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Abstract

Accurately reconstructing gene co-expression network is of great importance for uncovering

the genetic architecture underlying complex and various phenotypes. The recent availability

of high-throughput RNA-seq sequencing has made genome-wide detecting and quantifying

of the novel, rare and low-abundance transcripts practical. However, its potential merits in

reconstructing gene co-expression network have still not been well explored. Using mas-

sive-scale RNA-seq samples, we have designed an ensemble pipeline, called NetMiner, for

building genome-scale and high-quality Gene Co-expression Network (GCN) by integrating

three frequently used inference algorithms. We constructed a RNA-seq-based GCN in one

species of monocot rice. The quality of network obtained by our method was verified and

evaluated by the curated gene functional association data sets, which obviously outper-

formed each single method. In addition, the powerful capability of network for associating

genes with functions and agronomic traits was shown by enrichment analysis and case

studies. In particular, we demonstrated the potential value of our proposed method to predict

the biological roles of unknown protein-coding genes, long non-coding RNA (lncRNA)

genes and circular RNA (circRNA) genes. Our results provided a valuable and highly reliable

data source to select key candidate genes for subsequent experimental validation. To facili-

tate identification of novel genes regulating important biological processes and phenotypes

in other plants or animals, we have published the source code of NetMiner, making it freely

available at https://github.com/czllab/NetMiner.
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Introduction

The complex cellular networks formed by the interacting macro-molecules underlie an organ-

ism’s phenotypes [1–3]. Reconstructing a complete map of the cellular networks is crucial for

understanding an organism’s genetic architecture underlying complex phenotypes. In animals,

multiple types of networks have been constructed based on multi-level ‘-omics’ data sets from

genome, transcriptome, proteome, epigenome, metabolome and other subcellular systems [4].

In plants, most of the current available ‘-omics’ data sets come from transcriptome analysis,

with relatively few studies generating other types of ‘-omics’ data sets [5]. The rapid accumula-

tion of large-scale and open-access plant transcriptome data derived from the microarray and

high-throughput RNA sequencing provides a great opportunity for reconstructing molecular

networks underlying diverse biological functions and phenotypes. Co-expression meta-analy-

sis is a classical and powerful method for reconstructing gene functional interaction network

using transcriptome data. Based on the hypothesis that the genes with similar expression pat-

terns are often functionally related, this method uses the expression profiles from all available

experimental conditions to discover statistically significant functional associations between

genes. The extensibility and simplicity make it a powerful tool for inferring the biological roles

of uncharacterized genes, understanding the biological processes and gaining novel insight

into the global architecture of transcriptome and the molecular mechanism of various pheno-

types [5–9].

For co-expression meta-analysis, many algorithms have been proposed to build gene net-

works. However, it has been shown that the outcome of network inference varies between

tools, and the single network inference approach has inherent biases and is unable to perform

optimally across all experimental data sets [10,11]. In addition, how to clean-up the links

occurring by accident in a gene co-expression network and select the biologically significant

associations is also a critical procedure for modeling authentic gene relations [12,13]. More-

over, the current computational methods are mainly designed for analyzing microarray data

sets. Indeed, microarrays are intrinsically limited in measuring a small dynamic range of gene

expression and only represent a subset of genomic contents (~15000 genes) [8,14]. Compared

to microarrays, RNA sequencing (RNA-seq) emerges as a new approach to quantify gene

expression in terms of read counts for individual genes, which provides broader dynamic

range of measurements allowing whole genome-wide detection of novel, rare and low-abun-

dance transcripts [15]. In RNA-seq, mRNAs are converted to cDNAs, fragmented and

sequenced using a high-throughput method to produce short reads. Then these reads are

aligned to a reference genome and the expressive abundance of different genomic regions can

be computed using the number of mapped reads. By this way, RNA-seq can detect and quan-

tify a large number of novel regions including non-coding genes, such as long non-coding

RNA (lncRNA) genes and circular RNA (circRNA) genes, most of which are not to be covered

by current microarray platform. However, its potential value in building genome-wide gene

co-expression network and predicting the biological functions of novel genes (such as

unknown protein-coding genes, lncRNA genes and circRNA genes) has not been well

explored. Currently, a great majority of co-expression meta-analyses have neglected the rapid

growing availability of RNA-seq samples (especially in the plants). According to our knowl-

edge, only three computational tools tailed for RNA-seq data were developed, including

Canonical Correlation Analysis (CCA) [16], SpliceNet [17] and VCNet [18]. These methods

reconstructed the high-quality gene co-expression network based on the exon-level, genomic-

position-level or allele-level expression information. However, they focused only on evaluating

and analyzing the predictive performance of algorithms and several known biological path-

ways rather than constructing genome-scale co-expression network and predicting the new
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functions of unknown genes, especially for the non-coding genes. Indeed, these methods are

also difficult and even impossible to be applied for building genome-wide gene co-expression

network using the large-scale RNA-seq samples (from several hundreds to several thousands)

owing to their high computational complexity.

In this study, we have developed a novel ensemble pipeline, called NetMiner, for inferring

genome-wide gene co-expression networks using massive-scale RNA-seq samples by integrat-

ing the predictions of three different network inference algorithms. We built a network for

one species of monocot rice using this method. We compiled a standard physical and non-

physical functional gene link data set derived from 4 known biological networks to evaluate

the quality of the network using fold enrichment analysis. The quality evaluation was based on

the principle that, the larger the ratio of co-expressed genes sharing the same or similar func-

tions, the more valuable the network is. The results showed that our network achieved highest

sensitivity and specificity for capturing the functional links between genes when compared

with each single method. Moreover, bottom-up subnetwork analysis exhibited the usefulness

of our network for solving the practical biological problems. In particular, we demonstrated

the potential value of our method for predicting the biological roles of the uncharacterized

genome elements, including the protein-coding genes with unknown functions, long non-cod-

ing RNA (lncRNA) genes and circular RNA (circRNA) genes. Our study revealed the huge

amount of genetic regulatory relationships associated with cellular activities and agronomic

traits, which provided a valuable data source for rice genetics research and breeding.

Materials and methods

Dataset preprocessing

In this study, we have downloaded 456 primary rice RNA-seq samples from the NCBI

Sequence Read Archive (SRA) (see S1 and S2 Datasets for details), with the keywords of

“Oryza sativa” [Organism] AND “platform illumina” [Properties] AND “strategy rna seq”

[Properties] (accessed on May 29, 2014). These RNA-seq samples contain a wide spread of

experimental conditions, tissue types and developmental stages. After the SRA files were gath-

ered, the archives were extracted and saved in FASTQ format using the SRA Toolkit. The

FASTQ files were first trimmed using Trimmomatic software (version 0.32) [19] with the

default settings, except for an additional parameter of minimum read length of at least 70% of

the original size. Then, the fastq_quality_filter program included in FASTX Toolkit was

adopted to further filtrate the FASTQ files, with the minimum quality score 10 and minimum

percent of 50% bases that has a quality score larger than this cutoff value. Surviving RNA-seq

samples were mapped to the MSU7.0 reference genomes (55986 genes) using TopHat v2.0.4

with the default settings except for “—max-multihits 1” [20]. The PCR and optical/sequenc-

ing-driven duplicate reads were removed using Picard tools. After mapping, the uniquely

aligned reads count (RAW) and Fragments Per Kilobase Of Exon Per Million Fragments

Mapped (FPKM) of each gene was calculated relative to the reference gene model using the

HTSeq-count (v0.5.4) and Cufflinks software (v2.1.1), respectively [21,22]. The unreliable sam-

ples and genes were filtered according to the following three criteria: I) The samples, in which

the percentage of the number of genes with expression value smaller than 10 reads was larger

than 90%, were not considered for further analysis; II) We removed the genes whose expres-

sion values were less than 10 reads in more than 80% samples; III) Genes with the variation

coefficient of expression values smaller than 0.5 were excluded from subsequent analysis. After

filtering, we obtained two expression data sets (RAW reads count and FPKM) composed of

348 RNA-seq samples and 24775 genes. The expression data set of RAW reads count was fur-

ther normalized using four methods, i.e. I) Upper Quartile (UQ) [23]; II) Trimmed Mean of
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M values (TMM) [23]; III) Relative Log Expression (RLE) [23] and IV) Variance Stabilizing

Transformation (VST) [24]. Consequently, we obtained six RNA-seq gene expression data sets

including one RAW reads count data set and five normalized data sets.

The microarray data was extracted from both ATTED-II database and Rice Oligonucleotide

Array Database (ROAD) [25,26]. Gene Ontologies (GOs) were downloaded from Plant Gene-

Set Enrichment Analysis Toolkit (PlantGSEA) [27]. We got the pathway data from two data

sources including PlantGSEA and Plant Metabolic Network (PMN) (http://pmn.plantcyc.org/

). The transcription factor families were downloaded from Plant Transcription Factor Data-

base (PlantTFDB) [28]. MicroRNAs and their targets were collected from the Plant MicroRNA

Target Expression database (PMTED) and Plant MicroRNA database (PMRD) [29]. Known

agronomic trait genes were collected from both Q-TARO database [30] and literature. Tos17

mutant phenotypes were extracted from Rice Tos17 Insertion Mutant Database [31]. The phe-

notypes were associated with MSU 7.0 gene locus identifiers through BLASTN alignments of

Tos17 flanking sequences obtained from NCBI website. The protein-protein interaction net-

work of rice was downloaded from PRIN database [32]. Probabilistic functional gene network

of rice was obtained from RiceNet data portal [33].

Gene co-expression network construction

We have developed a novel ensemble pipeline for constructing genome-wide and high-quality

RNA-seq-based Gene Co-expression Network (GCN) based upon combining multiple infer-

ence algorithms, then aggregating their predictions through an unweighted voting system and

re-scoring co-expression links. Our ensemble inference system was designed based on the

hypothesis that the different network inference methods have complementary advantages and

limitations under the different contexts. To select base inference methods for building an

ensemble system, five methods were initially tested and evaluated including Graphical Gauss-

ian Model (GGM) [34], Weighted Gene Co-expression Network Analysis (WGCNA) [35],

Bagging Conservative Causal Core of Network (BC3NET) [36], Graphical Lasso Model (GLM)

[37] and Tree-based Method (TM) [38]. Since GLM and TM have high computational com-

plexity and are unable to be applied for the large number of RNA-seq samples, we have not

adopted these two algorithms for subsequent network construction. The flowchart for building

RNA-seq-based gene co-expression network was described in Fig 1. In particular, our pipeline

was started from short reads filtering and mapping. After reads were filtrated and aligned to

reference genome, we computed the gene expression values of each sample, and then removed

the unreliable genes and samples. Next, we performed the normalization of expression values

and obtained six RNA-seq data sets including RAW reads count data set and five normalized

expression data sets. All these steps were described in the Dataset preprocessing section. Based

on these 6 RNA-seq data sets, WGCNA, GGM and BC3NET were used to construct 18 initial

gene co-expression networks using the R packages of WGCNA, GeneNet and BC3NET,

respectively (available from the CRAN repository). Since a great amount of co-expressed gene

pairs were outputted from the R packages of WGCNA and GeneNet, we removed those with

low confidence scores. For the gene pairs outputted from WGCNA, we used the topological

overlap measure as their co-expression confidence score. For gene pairs derived from Gene-

Net, we used the partial correlation coefficients as their confidence score. We identified a suit-

able cutoff of confidence score to filter out the low-confidence co-expression links generated

by these two methods through a random permutation model. We created 100 random expres-

sion data sets by shuffling the associations from genes to expression profiles on the same gene

set used by WGCNA and GeneNet and built the randomized gene co-expression networks for

each data set. We computed the confidence scores for each random network as background
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distribution, and used the mean value of 99.99th percentiles of these distributions as the cutoff

score to select the high-confidence co-expression links. After obtaining initial networks, we

employed a two-step voting procedure to obtain final co-expression network. In the first step.

we constructed three consensus gene networks (i.e. intra-method consensus network) by pick-

ing the co-expression links included in more than two networks of six initial gene networks.

These six networks were built by applying the same inference method (e.g. WGCNA) to six

Fig 1. Flowchart of high-quality RNA-seq-based gene co-expression network inference.

https://doi.org/10.1371/journal.pone.0192613.g001
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RNA-seq data sets. In the second step, we selected the co-expression links contained in more

than one gene network of three intra-method consensus gene networks to establish the final

co-expression network. The parameters in two-step voting procedure were decided using the

criterion that the reconstructed network is closest to standard positive functional gene links

and meanwhile is farthest from standard negative functional gene links.

The calculation procedure of confidence score for each co-expression link of final network

was performed as the following: I) Firstly, we normalized the confidence scores of gene co-

expression links of each initial network to the interval of range from 0 to 1. II) Then, we

assigned a score to each co-expression link of intra-method consensus networks by averaging

the normalized confidence scores of all six initial networks. III) Finally, we defined the confi-

dence score for each link of final co-expression network by averaging the confidence scores of

three intra-method consensus gene networks. Note that, if a co-expression link did not exist in

the network, we assign it a confidence score of 0.

Performance evaluation

We compiled the real biological data set as replacement a standard set of positive and negative

gene functional links to evaluate the quality of network using the following strategy. The gold

standard of positive functional links was obtained by capturing the gene pairs that were con-

tained in the same GO categories, in the same pathways, have interacted in the protein-protein

interaction network or were linked in the probabilistic functional gene network. To construct

the gold standard of negative functional links, we first selected all the biologically unrelated

GO pairs (semantic similarity score = 0) that had the number of genes greater than 5 and less

than 50, coupling all possible gene pairs of each partnership in these GO pairs as initial non-

functional gene relationships. Subsequently, we established 10000 background distributions of

gene functional similarity, by 10000 times randomly sampling of 1000 gene pairs and calculat-

ing their functional similarities. We have selected a subset of gene pairs from the initial non-

functional links as final non-functional links using the criterion that the functional similarity

between genes that are smaller than the mean value of 5th percentiles of these simulated back-

ground distributions.

Since our real data set included only a subset of true functional and non-functional link

space, we evaluated the quality of network using the fold enrichment analysis. The fold of

enrichment was calculated as a function of the confidence score cutoff (k) in the edge list of

the inferred network by the following formula:

nk

mk
�
M
N
; ð1Þ

where, nk is the number of true positive or true negative functional links in the kth cutoff of

the edge list; mk is the number of edges of the inferred network in the kth cutoff; M denotes the

number of true positive or true negative functional links in the gold standards and N repre-

sents the number of all possible interactions in the genome space. The network visualization

was carried out using both Cytoscape [39] and BioLayout Express3D [40].

The functional enrichment of co-expression neighborhoods was calculated as the ratio of

the relative occurrence in gene set of co-expression neighborhoods to the relative occurrence

in genome using Fisher’s exact test. The p-value was further adjusted by Benjamini-Hochberg

correction for multiple hypotheses testing. The corrected p-value smaller than 0.05, was con-

sidered as enriched. To evaluate the predictive performance of our RNA-seq-based network

for inferring gene function using the co-expression neighborhoods, we adopted the gene-cen-

tric evaluation, which was provided in the Critical Assessment of protein Function Annotation
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(CAFA) project [41]. For this metric, the GO terms of each gene (gold and predicted) were

propagated up the GO hierarchy to the root, obtaining a set of terms. In this process, for each

scored GO term, we propagated its score (-log(q-value) of Fisher’s exact test) toward the root

of the ontology with each parent term received the highest score among its children. The Sensi-

tivity (Recall), 1-specificity, Precision and maximum F-measure (F-max) was calculated using

the same method as in the CAFA project. The Receiver Operating Characteristics (ROC) curve

and Precision-Recall (PR) curve was drawn by changing the threshold and plotting the Sensi-

tivity versus the 1-specificity. Similarly, we obtained the Precision-Recall (PR) curve by altering

the threshold and plotting the Precision versus the Recall. Semantic similarities between the

GO term pairs were calculated using GOSim [42]. Functional similarities between genes in

terms of the GO space were calculated using the metric adopted from one reference paper

[43].

Analysis of circRNA genes

The circular RNA (circRNA) genes were predicted using 618 novel rice RNA-seq samples

downloaded from the NCBI Sequence Read Archive (accessed on February 15, 2016) by CIRI

software [44]. We have calculated the counts of junction reads of a circRNA as its relative

expression abundance. Then, we integrated the aligned reads number of known rice genes

using HTSeq-count program (v0.5.4) and expression values of circRNAs into a numeric

expression matrix. We removed the circRNAs from the matrix if it was identified in less than 3

RNA-seq samples. Using the filtered matrix, we built three initial gene co-expression networks

by WGCNA, GGM and BC3NET. Based on this, we have selected the co-expression links con-

tained in more than one network of the three initial networks to obtain the final co-expression

network. Although only the numbers of junction reads were adopted to measure the expres-

sion abundances of circRNAs, this method is simple and effective for building gene co-expres-

sion networks, given that the reads were distributed uniformly along circRNA.

Results and discussion

Network construction and evaluation

To evaluate the quality and reliability of downloaded RNA-seq samples, we have analyzed 348

rice RNA-seq transcriptomes after removing the unreliable genes and samples (S1 and S2

Datasets, see Materials and methods for details). After reads filtering and trimming, a total of

12,458,505,209 reads remained in the samples, 75% of which were mapped to the rice MSU7.0

reference genome and 71% of which were mapped uniquely (S2 Dataset). Of the genes covered

with RNA-seq reads, 98% have coverage of> 50% of gene length (Figure A in S1 Fig).

Although there exist very large differences in the number of mapped reads between samples,

the percentage of expressed genes was similar in most of them, ranging from 32% (10th per-

centile) to 66% (90th percentile), and as the number of mapped reads increased, the propor-

tion of the number of expressed genes rapidly increased to saturation (see Figure B in S1 Fig).

We have tested several normalization methods to compute the expression abundance and

expression correlations between genes and samples. The tissue-specific expression patterns

and enrichment results of rice genes suggested that these RNA-seq samples were highly reliable

(see S1 Text, S2–S6 Figs,—S1 Table and S3 Dataset for details).

We comprehensively analyzed whether the co-expression between genes is to be associated

with their biological functions. Our results demonstrated that the functionally related genes

are often to be co-expressed in these rice RNA-seq samples (see S1 Text, S7 and S8 Figs and

S4 Dataset for details). This indicated that the co-expression links inferred by RNA-seq data

can be adopted to predict gene functions. To find the novel functions of unknown genes, we
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designed a new ensemble pipeline to construct high-quality RNA-seq-based gene co-expres-

sion network based upon an un-weighted voting system and rescoring the gene co-expression

links. This pipeline combines 18 initial networks inferred by three state-of-the-art inference

algorithms, including Graphical Gaussian Model (GGM) [34], Weighted Gene Co-expression

Network Analysis (WGCNA) [35], Bagging Conservative Causal Core of Network (BC3NET)

[36], learning on 6 different types of RNA-seq expression data sets (see Materials and methods

for details). We have selected these three inference methods but not the other existing

approaches [16–18,37,38] due to either the high computational complexity or the inconsistent

data source (Table 1).

We have constructed the co-expression network of rice, which includes 16770 genes with

146,419 links. We then ranked these co-expression links according to their confidence scores

in a descending order (see Material and methods for details). This network showed the small-

world characteristic with an average path length between any two nodes equal to 6.28. The dis-

tribution of node degrees obeyed the truncated power-law where most nodes have a few co-

expression partners with only a small ratio of nodes associating with many partners (Figure A

in S9 Fig). The negative correlation between node degrees and clustering coefficients revealed

the hierarchical and modular characteristics of network and synergistic regulation of gene

expression (see Figure B in S9 Fig) [7].

We assessed the quality of this network based on the principle that, the more co-expression

relationships connect the genes sharing similar biological functions, the more reliable the net-

work was. For evaluation, we compiled a standard set of positive gene functional links

(9390203 interactions), by capturing gene pairs that were contained in the same functional cat-

egories or were connected in known biological networks, and a standard set of negative gene

functional links (272997 interactions) based on the functional dissimilarities between genes

(see Materials and methods for details). We used fold enrichment analysis to measure the rela-

tionships between our network and these two standard functional links: The larger the propor-

tion of the number of shared elements divided by that expected by random chance, the closer

they were (for details, see Materials and methods). We first analyzed the closeness between our

gene network and standard positive functional gene links to evaluate the sensitivity of our net-

work. Then, we further analyzed the distinctiveness between our gene network and standard

negative functional gene links to assess the specificity of our network. We found that the net-

work structure obtained by our ensemble inference method was consistently better than the

networks built by the individual method with higher enrichment level for standard positive

links and lower enrichment level for standard negative links (Fig 2). These results suggested

that the committee of different methods can reduce the bias occurring in a single inference

method and provide more reliable predictions with higher sensitivity and specificity. We have

observed that the enrichment levels of the integrated gene network built using six RNA-seq

Table 1. A table summing up the main features of different algorithms.

Feature NetMiner WGCNA GGM BC3NET GLM TM ARACNE VCNet CCA SpliceNet

Computational

complexity

Middle Low Low Middle High High Low High High High

Whole genome

inference

Yes Yes Yes Yes Yes Yes Yes No No No

Data level Gene Gene Gene Gene Gene Gene Gene Exon Exon/Position/

Allele

Exon

Sample size Large-

scale

Large-

scale

Large-

scale

Large-

scale

Large-

scale

Large-

scale

Large-

scale

Small-scale to

middle-scale

Small-scale to

middle-scale

Small-scale to

middle-scale

https://doi.org/10.1371/journal.pone.0192613.t001
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data sets have not obviously changed (such as GGM method, Fig 2A, line highlighted in yel-

low) than the initial network using each single data set, indicating that integrating the gene

networks built using different types of RNA-seq data sets had no obvious effects on the struc-

ture of inferred gene network. Besides, this might also indicate that each of six gene networks

derived by single data set was focused on different partitions of cellular transcriptome (Giorgi

et al., 2013).

We tested whether the network constructed by the weighted voting method [10] was better

than which built by our un-weighted voting method. We obtained the weighted network by

scoring each single inference method’s inference performance. The performance weight value

of a single inference method was obtained by dividing the enrichment fold of its resulting net-

work on standard positive links by which on standard negative links. We adopted the paired

t-test to assess the performance differences between two networks using the values of standard

link enrichments in 20 different cutoff scores of co-expressions. Though the weighted voting

improved the performance when compared with un-weighted voting, the difference was not

statistically significant (p-values = 0.20 and 0.16 for standard positive and negative links,

Fig 2. Enrichment folds of different algorithms for co-expression network inference. A) Comparing to GGM for standard positive links. B) Comparing to WGCNA

for standard positive links. C) Comparing with BC3NET for standard positive links. D) Comparing with GGM for standard negative links. E) Comparing with WGCNA

for standard negative links. F) Comparing with BC3NET for standard negative links. In the legends, the RAW, FPKM, UQ, TMM, RLE and VST represented the

networks obtained by the single RNA-seq data set; INT indicated intra-method consensus networks established by integrating the predictions of different RNA-seq data

sets, EBM denoted high-quality gene co-expression network obtained by integrating all intra-method consensus networks.

https://doi.org/10.1371/journal.pone.0192613.g002
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respectively). This is consistent with Marbach et al. study [10], which claimed that integrating

all inference methods using unweighted voting seems to be a good choice since the perfor-

mance of an inference method was difficult to estimate when inferring an unknown gene net-

work. We also examined whether the edge confidence (rank) average method [10] were more

effective than un-weighted voting method in building gene co-expression network. To com-

pare with these two methods, we first normalized the confidence scores (ranks) of initial gene

co-expression links inferred from each data source and algorithm to an interval range from 0

to 1. For each co-expression link, we then assigned the mean value of confidence scores

(ranks) in initial networks as its probability score in the final network. We found that edge

confidence average method had not improved the enrichment level of positive standard links

but it increased the enrichment level of negative standard links when compared to our

unweighted voting method. For edge confidence average method, the p-values were 4.64E-3

and 5.67E-3 for standard positive and negative links, respectively. For edge rank average

method, the p-values were 2.44E-4 and 1.81E-3 for standard positive and negative links,

respectively. Using the similar method, we next evaluated whether our proposed method has

better performance than a classic gene network inference algorithm, ARACNE [45]. We

applied this method to six RNA-seq expression data sets to obtain six gene networks, and then

compared them with our gene network. The results showed that, for standard negative links,

the networks built by ARACNE had higher enrichment than our network, while its enrich-

ment level was lower than our network for the standard positive links (The mean p-values

equaled 2.64E-09 and 3.61E-08 for the standard positive and negative links, respectively). This

result indicated that our method can more accurately reconstruct gene co-expression network

than ARACNE method. As reported in previous studies, three powerful methods, CCA, Splice-

Net and VCNet, used the expression information of sub-gene-level (e.g. exon-level) to detect

co-expressions between genes. However, these methods were unable to be applied to construct

genome-wide gene co-expression network using the large number of RNA-seq samples in an

acceptable computation cost.

We further analyzed the effects of expression sample numbers and expression abundances

of co-expression links on the enrichment level of standard links. The expression sample num-

ber of a co-expression link, connecting two genes A and B, was defined as the total number of

samples which plus the number of gene A expressed samples and the number of gene B

expressed samples. The expression abundance of a co-expression link, connecting two genes A

and B, was defined as the expression abundance summation of gene A and gene B in all sam-

ples. Interestingly, we have found that the co-expression relationships connecting highly or

frequently expressed gene pairs were positively associated with the standard positive links and

were negatively associated with the standard negative links (see S10 Fig). We also observed

that the expression sample number of co-expression link is a more reliable factor than the

expression abundance to affect the enrichment level of standard links (S10 Fig). Subsequently,

we examined whether a large fraction of gene interactions was recovered by our collected rice

RNA-seq data. The results demonstrated that most of the general transcriptional links were

already mined reliably with 348 rice RNA-seq samples (see S2 Text for details).

Prediction of gene functions through co-expression subnetworks

We observed that our reconstructed RNA-seq-based gene co-expression network was always a

positive predictor for the protein-protein interaction network, probabilistic functional gene

network, GO network and pathway network (see S3 Text and S11 Fig for details). Meanwhile,

we also found that many genes under the same GO categories were more connected to each

other than expected by chance (see S4 Text and S5 Dataset for details). Therefore, we adopted
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GO enrichment analysis of a gene’s co-expression neighborhood as a tool to predict its biologi-

cal functions [46]. For each gene belonging to a given GO category, we asked whether GO

enrichment in its co-expression neighborhoods could predict its correct function. An infer-

ence was called true positive, if and only if the predicted GO term was more specific than its

known GO terms or was equal to known GO terms. In an enrichment significance level of the

corrected p-value smaller than 0.05, we found that 15.50% (Sensitivity) of annotated functions

were correctly inferred based on 10545 annotated genes in rice network. If we used only gene

annotations on the second and third layers of the directed GO graph for inference, the Sensi-

tivity was increased to 21.66%. We found that 21.27% (Precision) of all inferred functions were

true positives and this number was improved to 25.38% when we adopted the second and

third layers of directed GO graph. These results might be suggesting the incompleteness or

errors in the GO annotations of rice genes.

The relatively low Sensitivity and Precision of our network in inferring gene function might

be due to simple scoring metrics. We further analyzed the predictive performance of our net-

work based on the Critical Assessment of protein Function Annotation (CAFA) metrics [41]

(see Materials and methods for details). To eliminate the effects of the incompleteness and

errors of GO annotations, we removed the genes with I) the number of known annotations

smaller than 3; II) the number of predicted annotations smaller than 3 and III) the variation

coefficient of the number of known annotations and the number of predicted annotations larger

than 0.5. We calculated Sensitivities, 1-specificities and Precisions under different significance

thresholds (-log(corrected q-value)) to produce the Receiver Operating Characteristics (ROC)

and Precision-Recall (PR) curves. For correcting the different depths of GO predictions, we fur-

ther calculated the weight value of each GO term and plotted the weighted ROC and PR curves.

The weighted ROC and PR curves got the larger AUROC score (70.01%), AUPRC score

(61.21%) and maximum F-measure (F-max = 0.54) than not-weighted one (AUROC = 68.23%,

AUPRC = 60.67% and F-max = 0.53) (see Fig 3), indicating that our network could effectively

predict the difficult or less frequent GO terms. In addition, we also compared the predictive per-

formance of our gene network with RiceNet using the same evaluation criteria as employed in

our study. We observed that our co-expression network was comparable or better than the Rice-

Net in terms of the ROC and PR curves (Fig 3). Moreover, we also found that the semantic simi-

larities between the known GO terms and our predicted GO terms were obviously higher than

random control terms (p-value = 5.24E-10, paired t-test). These results indicate that our gene

network can be effectively applied for inferring the potential functions of unknown genes.

In addition to the global co-expression neighboring gene functional analysis above, we used

two examples below to demonstrate the stricter and more intuitive method of RNA-seq-based

gene co-expression network analysis for inferring the gene functions. In flowering plants, floral

organ development is a very important biological process. We therefore first selected a priori

guide gene, OsMADS16, involved in the flower development, to obtain a co-expression subnet-

work consisting of 37 closely connected neighbors within two-layer links from the guide genes

(see Fig 4A and S6 Dataset). We found that 15 genes were involved in flower development pro-

cess, with ~ 203-folds enrichment relative to whole genome. For example, 11 members of

MADS-box family, which have been verified involving in determination of floral organ iden-

tity and development, were effectively captured in this subnetwork. Moreover, this subnetwork

included the well-known genes, such as DL, Wda1 and DPW, which have been experimentally

validated to control the floral organ identity, anther and pollen development [47–49]. Interest-

ingly, we found that two YABBY domain containing genes, OsYABBY1 and OsYABBY6, were

not annotated in floral organ development in rice, but their Arabidopsis homologs, YABBY2
and YABBY1, were associated with the inflorescence meristem growth and regulation of floral

organ development [50]. The links between the unannotated genes (gray nodes) and the
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known genes within a subnetwork provided clues for their associations with flower develop-

ment. For example, LOC_Os07g09020was involved in the embryo development, whose links

with OsMADS3,OsMADS4 and DL enabled further targeted experimental validations.

Fig 4. Subnetworks derived from the gene-guide approach. The subnetworks included all other nodes within two-layer connections from guide genes. A)

OsMADS16 involved in flower development; B) OsCESA4 involved in cell wall biosynthesis. Within each subnetwork, red nodes represented the experimentally

verified genes related to corresponding biological functions. Pink nodes indicated the genes whose Arabidopsis homologs were experimentally verified relating to the

corresponding biological processes. Yellow nodes represented the potential function-related genes, and gray nodes denoted that the genes with unknown functions or

annotated with irrelevant functions. The size of node was proportional to the number of connected genes.

https://doi.org/10.1371/journal.pone.0192613.g004

Fig 3. Performance evaluation of our network for predicting gene function. A) Receiver Operating Characteristics (ROC) curve. B) Precision-Recall (PR) curve. In

the legends, Not-weighted indicated that the evaluation parameters were calculated by the standard method of CAFA project; Weighted indicated that the evaluation

parameters were calculated by the weighted method of CAFA project.

https://doi.org/10.1371/journal.pone.0192613.g003
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Second, we used another guide-gene OsCESA4 involved in cell wall metabolism to build a

subnetwork (see Fig 4B and S6 Dataset). The resulting subnetwork was made up of 139 genes

with ~96-folds enrichment, including 4 homologs of OsCESA4:OsCESA1,OsCESA3,OsCESA7
and OsCESA9, and 14 other genes associated with cell wall metabolism. In addition, this sub-

network also captured 28 genes (pink nodes) whose Arabidopsis thaliana homologs were

involved in cell wall metabolism. For example, LOC_Os01g06580, encoding a fasciclin domain

containing protein, is a homolog of AT5G03170 which was involved in secondary cell wall bio-

genesis. Two genes, LOC_Os01g62490and LOC_Os03g16610, are the laccase precursor pro-

teins, both of them is the homologs of LAC17, a gene participated in the cell wall biogenesis.

AT1G09540, an Arabidopsis homolog of two rice MYB family transcription factors,

LOC_Os05g04820and LOC_Os01g18240, was involved in cell wall macromolecule metabolism

and xylem development. We also noted that 14 genes labeled with yellow nodes, participating

in carbohydrate metabolism, associating with microtubule or resembling to known cell wall

genes in function domain, were recovered in this subnetwork. These genes can be the potential

candidates for subsequent functional experiment investigation. Especially, known cell cycle

genes LOC_Os04g28620and LOC_Os04g53760were also captured in this gene subnetwork,

confirming that cell wall metabolism and cell cycle are two closely associated processes.

Construction of regulatory subnetworks for gene function analysis

We explored the potential value of motif-guided analysis [5] in building regulatory network

and finding functionally related genes using two examples. Cell cycle is a highly conserved bio-

logical process in higher eukaryotes. The process of G1 phase to S phase of the cell cycle is con-

trolled by the E2F transcription factors, which binds to a conserved DNA motif WTTSSCSS

(with “W” standing for “A” or “T” and “S” standing for “C” or “G”) [51]. We used this motif to

retrieve 1093 genes from the rice network. Out of the 180 cell cycle genes annotated in rice

(totally 55986 genes), 33 cell cycle genes were included in these 1093 genes, resulting in

9.4-folds enrichment. We used the cell cycle genes and the genes that were directly linked to

them to form a regulatory network (totally 104 genes, Fig 5A and S6 Dataset). We have

observed that numerous genes (red nodes in Fig 5A) encode proteins participating in regula-

tion of cell cycle, DNA replication, chromatin dynamics and DNA repair. The currently

known cell cycle genes included three cyclin genes, one E2F transcription factor, 9 DNA repli-

cation origin factors, two checkpoint regulators, 13 DNA replication and repair proteins and

10 other genes with unknown biochemical functions but were annotated playing important

roles during cell cycle. In addition, this subnetwork also included 18 genes whose Arabidopsis
homologs participated in regulation of cell cycle, DNA replication, DNA repair and chromatin

dynamics. Also recovered were four genes including LOC_Os01g64900,LOC_Os03g49200,

LOC_Os07g18560and LOC_Os09g36900whose Arabidopsis homologs did not have known

biochemical functions but are involved in cell cycle. Although some genes were not annotated

with direct participation of cell cycle, their molecular structures indicated their potential roles,

for example, ATP-dependent RNA helicase (LOC_Os11g44910), ribonuclease H2 subunit B

(LOC_Os04g40050), ribonuclease H2 subunit B (LOC_Os04g40050) and BRCA1 C Terminus

domain containing protein (LOC_Os08g31930). All these genes can be candidate cell cycle

genes for further investigation.

WRKY transcription factors play important roles in regulation of plant stress response by

binding the W-box sequence TTGACY (with ‘‘Y” standing for ‘‘C” or ‘‘T”) [52,53]. Similarly,

we extracted 1329 genes associating with W-box, from which a subset of 88 known stress

response genes out of 996 genes relating to rice stress response process are found, achieving

the enrichment of 3.72 folds. We constructed a regulatory network using the 88 genes and the
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genes with W-box that were directly linked to them (totally 389 genes, Fig 5B and S6 Dataset).

This subnetwork included 172 genes that were regulated by different types of environmental

stresses (red node). Among them, 138 rice genes and 34 homologs in Arabidopsis were anno-

tated relating to abiotic and biotic stresses. The Arabidopsis homologs of many these genes

have been experimentally verified to be involved in biological regulation of phosphate starva-

tion, water deprivation and various stresses. In particular, 53 of 172 abiotic stress response

genes whose Arabidopsis homologs reacted to the ethylene (ETH), abscisic acid (ABA), sali-

cylic acid (SA) or jasmonic acid (JA), which was in accordance with the fact that WRKYs play

roles in the plant abiotic stress [53]. Moreover, 36 genes have been confirmed played impor-

tant roles in regulating plant immune responses to pathogens were also contained in this net-

work (see S6 Dataset). This was completely supported by the transcriptional reprogramming

network model of WRKY-mediated plant immune responses [54].

In addition, this subnetwork also included 8 genes whose Arabidopsis homologs were asso-

ciated with the seed development, dormancy and germination. In agreement with the fact that

the SA and ABA antagonizes gibberellin (GA)-promoted seed germination; six of these genes

participated in the SA- and ABA-mediated signaling pathways [55]. Interestingly, three genes

of LOC_Os03g12290,LOC_Os01g24550and LOC_Os01g64470 involved in leaf senescence were

also placed in this subnetwork, with LOC_Os01g64470 involved in the SA- and JA-mediated

signaling pathways, which was supported by the fact that the WRKYs participate in leaf senes-

cence by modulating the JA and SA equilibrium [56]. This subnetwork successfully captured

the W-box related genes that can facilitate further studies the functions of uncharacterized

genes and help us to understand the mechanisms of plant responding to various stresses. Inter-

estingly, we have found that miRNA-guide gene subnetwork can also effectively capture the

functionally related genes (see S5 Text for details). Taken together, all these outcomes

Fig 5. Subnetworks derived from the known cis-regulatory motif-guide approach. A) WTTSSCSS combined with the E2F transcription factors involved in cell

cycle. B) TTGACY combined with the WRKY transcription factors involved in stress response. Within each subnetwork, red nodes represented the experimentally

verified genes related to corresponding biological functions. Pink nodes indicated the genes whose Arabidopsis thaliana homologs were experimentally verified to

be associated with the corresponding biological functions. Yellow nodes denoted the potential function-related genes. Gray nodes indicated that the genes with

unknown functions or annotated with irrelevant functions. The size of node was proportional to the number of connected genes.

https://doi.org/10.1371/journal.pone.0192613.g005
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indicated that the rice RNA-seq-based gene co-expression network could be converted to

highly reliable regulatory network for further studying gene regulations.

Co-expression analysis of genes controlling the important agronomic traits

From the perspective of system biology, the phenotype of an organism is controlled by func-

tionally linked genes involving in the related biological processes. Given the co-expressed

genes tend to have related biochemical functions; we next want to use the co-expression rela-

tionships between genes to assign the agronomic traits for unknown genes. This is especially

important for identifying the candidate genes in Quantitative Trait Loci (QTL) mapping,

Genome-Wide Association Study (GWAS) or in reverse genetic studies. We collected 1031

known rice genes with the well-studied functions through wet lab experiments. For these

genes, we found that 934 genes were expressed in our collected RNA-seq samples and 623

genes were contained in network with 12125 connections. To examine the potential capacity

of our RNA-seq-based gene co-expression network for associating genes with agronomic

traits, we compared the density of co-expression links within agronomic traits and between

agronomic traits. We found that 262 co-expression links out of 88041 all possible links within

common agronomic traits and 252 co-expression links out of 982302 all possible links between

different agronomic traits were captured in our gene network, with ~11-fold enrichment of

links within agronomic traits. In details, we observed that many agronomic traits whose genes

were tightly linked together relative to the average link density of whole gene co-expression

network (S2 Table). For example, an agronomic trait, source activity, measuring the capacity

of making photosynthetic products; whose genes were highly linked in our network with an

enrichment fold of 47.81 and a corrected p-value of 3.96E-117. In addition, genes associated

with the culm leaf, panicle flower, eating quality and tolerance were also significantly con-

nected. Moreover, we performed permutation test and discovered that the co-expression link

densities between genes controlling the same agronomic traits were significantly larger than

random control genes (see S2 Table for details). These results indicated that our gene network

can be used to discover the gene related to important agronomic traits by co-expression links.

Function discovering for lncRNA genes

Long non-coding RNAs (lncRNAs) have been shown to play important roles in the kingdoms

of plants and animals [57,58]. Given that our reconstructed RNA-seq-based co-expression net-

work successfully associate genes with biological functions and phenotypes of interest, we next

wished to discover the functions for uncharacterized lncRNA genes using network-based

method. We downloaded the known lncRNAs of rice identified in previous studies [57]. We

then combined these lncRNA genes with MSU 7.0 reference genes to establish co-expression

network. The obtained network was composed of 24875 genes, containing 24014 protein-cod-

ing gene and 861 lncRNA genes connected by 1357039 edges. Compared with the previous

network, 7692 novel protein-coding genes were captured and linked with 817 lncRNA genes.

As there is no gold standard available to evaluate the predictive performance, we adopted

gene-guide subnetwork analysis to illustrate the potential capacity of this network for lncRNA

function discovering. We selected a well-studied lncRNA gene of XLOC_057324, which was

verified to be involved in panicle development and fertility, to establish a gene subnetwork

consisting of the two-layers co-expression neighborhoods (Fig 6 and S7 Dataset). Relative to

whole genome annotations, this subnetwork achieved ~38 folds enrichment of functionally

related genes. In this subnetwork, 4 genes including SSD1, PLA1, DEP1 and GSD1 related to

the panicle development or fertility were captured. In addition, we found that seven genes

whose Arabidopsis homologs participated in the meiosis, embryo development or reproductive
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process. According to the known annotations, some genes (yellow nodes) might be also

involved in pollen development, such as, two cyclins CYCA2 and CYCD2. Interestingly, 3

lncRNAs of XLOC_061753,XLOC_006119 and XLOC_031878 expressed in the reproductive

organs were contained in this subnetwork. All these results were in good agreement with the

experimentally verified role of XLOC_057324, indicating the powerful capacity of our

approach in inferring the novel function of lncRNA genes.

CircRNA gene identification and function analysis

CircRNA is an RNA molecule forming a covalently closed continuous loop that has been dis-

covered in various species across the domains of life with many distinct sizes [59,60]. The

potential functions of circRNAs are largely unknown and hard to investigate. Therefore, we

tried to classify them through the gene co-expression network. We first identified 14325 cir-

cRNAs in rice derived from 5284 genes including 4609 protein-coding genes, 675 noncoding

genes (see Materials and methods for details). 43 of these genes including 27 protein-coding

genes and 16 non-coding genes produced the circRNAs with the percentage larger than 90%

in at least one sample. We analyzed the distribution of the number of detected circRNAs and

found that a majority of circRNAs were identified in one sample with relative small number

of circRNAs were detected in more than 3 samples (Figure A in S13 Fig). Although a large

Fig 6. Co-expression subnetwork derived from guide-gene approach for XLOC_057324 associated with panicle

development and fertility. Within the subnetwork, red nodes represented the experimentally verified genes related to

corresponding biological functions. Chrysoidine nodes represented transcription factors. Pink nodes indicated the

genes whose Arabidopsis thaliana homologues were experimentally verified to be related to corresponding biological

functions. Yellow nodes represented that the genes were potential function-related. Green nodes denoted the lncRNA

genes and gray nodes indicated that the genes were function unknown or annotated with unrelated functions.

https://doi.org/10.1371/journal.pone.0192613.g006
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number of circRNAs were detected in relative small number of RNA-seq samples, 63 cir-

cRNAs (transcribed from protein-coding genes), identified in more than 10 samples and were

supported by more than 26 junctions reads, were captured in the co-expression network.

Moreover, we found that the primary genes transcribing these circRNAs were not contained

in the co-expression network. We predicted the functions of these circRNAs using GO enrich-

ment analysis of their co-expression neighborhoods. Indeed, these circRNAs play a broad

range of biological functions, for example, protein phosphorylation, ATP binding and photo-

synthesis (Figure B in S13 Fig). These results indicated that a great number of circRNAs play

important biological roles but not are the transcriptional noise.

Conclusion

The phenotypes of an organism are determined by the coordinated activity of many genes and

gene products. To gain insight into the genetic foundation underlying the complex biological

processes and phenotypes, we have developed a novel analytic pipeline for constructing

genome-wide and high-quality RNA-seq-based co-expression network. We applied this pipe-

line to an important crop species rice. The co-expression links between genes were ranked by

their confidence score, expression level and expression sample number. The thresholds of

these measures can be selected as the indictors of co-expression reliability for targeted experi-

mental validation. The detailed analysis of the topology properties of network demonstrated

that the degree frequency distribution followed the truncated power-law and network struc-

ture was highly modular. Using the standard functional link data sets and bottom-up subnet-

work analysis, we showed that the analysis pipeline can be effectively applied to study gene

function and regulation. In particular, the potential application value of RNA-seq-based gene

network for predicting biological roles of lncRNA and circRNA genes has been also well

shown. Overall, our analysis provided new insights into the regulatory code underlying tran-

scription control and a starting point for understanding the complex regulatory system.

Compared with the sequence-based gene function annotation, a great advantage of co-

expression-based inference approach is that homologs are not required for a gene to receive a

prediction. Naturally, it is the case when a novel function appears for a specific species and the

genes participating in the new biological process do not have corresponding homologues in

other species. This is especially interesting for the non-coding RNAs because only short

regions of non-coding RNA transcripts are limited by sequence- or structure-specific interac-

tions. Compared to the protein-coding gene, the difference in selection pressure makes it very

difficult to find orthologous non-coding RNAs by their sequences. Our analysis of a rice

lncRNA gene, XLOC_057324, suggested that the RNA-seq-based gene network can be effec-

tively applied to annotate the functions of non-coding genome elements. Indeed, using BLAST

search against NCBI Reference Sequence Database (RSD), we found that ~87% of rice unanno-

tated rice genes did not have homologous genes in other species, respectively.

For RNA-seq-based gene co-expression network investigation, the creation of novel

computational methods for building high-quality network poses a future fundamental chal-

lenge. Currently, only five methods, including Pearson’s Correlation Coefficient (PCCs) analy-

sis, WGCNA, Canonical Correlation Analysis (CCA), SpliceNet and VCNet, have been used to

build RNA-seq-based gene co-expression networks [16–18,61,62]. Three of these tools are

indeed unable to be applied to the large number of RNA-seq samples owing to their inherent

high computational complexity. For the uncertainty and complexity of mechanism models

underlying RNA-seq data, we designed a novel ensemble-based inference pipeline to establish

RNA-seq-based gene co-expression network. Our results showed that the committee of three

inference methods provides more robust and less false positive and false negative results than
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each single algorithm. The improved performance of our ensemble inference method depends

on the voting and rescoring scheme which can reduce the bias occurring in a single learning

method and assign a higher confidence score to the interactions that are repeatedly retrieved

by different methods. Indeed, the standpoint of aggregating the results of different algorithms

has been adopted in various contexts and it has proven to be effective in a variety of applica-

tions [63–65].

In principle, co-expression meta-analysis can only detect co-regulations between the genes

which are co-expressed constantly or are sometimes co-expressed but otherwise silent. How-

ever, many activation patterns of gene groups appear only under the specific experimental

conditions but behave independently under the other conditions, which might not be captured

by our method. To overcome this problem, high-efficiency bi-clustering methods can be inte-

grated into our model to reveal the transcriptional gene interactions presented only under a

specific subset of the experimental conditions [66]. Overall, our approach can further be

improved by I) expanding our ensemble pipeline with other high-efficiency network inference

methods [67], II) employing the more reasonable voting and rescoring schemes to generate

the consensus networks.
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