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The GroEL–GroES chaperonin system is probably one of the most studied chaperone

systems at the level of the molecular mechanism. Since the first reports of a bacterial

gene involved in phage morphogenesis in 1972, these proteins have stimulated intensive

research for over 40 years. During this time, detailed structural and functional studies

have yielded constantly evolving concepts of the chaperonin mechanism of action.

Despite of almost three decades of research on this oligomeric protein, certain aspects

of its function remain controversial. In this review, we highlight one central aspect of

its function, namely, the active intermediates of its reaction cycle, and present how

research to this day continues to change our understanding of chaperonin-mediated

protein folding.
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INTRODUCTION

Extensive studies carried over the years to uncover the mechanism behind functioning of the
bacterial GroEL/GroES chaperonins led to a generally accepted description of their pathway of
operation. The individual components that assemble to form the active complexes have been
crystallized and, the interactions that mediate formation of the complexes have been clearly
described. Yet, due to the highly dynamic nature of the system, many aspects of their operation
remain obscure, and conflicting models describing their function are endorsed. Major controversy
in the field is related to nature of the active species in the chaperonin-mediated protein folding
cycle: Is it really a case of mutually exclusive models, as many think i.e., is the active form
either a symmetrical complex (American football-like complex) or an asymmetric complex (bullet-
shaped complex)? Are there additional factors that affect the active species? Are there additional
species that participate in the cycle? The discovery of divergent chaperonins in chloroplast and
mitochondria has added an additional dimension to this discussion. Do all type I chaperonins
operate utilizing the same functional mechanism? In this review, we present the evolution of our
understanding of the chaperonin cycle and attempt to convey the fine differences between the two
major views of the GroEL–GroES reaction mechanism. We also show how the study of organellar
chaperonins can contribute to our understanding of the mechanism by which type I chaperonins
carry out their protein folding function.
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THE KEY PLAYERS

The name chaperonins was coined almost three decades ago
to describe the 60 kDa heat shock protein family, a group of
ubiquitous proteins that share primary sequence homology, in
some cases as low as 20–30% (Hemmingsen et al., 1988; Hill
and Hemmingsen, 2001). They are divided into two groups: type
I chaperonins and type II chaperonins. The latter is found in
the eukaryotic cytosol (CCT and TCP-1) and Archaea, while
type I is located in bacteria, mitochondria, and chloroplasts (Hill
and Hemmingsen, 2001). The primary role of chaperonins is
to prevent aggregation of nascent and misfolded polypeptides
and ultimately facilitate their correct (re) folding (Goloubinoff
et al., 1989a,b; Horwich et al., 2007; Saibil et al., 2013; Hayer-
Hartl et al., 2016). How this occurs is still not completely
understood and is the topic of much debate (Jewett and Shea,
2010), however, accumulating evidence suggests that in the
case of misfolded proteins, the chaperonin exerts an unfoldase
action on the protein, overcoming the free energy barrier
(Todd et al., 1996; Walter et al., 1996; Finka et al., 2016). In
addition, to the major protein-folding activities, moonlighting
functions were also reported for plant and various bacterial
systems harboring multiple chaperonin homologs (Lund, 2009;
Henderson et al., 2013; Vitlin Gruber et al., 2013; Fares, 2014).
The most widely studied prototype at the mechanistic level is
the GroEL chaperonin of Escherichia coli. Its ∼60 kDa subunits
assemble into barrel-shaped structures built of two heptameric
rings (Hendrix, 1979; Höhn and Wuttke, 1979; Braig et al., 1994;
Xu et al., 1997) composed of identical subunits. Each subunit
contains three functional domains: the equatorial domain, site of
the ATP binding pocket; the apical domain, which binds substrate
and GroES; the intermediate domain, which connects the
previous two and allows for dynamic structural changes within
the molecule (Figure 1). The tetradecameric cylinders harbor the
binding sites for unfolded/misfolded substrate proteins, which
reside inside the barrel lumen (the Anfinsen cage; Buckle et al.,
1997; Chaudhuri and Gupta, 2005; Chen et al., 2013). Due to
its double ring assembly, each GroEL molecule can bind two
substrate molecules with high affinity (Viitanen et al., 1992;
Llorca et al., 1997; Taguchi et al., 2004). In the absence of
necessary co-factors, some substrate proteins can bind tightly
to the GroEL molecule for extended periods of time in an
unfolded conformation (Goloubinoff et al., 1989a; Viitanen et al.,
1992; Hartman et al., 1993; Hartmann and Eisenstein, 2000).
The folding reaction proceeds through multiple steps, during
which the chaperone undergoes major ordered and concerted
conformational changes (Hartman et al., 1993; Weissman et al.,
1994). The driving force for these conformational changes, as well
as their timing, is provided by ATP hydrolysis and the binding of
the co-chaperonin GroES (Todd et al., 1994). The latter is itself
an oligomeric protein, which assembles into a single heptameric
ring arranged in a dome-like structure (Hunt et al., 1996; Mande
et al., 1996).

THE MAJOR COMPLEXES

Early after the discovery of chaperonins, it became clear that
modulation of GroEL activity is governed by complex formation

with GroES, which occurs only following nucleotide-induced
conformational changes in the GroEL oligomer (Goloubinoff
et al., 1989a,b; Roseman et al., 2001). This discovery was followed
by extensive research aimed at identifying the active form of the
GroEL–GroES complex. In their pioneering study, Langer and
coworkers used EM to identify two forms of the chaperonin in
vitro: the apo form, consisting of the GroEL tetradecamer alone,
without GroES, and a complex containing one tetradecamer of
GroEL bound to one GroES heptamer, formed in the presence
of ADP (Langer et al., 1992). This form was suggested to be the
active form of the system and became known as the asymmetric,
bullet-shaped complex (Langer et al., 1992). Subsequently, a third
chaperonin complex was observed in the presence of ATP, by
several groups (Azem et al., 1994b; Harris et al., 1994; Llorca
et al., 1994; Schmidt et al., 1994). The third form is composed of
one GroEL barrel sandwiched in between two GroES heptamers,
in a symmetric complex, known as the “football” (American)—
like complex. High-resolution crystal structures were obtained
for all three forms over the years (Figure 1) (Braig et al., 1994,
1995; Boisvert et al., 1996; Xu et al., 1997; Chen and Sigler, 1999;
Bartolucci et al., 2005; Fei et al., 2013, 2014; Koike-Takeshita et al.,
2014). In these studies, contacts between the subunits within
rings and between GroEL/GroES oligomers have been delineated.
More importantly, structural changes that occur during the
reaction cycle have also been elucidated, through the analysis
of various nucleotide-bound forms (Roseman et al., 1996, 2001;
Ranson et al., 2001, 2006; Clare et al., 2009, 2012). It has become
clear from the vast number of studies that the system is very
dynamic in the presence of ATP, and what we are able to capture
at any one point, in the test tube, may not necessarily reflect the
only active form of the reaction (Todd et al., 1994; Yang et al.,
2013; Taguchi, 2015; Yamamoto and Ando, 2016). Indeed, the
concentration and type of nucleotide, the presence of mono- and
divalent cations and other parameters may determine the form
of the complex that is detected and efficiency of protein folding
activity (Todd et al., 1993; Azem et al., 1994a, 1995; Diamant
et al., 1995; Engel et al., 1995). In a single cycle of ATP hydrolysis,
GroEL will bind one or two substrate protein monomers, bind
one or two GroES heptamers, bind and hydrolyze 14 ATP, fold
the substrate protein, and eject the bound components, all in a
matter of seconds (Figure 2). What we observe in the standard
biophysical examination is the steady state levels of the complexes
with a strong bias for the rate-limiting complex of the cycle under
the tested conditions (Todd et al., 1994; Fei et al., 2013; Yang et al.,
2013; Taguchi, 2015; Yamamoto and Ando, 2016).

THE REACTION CYCLE

If the forms that we observe in the test tube do not necessarily
reflect the only present or active ones, how can we accurately map
out the reaction cycle of the system? The answer to this question
comes from numerous kinetic and mechanistic studies (for a
review see Skjærven et al., 2015; Taguchi, 2015) that enable us to
peek into what is really happening in order to identify shorter-
lived complexes. To simplify the arguments, we will focus on
events that occur in the presence of unfolded substrate protein.
Assuming that we have initiated the cycle with the simplest
component, the apo GroEL, then the next step will be binding
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FIGURE 1 | Crystallographic models showing the architecture of the major chaperonin complexes. Left figure, unliganded, apo GroEL14, PDB code 4WGL;

Center figure, GroEL14 with one bound GroES7 co-chaperonin (“bullet”), PDB code 1AON; right figure, GroEL14 with two bound GroES co-chaperonin heptamers

(“football”), PDB code 4PKO. The GroES co-chaperonin is colored purple. The three domains of each GroEL subunit are color coded as follows: Apical domain, red;

Equatorial domain, cyan; Intermediate domain, green. The top row of figures shows the full structure of each oligomer. The bottom row presents two subunits of each

ring, in order to better visualize the spatial orientation of each subunit and its domains. The figure was generated using the PyMOL program (The PyMOL Molecular

Graphics System, version 1.5.0.4; Schrödinger, LLC; available at www.pymol.org).

of ATP and/or substrate protein followed by GroES binding,
which leads to formation of the folding-competent form. What
follows this step constitutes the crux of the controversy. The
canonical view suggested that the complex moves through the
asymmetric “bullet” cycle (Figure 2A) (Horwich et al., 2006;
Hayer-Hartl et al., 2016) while an alternative understanding
suggested that the reaction proceeds via the symmetric “football”
cycle (Figure 2B) (for reviews see Grallert and Buchner, 2001;
Taguchi, 2015).

In the first model, the GroEL tetradecamer alternates between
the bullet complex and the apo form, complexed with nucleotide.
An important feature of this mechanism is the sequential nature,
by which binding of ATP and substrate protein to the trans
ring stimulates release of GroES, ADP and sequestered substrate
from the cis ring (Rye et al., 1999). According to this model,
the strong negative cooperativity in nucleotide binding between
the two GroEL rings (Gruber and Horovitz, 2016) ensures that
nucleotide binding to one ring will suppress nucleotide binding
and hydrolysis in the opposing ring (Horwich et al., 2007). Thus,
a complex with nucleotide and GroES bound on both sides will

not form. For many years, this model was almost universally
accepted as that which accurately describes the GroEL reaction
cycle.

In an alternative model, known as the symmetrical “football”
model, the complex alternates between the symmetric complex
and the asymmetric form. Despite the negative cooperativity
in nucleotide binding that exists between the two rings,
conformations with ATP occupying both rings have been
described (Clare et al., 2012), along with numerous reports
of football structures, which have GroES bound to both
sides (Azem et al., 1994b; Harris et al., 1994; Llorca et al.,
1994; Schmidt et al., 1994). The involvement of these species
in refolding was inferred from many early kinetic studies
on GroE-mediated refolding to their native state of foldable
substrates such as Rubisco, mMDH, and a maltose binding
protein variant, all of which demonstrated a clear correlation
between the efficiency of refolding and the occurrence of
symmetric GroEL14/GroES14 complexes (Azem et al., 1995;
Sparrer et al., 1997; Ben-Zvi et al., 1998; Beissinger et al.,
1999).
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FIGURE 2 | Models for the chaperonin reaction cycle. (A) Unfolded

protein binds to the apo (“brick”) form of GroEL and is capped by GroES in the

presence of ATP, forming the “cis” ring. Binding of ATP to the opposite, “trans”

ring induces release of GroES, ADP and folded protein from the “cis” ring,

such that protein folding cycles between one side and the other. Brackets

signify a transient species. (B) In the presence of substrate protein, ADP to

ATP exchange is extremely rapid, resulting in formation of, a symmetric

“football” intermediate, in which protein folding takes place simultaneously in

both rings. ATP hydrolysis is now the slower, rate-limiting step, resulting in the

accumulation of the football form. This form reverts briefly to a bullet

conformation upon ATP hydrolysis. (C) The mitochondrial chaperonin exists in

equilibrium between single- and double-ringed forms. Upon binding of ATP

and GroES, the equilibrium is shifted to the double-ringed form. Protein folding

takes place in both chambers and release of the cochaperonin transpires upon

ATP hydrolysis.

Were the symmetric complexes to represent a side-abortive
reaction or dead end, then one would not expect to see such
a correlation, rather, the opposite of what was observed. This
correlation was substantiated by sophisticated mechanistic
studies demonstrating the importance of the symmetric
intermediate in the protein folding cycle (Koike-Takeshita et al.,
2008; Sameshima et al., 2010a; Takei et al., 2012; Yang et al., 2013;
Ye and Lorimer, 2013; Fei et al., 2014; Yamamoto and Ando,
2016).

RECENT DEVELOPMENTS AND
OUTSTANDING QUESTIONS

Earlier studies showed that in the presence of substrate, the
chaperonin complex behaves differently than in its absence
(Motojima and Yoshida, 2003; Motojima et al., 2004). Further
investigation demonstrated that substrate protein facilitates the
formation of symmetric, football complexes (Sameshima et al.,
2010a). Recent studies using FRET-based analyses concluded that
the substrate protein accelerates ADP exchange, in the complex
(Ye and Lorimer, 2013; Fei et al., 2014). Thus, the football
model posits that if we follow the kinetics of formation and
dissociation of cycle intermediates, we will find that both exist in
solution (symmetrical and asymmetrical complexes). However,
when we use steady state analyses to detect complexes, the form
that precedes the rate-limiting step is that which will primarily
be observed. Since ADP exchange in the presence of substrate
protein occurs very fast relative to ATP hydrolysis, the major
species observed in the presence of substrate protein is the
football (Takei et al., 2012; Ye and Lorimer, 2013; Iizuka and
Funatsu, 2016; Figure 2B). In the absence of substrate protein,
the rate-limiting step is the release of ADP, leading to population
of the species preceding this step, the asymmetric form.

Is function of the two rings coordinated or do they function
as independent folding chambers? Consistent with conclusions
of early kinetic studies, single-molecule analyses demonstrate
that the first GroES to interact with GroEL is not necessarily
the first one to dissociate from the symmetric complex. Rather,
the dissociation may occur randomly (Corrales and Fersht, 1996;
Sameshima et al., 2010b). A new study using state of the art AFM
to dissect molecular events related to GroES binding revealed that
that inherently different types of football species can exist, and
they will alternate or not, in release of GroES, depending upon
the nature of the specific football species (Yamamoto and Ando,
2016). The authors postulate that complete exchange of seven
ADPs with seven ATPs ensures that the system goes through
an alternating pathway, while incomplete exchange of nucleotide
at the trans-ring may cause the cycle to go through a non-
alternating pathway in which the newly bound GroES dissociates
first.

Although the above studies suggest that GroEL may function
as two independent folding chambers, a number of facts indicate
that the picture is not entirely clear. Firstly, why would such an
elaborate system of cooperativity be conserved in E. coli if it is not
essential? In the classic model, negative cooperativity is taken to
its extreme, so that nucleotide binding on one ring completely
precludes binding in the opposing ring (Horwich, 2011). But
perhaps the effect is not so drastic. In fact, when initial rates of
ATP hydrolysis were measured in GroEL as a function of ATP
concentration, two transitions were observed, with respective
midpoints of 16 and 160 µM (Yifrach and Horovitz, 1995).
This data suggests that, despite negative cooperativity, both
sides are expected to be saturated with nucleotide under most
experimental or cellular conditions. Even in the presence of
0.5 mM ADP (which is inhibitory for refolding and prevents
football formation) and 1.5 mM ATP, a majority of football
species was observed, which would require that nucleotide be
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bound to both rings (Azem et al., 1995). However, it is still
possible that negative cooperativity retained in this structure,
may contribute to alternating release of GroES, resulting in a
more efficient machine. This would be consistent with the fact
that themajority of GroES release was shown to occur via polarity
change (69%) by way of a football complex (Yamamoto and
Ando, 2016). Another reason for retaining such a cooperative
system could be the fact that GroEL is able to fold large proteins
that cannot be accommodated inside the cavity underneath the
GroES (Chaudhuri et al., 2009; Dahiya and Chaudhuri, 2014;
Pastor et al., 2016). In this instance, it is possible that release
of the cis-bound substrate must be induced by trans binding
of substrate, ATP and GroES in a fully alternating mechanism,
although in this case, the folding protein would not have the
benefit of encapsulation.

THE PHYSIOLOGICAL RELEVANCE

It is evident, as discussed above, that at least in vitro, both types
of complexes, symmetrical and asymmetrical, co-exist. Thus,
the debate has changed its focus to the physiological relevance
of the various forms observed. It has been well established
that the velocity of the GroEL–GroES reaction cycle and
the partitioning between various complexes depends on many
important factors such as concentration and ratio of nucleotide,
as well as concentrations of magnesium and potassium (reviewed
in Grallert and Buchner, 2001; Sameshima et al., 2008, substrate
protein Sameshima et al., 2010a; Yang et al., 2013; Ye and
Lorimer, 2013; Fei et al., 2014, GroEL and GroES Azem et al.,
1994b). The latter two are often expressed as ratios, but this could
be misleading. In an E. coli cell under normal conditions, the
concentration of GroEL is estimated to be ∼35µM protomer
(Lorimer, 1996). This concentration can be even much higher
under conditions of heat stress. To the best of our knowledge,
most in vitro assays of GroEL are carried out at concentrations
much <10µM for the chaperonin. In most biophysical studies,
the concentrations used are on the order of 1µM and even
much less. At these concentrations, we know that the chloroplast
and mitochondrial chaperonins dissociate to monomers in the
presence of ATP (Bloom et al., 1983; Lissin, 1995; Viitanen
et al., 1998; Bonshtien et al., 2009). Since some oligomers or
complexes may dissociate upon dilution, we cannot assume that
we are working under the exact physiological conditions or that
the species that we observe necessarily reflect those relevant
to the cell. Moreover, the local concentrations of the above
and other small effectors are difficult to determine in vivo in
a precise manner, making it even more complicated to define
the active species. Another factor that may affect the oligomeric
state includes temperature (Goloubinoff et al., 1997; Llorca et al.,
1998). One way of investigating the physiological relevance of
folding intermediates would be to follow the reaction cycle in
vivo, not an easy task at all. The only laboratory with a monopoly
on physiological conditions is the cell itself. Until then, the
significance of the in vitro experiments for the actual situation
in vivo will remain an open question.

DIVERGENT MECHANISMS? INSIGHT
FROM STRUCTURAL STUDIES OF THE
MITOCHONDRIAL CHAPERONIN

The human mitochondria harbor a type I chaperonin system
(Hsp60), which is related, at least at the primary sequence
level, to the bacterial machinery. Surprisingly, the mitochondrial
chaperonin was isolated as single ring and it was traditionally
regarded as active in this form (Nielsen and Cowan, 1998).
However, subsequent studies using analytical ultracentrifugation
and electron microscopy showed that the protein exists in
dynamic equilibrium between single and double rings (Levy-
Rimler et al., 2001; Vilasi et al., 2014). While Hsp60 is detected
predominantly as a single ring, upon addition of ATP and
mitochondrial co-chaperonin, the equilibrium is shifted toward
formation of double-ringed, football shaped structures (Levy-
Rimler et al., 2001). This observation again reinforces the
relevance of working as close as possible to physiological
conditions. However, at concentrations that are used routinely
in the field, the mitochondrial chaperonin dissociates not only
to single rings but also to 60 kDa monomers (Viitanen et al.,
1998). The fact that most of the apo-protein is single ringed,
even in the presence of bound substrate, while in the presence of
ATP and co-chaperonin the protein oligomerizes to primarily the
football form, presents an additional challenge to the prevailing
theory of chaperonin function, since the complex does not even
seem to pass through the asymmetric, bullet-shaped complex.
Instead, a small amount of “half footballs” are observed- one ring
of Hsp60 bound to one ring of Hsp10 (Viitanen et al., 1998).
Similar structures were observed for the Thermus thermophilus
chaperonin as well (Ishii et al., 1995). This suggests that the
mitochondrial homolog may function using its own unique
reaction mechanism, in which the tetradecamer exists as a
football in its protein-folding state, but dissociates into two single
rings at some point during the cycle (Figure 2C). Dissociation
to single rings was observed previously both for mHsp60 (Levy-
Rimler et al., 2002) and for Cpn60 from T. thermophilus (Todd
et al., 1995; Taguchi, 2015). For mHsp60, hydrolysis of ATP to
ADP was proposed to cause a drastic decrease in co-chaperonin
binding, allowing rapid dissociation of the mitochondrial Hsp10
and release of the encapsulated protein (Nielsen and Cowan,
1998).

Additional evidence for a unique mechanism can be gleaned
from the recent crystal structure of a mitochondrial Hsp60
variant in complex with Hsp10, which crystallized as a football
complex that displays one subunit in a different conformation
than the other six in the ring (Nisemblat et al., 2015). This
is in stark contrast to GroEL, for which one hallmark of its
mechanism is the high level of cooperativity between subunits in
each ring, which results in their concertedmovement (Saibil et al.,
2013). Moreover, the crystallized mHsp60–mHsp10 structure
shows ADP in all the 14 sites, a conformation which cannot
exist for GroEL–GroES due to the strong inter-ring negative
cooperativity of nucleotide binding. Finally, in this football
structure, the surface contact area between the two rings is much
more extensive than for the GroEL football or bullet (Nisemblat
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et al., 2015). Such an extensive interface is not consistent with
the weak inter-ring interaction observed upon binding of ATP to
the second ring of GroEL (Clare et al., 2012). Thus, a large body
of evidence suggests that the mitochondrial chaperoninmay have
evolved a uniquemechanism related to its specific functions. This
mechanism seems to involve primarily football structures during
the folding cycle that alternate with half footballs and single rings.

More recently, a novel phage-encoded Cpn60 was described
which was also proposed to function via single ringed
intermediates. In this case, the apo form of the chaperonin is
tetradecameric. However, upon nucleotide binding, the oligomer
dissociates into two heptameric rings with a largely expanded
cavity, able to accommodate larger substrate proteins than other
known chaperonins (Molugu et al., 2016). Thus, similar to
what was proposed for the mitochondrial and T. thermophilus
chaperonins, phi-EL seems to incorporate a single-ringed
intermediate in its reaction cycle.

CONCLUDING REMARKS

Although a large body of data has accumulated concerning the
chaperonin system and its mechanism of action, there are still a
number of open questions concerning its reaction cycle(s) and
the nature of the active species. The existence of different species
in the functional cycle is now almost universally accepted and has
paved the way for research into the role of each species in the
molecular mechanism. Cutting-edge technologies applied to this
system are allowing dissection of the protein folding events at the

molecular level, describing how both symmetric and asymmetric
species cooperate to facilitate protein folding. Investigation of
GroEL homologs from different systems has also contributed
interesting twists to the discussion of chaperonin mechanism.
However, despite the wealth of research on the chaperonin
system, most studies to date have been carried out in vitro on the
E. coliGroEL and GroES. It will be intriguing to examine in depth
the mechanistic divergence of organellar chaperonins from the E.
coli paradigm at the molecular level and try to understand what
advantages they provide to their respective systems. Analysis of
the mitochondrial Hsp60 has already highlighted involvement
of the symmetric football structure in the reaction cycle, as well
as possible half-footballs. It will also be interesting to analyze
intermediates in the highly complex chloroplast chaperonin
system, for which multiple homologous products are expressed
for both the GroEL- and GroES-like genes, forming a variety of
labile hetero-oligomeric complexes in vitro.
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