To ensure that the plants grew normally, half-strength MS with 0.8% (w/v) sucrose was used as
normal medium. For sugar treatment, 10-d-old seedlings grown on normal medium were transferred to
the dark for 24 h to reduce intercellular sugar. After that step, the medium was replaced by half-strength
MS medium with 3% (w/v) glucose, 6% (w/v) sucrose, 3% (w/v), and 6% (w/v) mannitol for an additional
3 h under light.

For the high-light treatment, plants were grown in soil under 150 µmol m−2 s−1 light (normal)
for 14 d. Then, some plants were transferred to chambers with a light intensity of 450 mol m−2 s−1

(high light). Seedlings treated for 1 d were used for RNA isolation, and seedlings treated for 3 d were
used to analyze the anthocyanin content.

4.2. Plasmid Construction and Generation of Transgenic Plants

A genomic fragment of the entire MOS1 coding region (without stop codon) and the 2680-bp
sequence upstream of the ATG start codon were amplified by PCR from genomic DNA isolated
from Col-0. The PCR product was cloned into the pDONR222 vector by BP reactions (Invitrogen,
11789020) and then cloned into the binary vector pGWB550 [58] to create pMOS1:MOS1:GFPCOM.
The constructed vector was introduced into mos1 using Agrobacterium tumefaciens GV3101. Transgenic
plants were selected on plates with hygromycin.

4.3. Germination Assay and Root Length Measurement

All seeds, harvested and stored identically, were sown on normal medium and medium containing
4% glucose or 4% mannitol. All plates were incubated at 4 ◦C for 2 d and then placed in a growth
chamber for 7 d. The germination rate was scored by cotyledon greening. At least 50 seeds for each
genotype were used for each independent biological repeat, and two repeats were conducted.

For root length measurement, seedlings were grown vertically on normal medium and medium
supplemented with 2% glucose or 2% mannitol for 7 d. Images were captured by a digital camera,
and the root lengths were calculated by ImageJ.

4.4. GUS Staining

To analyze GUS activity in response to sugar, pMOS1::GUS transgenic lines [30] were grown on
the indicated medium. The seedlings were dipped into chilled 90% acetone and then stained in 100 mM
sodium phosphate buffer (pH 7.2) containing 1 mM 5-bromo-4-chloro-3-indolyl-β-glucuronic acid,
2 mM K3Fe(CN)6, 2 mM K4Fe(CN)6, 10 mM EDTA, and 0.1% (v/v) Triton X-100 at 37 ◦C. After staining,
70% (v/v) ethanol was used to remove the chlorophyll. Images were recorded by a LEICA S9 stereoscope.

4.5. Measurement of Anthocyanin Content

Fresh seedlings grown on the indicated medium or after light treatment were used for measuring
anthocyanin content. Leaf tissues of 20 mg were homogenized in 0.6 mL of methanol–HCl (1%, v/v)
and then incubated at 4 ◦C for 1 d. After centrifugation, 0.4 mL chloroform and 0.4 mL ddH2O were
added to the supernatant and vortexed vigorously. Then, the samples were centrifuged, and the
absorbance of the supernatant was measured at 530 and 657 nm. Relative anthocyanin concentrations
were calculated with the equation anthocyanin content = (A530-A657)/fresh weight (g).

4.6. RNA Extraction and Quantitative Real-Time PCR Analysis

Total RNA was isolated from plants with RNAiso Plus (Takara, Shiga, Japan, 9108), according to
the manufacturer’s instructions. cDNA was synthesized from 2 µg RNA by a PrimeSpcriptTM RT
reagent Kit with a gDNA Eraser Kit (Takara, Shiga, Japan, RR047). Quantitative RT-PCR was performed
with a Bio-Rad CFX96™ Real-Time System (Bio-Rad, Hercules, USA) using TB Green Premix Ex
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TaqTM II (Tli RNaseH Plus; Takara, Shiga, Japan, RR820). Primers for RT-PCR are listed in Table S1.
Two independent biological replicates were performed.

5. Conclusions

We provide evidence that the immune regulator MOS1 represses sugar responses and anthocyanin
biosynthesis in Arabidopsis, possibly at the transcriptional level. Our findings highlight the involvement
of MOS1 in sugar signaling. In the future, identifying MOS1 genetic interacting regulators and studying
the regulation of MOS1 in sugar and hormone signaling may not only help to characterize the roles
of MOS1 in specific biological processes but also elucidate the mechanism governing the balance of
growth and defense.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/19/7095/
s1. Table S1: Primers sequences for RT-PCR in this study. Figure S1: Representative images of the germination of
Col-0 and mos1, #1, and #2–9 grown on 1/2 MS medium with 0.8% sucrose, 6% Man, or 6% Suc. Figure S2: RT-PCR
analysis of MOS1 expression in Col-0 and mos1, #1, and #2-9.
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Abbreviations

ABGs anthocyanin biosynthesis genes
AKIN SNF1 kinase homolog
APL3 Subunit3 of ADP-Glucose Pyrophosphorylase
ANS anthocyanidin
bHLH basic helix–loop–helix
bon1 bonzai1
CHI chalcone isomerase
CHS chalcone synthase
DFR dihydroflavonol
F3H flavanne-3-hydroxylase
FLS flavonol synthase
GUS β-glucuronidase
HEX1 Hexokinases 1
HL high-light
MAD1 mitotic arrest deficient1
MOS1 modifier of snc1-1
MS Murashige and Skoog
PAL Phenylalanine ammonia lyase
PAP1 Purple acid phosphatase 1
SNC1 suppressor of npr1-1, constitutive 1
TFs transcription factors
TT8 Transparent testa8
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