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Abstract
Background: As a means to extract biomarkers from medical imaging,
radiomics has attracted increased attention from researchers. However, repro-
ducibility and performance of radiomics in low-dose CT scans are still poor,
mostly due to noise. Deep learning generative models can be used to denoise
these images and in turn improve radiomics’ reproducibility and performance.
However, most generative models are trained on paired data, which can be
difficult or impossible to collect.
Purpose: In this article, we investigate the possibility of denoising low-dose
CTs using cycle generative adversarial networks (GANs) to improve radiomics
reproducibility and performance based on unpaired datasets.
Methods and materials: Two cycle GANs were trained: (1) from paired
data, by simulating low-dose CTs (i.e., introducing noise) from high-dose CTs
and (2) from unpaired real low dose CTs. To accelerate convergence, dur-
ing GAN training, a slice-paired training strategy was introduced. The trained
GANs were applied to three scenarios: (1) improving radiomics reproducibil-
ity in simulated low-dose CT images and (2) same-day repeat low dose CTs
(RIDER dataset), and (3) improving radiomics performance in survival predic-
tion. Cycle GAN results were compared with a conditional GAN (CGAN) and an
encoder–decoder network (EDN) trained on simulated paired data.
Results: The cycle GAN trained on simulated data improved concor-
dance correlation coefficients (CCC) of radiomic features from 0.87 (95%CI,
[0.833,0.901]) to 0.93 (95%CI, [0.916,0.949]) on simulated noise CT and from
0.89 (95%CI, [0.881,0.914]) to 0.92 (95%CI, [0.908,0.937]) on the RIDER
dataset, as well improving the area under the receiver operating characteris-
tic curve (AUC) of survival prediction from 0.52 (95%CI, [0.511,0.538]) to 0.59
(95%CI, [0.578,0.602]).The cycle GAN trained on real data increased the CCCs
of features in RIDER to 0.95 (95%CI, [0.933,0.961]) and the AUC of survival
prediction to 0.58 (95%CI, [0.576,0.596]).
Conclusion: The results show that cycle GANs trained on both simulated and
real data can improve radiomics’ reproducibility and performance in low-dose
CT and achieve similar results compared to CGANs and EDNs.
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1 INTRODUCTION

Biomarkers from medical imaging can provide a macro-
scopic view of the tissue of interest and can be an
effective tool to accurately diagnose disease in preci-
sion medicine.1 Radiomics features2 have shown value
as potential imaging biomarkers in various tumor and
neurodegenerative diseases, such as lung cancer,3

head and neck cancer,4 rectal cancer,5 breast cancer,6

Alzheimer disease,7 and autism spectrum disorder.8

However, in computed tomography (CT), the repeata-
bility and reproducibility of radiomics have been chal-
lenged in multiple published studies.9–12 The repro-
ducibility of radiomics can be impacted by various CT
parameters such as radiation dose, slice thicknesses,
and reconstruction algorithm settings. More specifi-
cally, it has been reported that only 11.3% (12 of
106) of radiomics features are robust to these tech-
nical parameters.12 In fact, slice thickness ranks first
on impact on radiomics’ reproducibility, while signal-to-
noise ratio ranks second. Intensity and texture radiomic
features are especially sensitive to radiation dose and
the associated signal-to-noise ratio.12 Therefore, it is
likely that radiomic features extracted from low-dose
CT are less accurate than features from high-dose
CT. In other words, radiomics applied to low-dose CT
will likely have low reliability, and thus the established
radiomics signature or models are likely to have worse
performance compared to high-dose CT.13

In this study,we aim to use denoising14 to improve the
reliability of radiomics in low dose CT.A variety of image
denoising methods have been proposed in the past sev-
eral decades, and these methods can be divided into
two classes—model-based denoisers15,16 and data-
driven denoisers.17,18 Multiple published studies18,19

have demonstrated that data-driven denoisers outper-
form model-based denoisers and achieve state-of -art
denoising quality when suitable training datasets are
available.

Most data-driven denoisers are based on deep con-
volutional neural networks (DCNNs)20 in which this
denoising task is posed as an image-to-image trans-
lation problem. The popular architectures for medical
image denoising are full convolutional network (FCN),21

encoder–decoder network (EDN),22 and generative
adversarial networks (GAN)23 which were described in
detail in recent reviews.14,24 An important characteristic
of most data-driven denoisers is that datasets consist-
ing of paired low-high dose CTs from the same subjects
are needed to train the deep neural networks. However,
collecting paired low-high dose CT is time-consuming,
expensive, and impossible in many cases, for example,
in patient studies.

Therefore, it is the aim of this study to establish a
CT denoiser based on unpaired datasets to improve
radiomics performance. The related literature is divided

into two topics—low-dose CT denoising and radiomics
normalization. In this section,we review these two topics
briefly.

(a) Low-dose CT denoising
As mentioned above, most data-driven denoisers are

based on one of three backbones—FCN, EDN, and
GAN—and all of them are used in low-dose CT denois-
ing tasks. More specifically, Yang et al.25 used a 3D
residual network as the denoising network architecture
with a loss function based on differences between the
ground truth residual image and reconstructed resid-
ual image. Moreover, pool layers were removed from the
network to generate denoised residual images because
there is no size or resolution change between input and
output. The results show that the network can reduce
noise effectively while preserving tissue details. Chen
et al.26 adapted an EDN as the backbone of their
denoiser,and two residual shortcuts were added into the
network to keep details of the image from encoder to
decoder. Models were trained by using simulated data,
and the trained denoiser achieved a competitive per-
formance in both simulation and clinical cases. Yang
et al.27 took conditional GAN (CGAN)28 as the backbone
where they replaced Jensen–Shannon divergence29

with Wasserstein distance30 to measure the differences
in the data distribution.Moreover,Yang et al. replaced the
mean squared error (MSE) loss function with Perceptual
Loss31 to keep more texture information from low-dose
CT to high-dose CT.They proposed a method to not only
reduce the image noise level but also tried to keep the
critical information at the same time.

One of the biggest shortcomings of these aforemen-
tioned denoisers is that paired low-high dose datasets
are needed in denoiser training. However, collecting this
kind of datasets is time consuming and expensive. As
an alternative, a few simulation paired low–high dose
CT datasets are publicly available, such as the dataset
from 2016 NIH-AAPM-Mayo Clinic Low Dose CT Grand
Challenge (LDGC).32 The low-dose CT images in this
dataset are simulated data with a simulated low radi-
ation dose of 50 mAs. The characteristics of LDGC
dataset decrease the value for network training, as the
generalization of models trained from the LDGC to
real low-dose CT is questionable because the expo-
sure in real low-dose CT datasets will be much lower
than the simulated data in LDGC. For example, radia-
tion dose in The Reference Image Database to Evaluate
Therapy Response (RIDER)33 ranged from 7 mAs to
13 mAs.

Therefore, we believe that implementing a denoiser
based on unpaired datasets could help to relieve the
problem of data collection and make unsupervised CT
denoising for quantitative medical image analysis pos-
sible. There are a few studies that used this strategy;
Kang et al.34 used cycle GAN as the backbone for
multiphase coronary CT angiography correction where
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F IGURE 1 Overview of network, architecture of generator, and discriminator

they took routine-dose CT from multiphase coronary CT
angiography as the target domain data and low-dose CT
as the original domain data to build a training dataset.
The results show that visual grading and quality evalu-
ation of low-dose CT are improved; however, they did
not investigate the effect of cycle GANs into deeper
quantitative metrics such as radiomics.

However, to the best of our knowledge, there are
no studies that apply unsupervised CT denoising to
improve radiomics reliability and reproducibility in low-
dose CT.

(b) Radiomics normalization
Berenguer et al.10 have shown that over half of

radiomics features are nonreproducible when images
scanned from different scanners even when using the
same CT parameters. The results of radiomics sig-
natures or models, which based on nonreproducible
features are thus unreliable.Li et al.35 used cycle GAN to
normalize CT images from multiple centers and multiple
scanners,and then they extracted features from normal-
ized images and established radiomics signatures.They
found the average improvement of a classifier based
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F IGURE 2 Generator loss over time for cycle GAN training runs
with and without slice-pairing strategy.

on normalized radiomics features in the area under the
receiver operating characteristic curve (AUC) to be 11%.
Yang et al.36 integrated adaptive instance normalization
(AdaIN) into cycle GAN for continuous CT kernel conver-
sion, introduced AdaIN kept more content information
from original domain to target domain. The proposed
method is promising for radiomics normalization in
different CT kernels. The major difference between pre-
vious studies, and our study is that this paper focused
on using cycle GAN to improve radiomics reproducible
and performance in low dose CTs.

In previous work,13 we used EDN and CGAN37 as
testing backbones to denoise low-dose CT. Our train-
ing datasets consisted of paired simulated low-dose
CT and high-dose CTs.Radiomics features reproducibil-
ity from noisy images and denoised images were
measured using concordance correlation coefficients
(CCC).38 The results showed that EDN and CGAN can
improve CCC of noisy images significantly. Moreover,
when we applied our trained denoisers to real low-dose
CT images (RIDER dataset); the results showed that
this denoiser can improve radiomics reproducibility in
realistic low-dose CTs.

In another study,39 we applied the trained denoisers
to improve radiomics performance in realistic applica-
tions. The results showed that generative models based
denoisers can improve the AUC of a lung cancer sur-
vival prediction from 0.52 (95%CI, [0.511,0.538]) to 0.58
(95%CI, [0.564,0.596]) and a multiple instance learning-
based lung cancer diagnostic40 from 0.84 (95%CI,
[0.828,0.856]) to 0.88 (95%CI, [0.866,0.892]).

The major shortcoming of our previous studies is that
denoising models were exclusively dependent on paired
simulated data, which may cause the trained denoiser
to not generalize well to real data. In this paper, we
took cycle GAN as basic denoising model to train a
denoiser using unpaired low–high dose CT. These low-
and high-dose CT images were collected from different
centers and scanners. We evaluated this new denoiser
for its ability to improve radiomics reproducibility and
performance in realistic applications.

In comparison with previous studies, the major con-
tribution of this study is that we assess the potential
of denoising low-dose CTs using cycle GANs based
on unpaired data to improve radiomics reproducibil-
ity and performance. The results show that cycle
GANs can improve radiomics’ reproducibility and per-
formance in low-dose CT and achieve similar results
compared to CGANs and encoder–decoder networks.
Source code, Radiomics features, data for statistical
analysis, and Supporting Information of this article
are online at https://gitlab.com/UM-CDS/low-dose-ct-
denoising/-/tree/Cycle_GAN_Improve_Radiomics.

2 MATERIALS AND METHODS

In this section, we describe the architecture and tech-
nical details of our cycle GAN. Then, we introduce
our training strategy to improve the speed of conver-
gence. Next, we describe the design of the experiments
and datasets used for training and testing. Finally, we
describe the extraction of the radiomics features and the
evaluation metrics used.

2.1 Cycle GANs

We use cycle-consistent GANs,proposed by Zhu et al.41

As shown in Figure 1a, the cycle GAN consist of two
generators and two discriminators. The generator GLH
maps from low-dose CT domain (L) to full dose CT
domain (H), while GHLmaps from H to L. The loss func-
tion of the cycle GAN consists of two parts—adversarial
loss and cycle consistency loss, represented with Ladv
and Lcyc respectively (and each of them can be broken
down into Ladv1, Ladv2 and Lcyc1Lcyc2, one for each gen-
erator). The adversarial loss for mapping from low-dose
to full dose CT is defined as follows:

adv1 (GLH, DH, L, H) = 𝔼xh∼pdata(xh) [logDH (xh)]

+𝔼xl∼pdata(xl ) [log(1 − DH (GLH (xl))] (1)

where GLH is trained to transform low-dose CT image
xl to into high-dose CT image xh (denoising), while
DH is trained to discriminate between denoised CT
images GLH(xl) (xLH in Figure 1a) and real high-dose
CT image xH. During the training, G aims to minimize
this loss function against an adversary D that tries to
maximize it; therefore, Equation (1) can be rewritten as
follows:

minGmaxDadv1 (GLH, DH, L, H)

= 𝔼xh∼pdata(xh) [logDH (xh)]

+𝔼xl∼pdata(xl) [log(1 − DH (GLH (xl))] (2)

https://gitlab.com/UM-CDS/low-dose-ct-denoising/-/tree/Cycle_GAN_Improve_Radiomics
https://gitlab.com/UM-CDS/low-dose-ct-denoising/-/tree/Cycle_GAN_Improve_Radiomics
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F IGURE 3 A heatmap of radiomics improvement from denoised low-noise images, results on EDN and CGAN are reproduced from13
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TABLE 1 Scanning parameters of included datasets

Parameters
������Datasets Scanner Radiation dose(mAs) Slice thickness(mm) Spatial resolution(mm)

Phantom Dataset Philips (4a) 50 (2), 400 (2) 3 (4) [0.77,0.77]

LUNG 1 Siemens (157) 400 (157) 3 (157) [0.98,0.98]

TCGA-LUAD Siemens (14) 110 (3), 120 (8), 140 (2),
210 (1)

1 (2),5 (8), 8 (4) [0.59,0.59]-[0.74,0.74]

LIDC-IDRI GE (12) < 1 (12) 1.25 (7),2.5 (5) [0.53,0.53]-[0.70,0.70]

RIDER N/Ab (56) 4 (4), 5( 4),6 (6), 7 (13), 8
(13), 9 (9), 10 (7)

1.25 (56) [0.51,0.51]-[0.82,0.82]

NSCLC Radiogenomics N/A (5), Philips (1), GE
(90), Siemens (10)

38.65 ± 81.97 0.625 (7),
1 (11), 2 (1),
1.25 (75),
2.5 (9), 3 (2)

[0.59,0.59]-[0.98,0.98]

Note:± standard error of the mean.
aNumber of included scans.
bManufacturer not mentioned in DICOM metadata

TABLE 2 Summary of experiment and corresponding datasets

Experiment Training strategy Training dataset Testing dataset

Simulated data-based training With slice-pairing Part of paired high-noise and full
dose Lung 1 dataset (n = 40,
4260 Frames)

The rest of high-noise CTs (n = 117,
13,423 Frames), low-noise CTs (n =

157, 17,683 Frames), phantom dataset
CTs (n = 2, 104 Frames)

Ablation study Without slice-pairing Part of paired high-noise and full
dose Lung 1 dataset (n = 40,
4260 Frames)

The rest of high-noise CTs (n = 117,
13,423 Frames), low-noise CTs
(n = 157, 17,683 Frames)

Applications with simulated
data training-based
networks

With slice-pairing Training finished at first part of
experiment without re-training

RIDER (n = 31, 14,875 Frames), NSCLC
Radiogenomics (n = 106, 28,404
Frames)

Applications with real data
training-based networks

With slice-pairing Low dose CTs from LIDC-IDRI (n
= 12, 3144 Frames), Full dose
CTs from TCGA-LUAD (n = 14,
3307 Frames)

RIDER (n = 31, 14875 Frames), NSCLC
Radiogenomics (n = 106, 28,404
Frames)

The definition of adversarial loss for mapping from
high-dose CT to low-dose CT is defined in similar way,
and we denote it as minGmaxDadv2(GHL, DL, H, L).
Moreover, we denote the adversarial loss for the whole
network as adv (G, D) = Ladv1 + Ladv2.

Regarding the cycle consistency loss of our cycle
GAN, we replace the mean squared error (MSE) loss
function used in the original cycle GAN with a percep-
tual loss-based loss function. The definition of cycle
consistency loss is as follows:

cyc1 =

𝔼 (xl, xlhl)
[

1
wed

‖VGG (GHL (xlh)) − VGG (xl) ‖2
]

(3)

where xl represents lowdose CT image and xlhl rep-
resents reconstructed low-dose CT image from fake
synthetic high-dose CT image, w, e, and d represent
width, height, and depth of the feature map, and VGG(.)

represents feature maps from a pre-trained VGG-16 at
a specific convolutional layer. VGG-16 is pre-trained on
ImageNet,42 a dataset of over 14 million images belong-
ing to 1000 classes. In order to feed CT images into
a model pretrained on color images, they need to be
triplicated into RGB channels before cycle consistency
loss calculation. In our implementation, we select fea-
ture maps from conv2_1 to calculate perceptual loss.
cyc2 can be defined in similar way with GLH. We denote
cyc1 + cyc2 as cyc(G).

Combining Equations (2) and (3), the overall loss
function is expressed as:

minGmaxDadv (G, D) + 𝜆cyc (G) (4)

where 𝜆 is a parameter to control the trade-off between
the adversarial and perceptual loss.

More details about the architecture of generators and
discriminators can be found in Figure 1b,c, respectively.
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2.2 Slice-paired training strategy

Randomly chosen samples from two domains are fed to
the networks in training a cycle GAN. However, as men-
tioned in the original cycle GAN article,41 the training will
be more successful and stable when focusing on pairs
of visually similar images.

In the case of CT scans, assuming all scans belong
to the same organ (the lung in our case), we can expect
that images belonging to the same slice number will be
more similar to each other than images from different
slices. Hence, the first slice of a low-dose CT scan will
have higher similarity with the first slice of a high-dose
CT scan.

Therefore, CT-based cycle GAN training should be
fed with pairs of the same (randomly chosen) slice
rather than images of different slices.This could be seen
as weakly supervised learning. We call this strategy
slice-paired training strategy hereafter, a similar training
strategy can be found in literature.43

2.3 Data acquisition

In order to compare results of cycle GANs with our pre-
vious work (CGAN and EDN),13,39 we trained networks
on the same data as used in13,39 and applied the trained
models to the same applications on the same datasets.
In total, we used six datasets in this study.

We used a phantom dataset to test whether our GANs
generated artifacts when denoising.44 This phantom
dataset is a collection of phantoms CTs by scanning a
Gammex 467 CT phantom (Middleton, WI, USA) using
a Philips Brilliance Big Bore CT with different doses
(50 mAs, 400 mAs). CT images scanned at 50 mAs are
referred to as low-dose CT and 400 mAs referenced
as high-dose CT. We used 52 paired images from two
scans for testing.

The second is based on the NSCLC-Radiomics
dataset (hereafter called LUNG 1).45 We selected only
the high-dose CT scans, those scanned at 400 mAs or
more (n = 157, indices in Table S1) and added noise to
the sinograms to simulate low-dose CTs with two differ-
ent levels of noise: low-noise CT and high-noise CT.The
specific methods used to add noise are described in13

section 2.3 and in the Method S1. We used a subset of
these high-noise CTs and their corresponding high dose
CTs (40 subjects, 4260 images) to train a cycle GAN,
and we used the remaining images to assess the repro-
ducibility of radiomics features in the original high-dose
CT versus those in the denoised images.

The third and fourth datasets were used to train the
cycle GAN with real low dose CT scans. We used low
dose CT scans from the Lung Image Database Con-
sortium dataset (LIDC-IDRI),46 and high-dose CT scans
from The Cancer Genome Atlas Lung Adenocarcinoma
(TCGA-LUAD) dataset.47 We used two inclusion criteria

for CTs in both datasets to increase the visual similarity
across the two domains: the use of GE scanner; table
height ranging from 150 mm to 160 mm. As low-dose
CTs, we included those with a radiation exposure lower
than 10 mAs and as high dose CTs those with and expo-
sure higher than 100 mAs (list of indices of selected
samples is in Tables S2 and 3 respectively). Examples
of selected samples from LIDC-IDRI and TCGA-LUAD
are shown in Figure S1.

The final two datasets, used for the two radiomics-
based applications, are RIDER33 and NSCLC
Radiogenomics.48 RIDER is a collection of same
day repeat CT scans collected to assess the variability
of tumor measurements, which makes it particularly
useful to assess the reproducibility of radiomics across
pairs of similar CT scans. We use the trained cycle
GAN to denoise the images in RIDER to assess the
impact of denoising on the reproducibility of radiomic
features. NSCLC Radiogenomics is a radiogenomic
dataset from a cohort of 211 patients with non-small
cell lung cancer,48 from which we selected the low-dose
CT images, their respective segmentation masks and
clinical data for survival prediction (n = 106), the indices
of the included samples are included in Table S4.
The average radiation exposure of samples selected
from NSCLC Radiogenomics is 38.65 ± 81.97 mAs
(±standard error of the mean, SEM) (the distribution of
radiation exposure for selected samples can be found
in Figure S2).

A summary of scanning parameters of included
datasets is shown in Table 1.

2.4 Experiments

We trained three cycle GANs to denoise low CT scans:
on a paired dataset with low-dose CT scans simulated
from high-dose CT scans with and without the Slice-
paired training strategy (referred to as ablation study
hereafter) and on unpaired real low and high dose CT
scans. Regarding CT normalization, the CT HU was set
to -1000 when it was lower than −1000 to 1000 when it
was higher than 1000, and then normalized to intensity
[0,1] for network training and image denoising.

Then, we assessed the performance of the denoising
using root mean square error (RMSE) and perceptual
loss as evaluation metrics. The definition of perceptual
loss can be found in Equation (3) and definition of RMSE
is as follows:

RMSE =

√√√√ 1
M

M∑
i=1

(yi − ŷi)
2 (5)

where yi and ŷi represent the image value in position i for
the original high-dose CT and denoised CT, respectively.
Image values were normalized to 0–1 before calculating
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TABLE 3 Summary of RMSE, perceptual loss, and distribution of CCCs of radiomic features based on denoising simulated datasets

Distribution
������Models RMSE

Perceptual
loss

SNR
(dB)

CCCs < 0.65
(%)

0.65 ≤ CCCs
< 0.85 (%)

CCCs ≥ 0.85
(%) 95%CI of CCC

Low-noise images

Without denoising 0.0225 0.0706 18.3 10 22 68 (0.833, 0.901)

Encoder-decoder 0.0173 0.0427 19.6 0 19 81 (0.901, 0.935)a

CGAN 0.0143 0.0290 21.0 3 17 80 (0.905, 0.939)a

Cycle GAN 0.0170 0.0216 24.6 0 16 84 (0.916, 0.949)

Cycle GAN (w/o slice
pairing)

0.0167 0.0258 20.8 1 13 86 (0.924, 0.957)

Cycle GAN (real data) 0.0229 0.0531 15.7 6 52 42 (0.788, 0.834)

High-noise images

Without denoising 0.0237 0.0781 6.1 36 23 41 (0.617, 0.745)

Encoder-decoder 0.0175 0.0443 19.3 4 16 80 (0.901, 0.935)a

CGAN 0.0146 0.0305 20.8 0 16 84 (0.905, 0.939)a

Cycle GAN 0.0181 0.0245 20.3 0 14 86 (0.928, 0.954)

Cycle GAN (w/o slice
pairing)

0.0188 0.0256 19.4 3 12 84 (0.917, 0.953)

Cycle GAN (real data) 0.0230 0.0501 15.4 4 54 42 (0.779, 0.827)
aResults reproduced from.13

RMSE. M represents the number of pixels in one image,
512 × 512 in our case.

We also assessed the impact of denoising on repro-
ducibility of radiomic features by calculating the con-
cordance correlation coefficients (CCC)—a metric that
measures the degree of agreement between two vari-
ables (e.g., to evaluate reproducibility or for inter-rater
reliability) as defined in.38 Several arguments support
our choice of CCC as the reproducibility metric: accord-
ing to a recent systematic review,49 CCC is the most
common metric used to measure the reproducibility of
radiomics. Moreover, the seminal article that introduced
the CCC38 has shown the clear advantages of using this
metric in testing reproducibility in comparison with other
methods. On the simulated paired data, we calculated
the CCCs of the radiomic features extracted in the orig-
inal high dose CT and the denoised CT. In RIDER, we
calculated the CCC of the same day denoised CT scans.

In the ablation study,we assessed the impact of using
the position-based training strategy comparing the per-
formance in terms of RMSE, perceptual loss, and CCC
on synthetic data.

Next, we applied the trained cycle GAN to two
applications—radiomics reproducibility in same-day
repeat CT scans and pre-treatment survival prediction—
without retraining. Pretreatment survival prediction of
cancer patients is a typical application of radiomics
since it appeared in the seminal article by Aerts et al.2

We predicted pretreatment survival in two different ways:
as a binary outcome on 4-year survival and as time-
to-event continuous outcome. For the first, we used
least squares support vector machines (SVMs) with
radial basis function (RBF) Kernel as our classifier. For

hyperparameter search and internal validation, we used
40-repeat nested 5-fold cross-validation.50 More details
on the survival prediction modeling can be found in.39

The metric used for measuring the performance this
model is the area under the receiver operating char-
acteristic curve (AUC).51 For the time-to-event survival
analysis, we fitted a Cox proportional hazards models,
using the radiomics features (103 features) as predic-
tors.To ensure convergence during parameter fitting,we
used penalized Cox regression with a penalty coefficient
of 0.01. The discriminative performance of this model
was measured using the concordance index (C-index).

All experiments were implemented in Python 3.6 and
TensorFlow 1.13.1. The training was run on one Nvidia
Tesla V100 GPU 30.5GB of memory and 4 CPUs. We
set 𝜆 in Equation (4) to 10 and the batch size to 1.
The discriminator and the denoiser both used the Adam
optimizer52 and shared the same learning rate. The ini-
tial learning rate was set to 0.0002 with a decay factor
of 0.8 every 10 epochs. Training runs were stopped
at 100 epochs and radiomics features were extracted
every 25 epochs (i.e., at 25, 50, 75, and 100 epochs).
No early stopping was adopted for terminating the
model training. Table 2 offers a concise summary of our
experiments.

2.5 Radiomics extraction

The masks of the regions of interest (ROIs) are stored
in DICOM format in 3D in the Lung 1, RIDER, and
NSCLC Radiogenomics datasets.The modality of these
files is “SEG.” DICOM CT images were converted
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to 3D images using the SimpleITK (v1.2.4) software.
We resampled the images to 2-mm isotropic voxels
prior to feature extraction. Radiomics features were
extracted using the pyRadiomics open-source Python
library53 (v2.2.0). A total of 103 features were extracted.
These consisted of 13 morphology (shape) features,
17 intensity-histogram (first-order) features, and 73 tex-
tural (Haralick) features. The full list of features and
the settings used for pyRadiomics can be found in
Table S5. The shape-related features are not affected
by denoising and therefore were excluded from feature
reproducibility analysis, resulting in 90 included features.
All 103 features were used to derive the 4-year pre-
treatment survival prediction model and time-to-event
survival analysis.

3 RESULTS

Training the cycle GAN from simulated and real data
took 96 and 72 h, respectively. The loss of the gener-
ator during training is shown in Figure 2. We choose to
plot steps rather than epochs in loss curves because,
plotting epochs would make it harder to observe the tur-
bulence of model training and the faster convergence
of the slice-paired training strategy. Moreover, the size
of the training dataset in the simulated dataset is differ-
ent to the real dataset, and plotting epochs would be an
unfair comparison.

3.1 Reproducibility of radiomic
features on simulated paired data

In the phantoms’ dataset, the RMSEs of denoised ver-
sus high-dose CT scans using the cycle GAN trained
on simulated data and the cycle GAN trained on real
data were 0.0187 and 0.0226, respectively, compared
with 0.0231 in the original low-dose CTs. The encoder–
decoder network and CGAN trained on simulated data
achieved RMSEs of 0.0182 and 0.0140, respectively, in
same dataset. Based on visual inspection, we did not
detect any image artifacts introduced during the cycle
GAN-based denoising.

An example of an original, noisy and denoised
CT scan is shown in Figure 4. We reuse results of
CGAN and EDN from13 for better comparison with
the cycle GAN (corresponding figure for high noise
image is Figure S3). In addition, Table 3 shows the
RMSE, perceptual loss, signal-to-noise ratio (SNR),
and ratio of radiomic features with poor (CCC<0.65),
medium (0.65≤CCC<0.85), and good (CCC ≥0.85)
reproducibility.49 The full result of CCC for every feature
at different training epochs can be found in Table S6–7.

As shown in Table 3, the RMSE and perceptual loss
of low-noise and high-noise images (before denois-
ing) are 0.0225/0.0706 and 0.0237/0.0781, respectively.

The cycle GAN trained on simulated data reduced
the RMSE and perceptual loss to 0.170/0.216 and
0.0181/0.0245 for low-noise and high-noise images;
the cycle GAN trained on real data increased RMSE
and perceptual loss to 0.0229/0.0531 for low-noise
images and decreased RMSE and perceptual loss to
0.0230/0.0501 for high-noise images. The cycle GAN
trained on simulated data resulted in higher RMSE
than the CGAN but lower perceptual loss and outper-
formed the encoder–encoder network in both metrics.
The cycle GAN trained on real data has a worse perfor-
mance in denoising simulated noisy images compared
to other networks. The mean CCCs for cycle GAN
trained on simulated data denoised images improved
from 0.87 (95% CI, [0.833,0.901]) and 0.68 (95% CI,
[0.617,0.745]) to 0.93 (95% CI, [0.916, 0.949]) and 0.94
(95% CI, [0.928,0.954]) for low-noise images and high-
noise images, respectively (Wilcoxon rank-sum test for
the CCC from noisy images and denoised images, p-
value<0.01 for both experiments). The mean CCCs of
low noise images denoised with the cycle GAN trained
on real data decreased to 0.81 (95% CI, [0.788,0.834])
and the mean CCCs of denoised high noise images
increased to 0.80 (95% CI, [0.779,0.827]) (Wilcoxon
rank-sum test comparing CCC of noisy images and
denoised images:p-value<0.01 for both experiments).A
heatmap of radiomics improvement from denoised low-
noise images by comparing with original noisy images
is shown in Figure 3.

In contrast, EDN and CGANs were able to improve
the mean CCC of radiomic features to 0.92 (95%CI,
[0.909,0.936]) for low and high-noise images. The
cumulative distribution function (CDF) of CCCs for
different models when trained for 100 epochs is shown
in Figure 5a,b. The cycle GAN trained on real data
did not manage to improve radiomics features’ repro-
ducibility on simulated noisy images. However, it still
achieved a significant improvement in the reproducibility
of radiomics features of simulated high noise images.

The second investigation of the simulation study was
the effect of different training epochs to radiomics repro-
ducibility.The CDF of CCCs for cycle GAN trained at 25,
50,75,and 100 epochs are shown in Figure S4a,b.Sum-
mary of RMSE,perceptual loss,and CCCs of cycle GAN
trained at different epochs can be found in Table S8.We
compared the CCC distributions of radiomic features
calculated on images denoised from high-noise images
with those of images denoised from low-noise images
using the Wilcoxon rank-sum test resulting in a p-value
of 0.94. The results show that a cycle GAN trained to
denoise high-noise images can be applied to denoise
images with different levels of noise and achieve sim-
ilar results to a CGAN and EDN-based denoiser.13

Moreover, we compared the CCC distributions from
cycle GAN with CGAN and EDN by using the Wilcoxon
rank-sum test which resulted in p-values of 0.73 and
0.07, respectively. The results show that a cycle GAN
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F IGURE 4 Example of low-dose CT denoising. (a-1) The original full dose CT image; (b-1) Low-noise image; (c-1) image denoised by EDN
(*Training at 100 epochs); (d-1) image denoised by CGAN; (e-1) image denoised by a cycle GAN; (f -1) image denoised by a cycle GAN (ablation
study); (g-1) image denoised by cycle GAN trained on real data; (a-2) to (g-2) zoomed ROIs for (a-1) to (g-1).

F IGURE 5 CDF of CCC of radiomic features denoised with different models. (a) Low-noise images; (b) high-noise images.

achieved similar results to CGAN and EDN, and that in
some cases, Cycle Gan even received better results.

3.2 Ablation study for the training
strategy

An example of denoised images from cycle GAN
ablation study can be found in Figure 4f-1,f -2.

Table 3 and Table S9 show the RMSE, perceptual
loss, and ratio of poor, medium, and good reproducibil-
ity radiomic features about ablation study of cycle GAN.
The cycle GAN trained without our training strategy
can also reduce the RMSE and perceptual loss of
low-noise and high-noise images to 0.0167/0.0258 and
0.0188/0.0256, respectively. Moreover, it can increase
the average CCC to 0.94 (95%CI, [0.924,0.957]) and
0.93 (95%CI, [0.917,0.953]) for low- and high-noise
images, respectively. The CDF of CCCs for abla-
tion study when trained for 100 epochs is shown in
Figure 5a,b, and the differences among epochs can be
found in Figure S4c,d. The distribution of CCCs from

ablation study trained at 100 epochs was compared with
results from a network trained with training strategy, and
we found no signification differences (Wilcoxon rank-
sum test, p-value = 0.13). Figure 2 shows that training
the cycle GAN with the training strategy might speed
up convergence slightly. On the other hand, without the
training strategy, the generator’s loss function increases
beyond 60,000 steps. Finally, the cycle GAN trained with
our training strategy led to significantly higher CCCs
when trained for only 25 epochs (Wilcoxon rank-sum
test,p-value < 0.01),as shown comparing Figure S4a–c
and Figure 4b–d.

3.3 Reproducibility on real data

We now focus on the impact of denoising on the
reproducibility of radiomic features in same day repeat
low-dose CT scans (RIDER dataset). An example of an
original image and its denoised counterparts denoised
using a CGAN, an EDN, and the cycle GANs trained on
simulated and real data are shown in Figure 6. Figure 7
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F IGURE 6 Example of RIDER denoising. (a-1) One original image from RIDER; (b-1) image denoised by EDN (Training at 100 epochs);
(c-1) image denoised by CGAN (training at 100 epochs); (d-1) image denoised by cycle GAN trained on simulated data (100 epochs); (e-1)
image denoised by cycle GAN trained on real data (100 epochs); (a-2) to (e-2) zoomed ROIs for (a-1) to (e-1).

F IGURE 7 CDF of CCCs and for denoised CT scans in the RIDER dataset.

shows the CDF of the CCCs for the radiomic features
extracted from the original and denoised CT images.The
cycle GAN trained on real data outperforms the rest of
generative models (Wilcoxon rank-sum test, p-value <

0.01). On the other hand, the performance of the cycle
GAN trained on simulated data is similar to that of the
EDN and CGAN (p-value = 0.87 and 0.40, respectively).

3.4 Survival prediction on real data

An example of an original NSCLC Radiogenomics
image, and its denoised counterparts based on CGAN,
EDN, and cycle GANs trained from simulated and real
data can be found in Figure S5.

Figure 8a illustrates the results of the of 4-year pre-
treatment survival prediction experiment showing the
AUC for each generative model across different number
of epochs. We achieved an AUC for survival prediction
based on radiomics extracted from the original NSCLC
Radiogenomics dataset of 0.52 (95%CI, [0.511,0.538])
at 100 epochs. Denoising the CT scans using a CGAN
or an EDN led to models with an increased AUC of
0.57 (95%CI, [0.551, 0.580]) (at 100 epochs) as shown
in.39 The cycle GANs trained on simulated and real data
resulted in a higher mean AUC of around 0.58 (95%CI,
[0.576,0.596]), but the difference between models was
not statistically significant (Student’s t-test, all p-values
> 0.10). Figure 8b illustrates the results of the time-to-
event survival analysis experiment showing the C-index
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F IGURE 8 Results of 4-year pretreatment survival prediction (a) and time-to-event survival analysis; (b) C-index of survival analysis.

TABLE 4 Top eight most important features in the survival prediction model trained on noisy images and images denoised using different
generative models

Rank Original images Denoised with EDN Denoised with CGAN Denoised with cycle GAN

1 glszm_LargeArea
LowGrayLevelEmphasis

glszm_LargeArea
LowGrayLevelEmphasis

glszm_LargeArea
LowGrayLevelEmphasis

glrlm_GrayLevel
NonUniformityNormalized

2 ngtdm_Coarseness gldm_GrayLevelVariance glrlm_GrayLevel
NonUniformityNormalized

glszm_LargeArea
LowGrayLevelEmphasis

3 gldm_GrayLevelVariance glszm_LargeArea
LowGrayLevelEmphasis

gldm_GrayLevelVariance gldm_GrayLevelVariance

4 firstorder_Energy gldm_LargeDependence
HighGrayLevelEmphasis

firstorder_Energy firstorder_Energy

5 shape_MinorAxisLength gldm_GrayLevel
NonUniformity

gldm_GrayLevel
NonUniformity

shape_MinorAxisLength

6 glrlm_GrayLevel
NonUniformityNormalized

firstorder_Energy ngtdm_Coarseness ngtdm_Coarseness

7 glszm_LargeArea
HighGrayLevelEmphasis

glcm_JointEntropy glcm_JointEntropy glcm_JointEntropy

8 glcm_JointEntropy ngtdm_Coarseness shape_MinorAxisLength glrlm_RunLength
NonUniformityNormalized

for each generative model across different numbers of
epochs.EDN,CGAN,and the cycle GAN trained on sim-
ulated data improved C-index of survival analysis from
0.73 to around 0.76, while the cycle GAN trained on real
data improved the C-index to 0.78.

To interpret the improvement of AUC in 4-year survival
prediction tasks, we used an RBF kernel-based SVM
Recursive Feature Elimination algorithm54 to assess the
importance of features in the prediction model. Table 4

shows the top eight most important features in the mod-
els trained on the radiomic features from the original
images and those from denoised images (the table with
all features can be found in Tables S10–S13). Six fea-
tures appeared in all four models (highlighted in green in
Figure 3). These features of CCC improved by denois-
ers, most of them improved significantly, which might
explain how denoising can improve the AUC of survival
prediction models.
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Shape features, which were previously excluded from
denoising analyses, were included as candidate predic-
tors for the survival prediction model.However,as shown
in Table 3, there are no shape features among the top
eight most important predictors.

4 DISCUSSION

The objective of our study was to investigate the poten-
tial of cycle GANs for denoising low dose CTs to improve
the reproducibility of radiomics features and the per-
formance of radiomics-based models. For this purpose,
we trained two cycle GANs, one with simulated paired
data and the other one with real data, to denoise low-
dose CT scans. In order to measure the performance
of our denoising models, we ran experiments and com-
pared the results of our method with those of CGANs
and EDNs trained on simulated paired data. The results
show that both cycle GANs trained on simulated and
on real data can improve radiomics’ reproducibility and
performance in low-dose CT and achieve similar results
compared to CGANs and EDNs.

The main advantage of cycle GANs over CGANs
and EDNs is that they do not require paired images,
which are hard to collect. For CGANs and EDNs, we
overcame this issue by generating simulated low-dose
CTs by introducing noise into high-dose CTs.13 However,
simulated noise might differ from noise encountered in
low-dose CTs. Hence, being able to train a model on
real low-dose CT scans is a significant advantage. How-
ever, training cycle GANs is volatile, especially when the
target domain and the source domain differ, as doc-
umented elsewhere.41,55 Ideally, in order to maximize
the chances of success for the training process, train-
ing data would be collected from the same scanner,
with the same protocol (except radiation exposure), and
from the same group of patients for the two domains
(low- and high-dose CT). However, such a dataset is
not available to us. Hence, we defined selection crite-
ria for the training data so that the source and target
image domains kept certain similarities.We chose scan-
ner manufacturer and table height (which determines
field of view and the height of human body) based
on.12 These inclusion criteria were introduced after sev-
eral failed attempts at training a cycle GAN with the full
dataset. Examples of failed training runs are shown in
Figure 9. However, trained models retain certain gener-
alizability and can achieve good results across different
scanners with different parameter settings as shown in
the results (images in the RIDER and NSCLC Radio-
genomics datasets were scanned from multiple types of
scanners with different protocols).

As shown in Table 1, the Lung 1 dataset differs
more in terms of scanning parameters from the RIDER
and NSCLC Radiogenomics datasets compared to the
LIDC-IDRI and TCGA-LUAD datasets. It is therefore

possible that the conditional GAN trained on simulated
paired TCGA-LUAD data achieved a similar perfor-
mance as the cycle GAN trained on real data. Future
studies may confirm this hypothesis.

Our ablation study results seem different from
research reported elsewhere43 which found that a
slice-based training strategy can improve denoising
performance. The slice-paired training strategy we pro-
posed seems to lead to slightly faster convergence as
hinted by the loss plot and the models’ results at 25
epochs. However, this strategy did not lead to significant
improvement of the networks’ denoising performance at
100 epochs. One possible explanation is that the train-
ing strategy cannot make the resulting network a better
approximator of the mapping from low-dose CT domain
to high dose. Figure 2 and the comparisons between
Figure S4a,c and Figure S4b,d seem to support this
view. Another possible hypothesis for this phenomenon
is that reproducibility and performance of radiomics may
not be so sensitive to the quality of images when the
quality reaches a certain threshold. We did not report
results of the ablation study for the slice-paired training
strategy when training on real data because the training
of the cycle GAN failed to converge multiple times with-
out slice pairing. The failure to converge was probably
due to a higher heterogeneity in real data compared to
simulated data (simulated data were collected from the
same scanners while real data were collected from dif-
ferent scanners). Thus, the slice-pairing strategy seems
to have made the network training more stable in our
study.

As mentioned above, cycle GANs achieved a similar
performance as CGAN and EDN trained on simulated
data, slightly outperforming them in some experiments.
The difference in performance might be explained by the
differences in the architectures used: the generator in
CGAN and the encoder–decoder is a five-layer network,
while there are nine ResNet blocks56 (27 convolutional
layers) in the cycle GAN’s generators. Related articles
have hypothesized22 that neural networks for ‘low level’
domain adaptation—such as denoising—should be kept
shallow,since texture transfer in ‘low level’domain adap-
tation is not significant. However, the results in our study
seem to show that very deep neural network can also
achieve good performance in some ‘low level’ domain
adaptation tasks.

Our training cohort population is smaller than the
testing cohort population for two main reasons. First,
we considered the size of our training sets (ranging
from 3144 frames to 4260 frames) was sufficient based
on 2D cycle GAN training set examples in the liter-
ature, that range between several hundreds to a few
thousands.41,57 Secondly, CCC of radiomics is sensitive
to the number of subjects used. Moving more sub-
jects (images) from testing datasets to training datasets
would decrease the reliability of radiomics features’
CCC calculations.
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F IGURE 9 Examples of failed cycle GAN training.

As shown in Figure 6, the cycle GAN trained on
simulated data (Figure 6d) seems to have a better
denoising performance in some cases in terms of
tissue enhancement and intensity smoothing on homo-
geneous regions compared with the model trained on
real data (Figure 6e). Of course, it might just be that
among the tens of thousands of CT images in the
experiment, this is one where the cycle GAN trained
on simulated data fared better than its counterpart
trained on real data. In addition, it might be that the
data distribution (as well as the noise) in the simulated
training data is more homogeneous than the real data,
and this might lead to more appealing visual results,
but statistical metrics point at a consistently superior
performance by the model trained on real data.

One potential limitation of our study is the low AUCs
achieved by the models for pretreatment survival predic-
tion for lung cancer based on radiomic features. How-
ever, these are in line with results reported elsewhere.
For example, Isensee et al.58 reported an accuracy of
52.6% based on the BraTS 2017 dataset59 for brain
tumors using radiomics; Choi et al.60 reported an inte-
grated AUC (iAUC) of 0.620 (95% CI: 0.501–0.756])
using the TCGA/TCIA dataset and random survival for-
est to derive a prediction model. Finally, Bae et al.61

reported an iAUC of 0.590 (95% CI: 0.502, 0.689) for
overall survival prediction in glioblastoma using MRI
radiomic features.

Our study suffered from a few other limitations. First,
there were important differences between the popu-
lations in different training datasets (LIDC-IDRI and
TCGA-LUAD). For example, patients in TCGA-LUAD
were thinner than patients in LIDC-IDRI, as shown
in Figure S4. Hence, the cycle GAN trained on these
datasets learnt to not only denoise the images,but make
the patients thinner as illustrated in Figure 6e-1. Fortu-
nately, the ROIs of this study are located in the lung,and

the volume of patients’ lung in two domains are similar.
Therefore, there was no significant size shift in the ROIs.
Second, due to the differences of the CT bed in LIDC-
IDRI and TCGA-LUAD, the cycle GAN also transforms
bottom part of the image as shown in Figure 6e-1.
Third, the cycle GAN trained on real data performed
relatively poorly on simulated noisy images in terms of
improving the reproducibility of radiomic features. One
of the potential reasons is the domain distribution gap
between real data and simulated data. The variations of
scanners, patient cohorts, reconstruction algorithms in
real training dataset may reduce the network’s denoising
performance in the simulated dataset.62 Moreover, we
believe that the good performance in real data is more
important than the performance in simulated data,since
it is more representative of real applications.Fourth,one
of the assumptions of our slice-paired training strategy
is that the first slice of a low-dose CT scan will have
higher similarity with the first slice of a high-dose CT
scan, is not automatically true. The similarity of the first
slice of a CT scan depends on a lot of factors such as
the patient position, section of the body scanned, and
so forth. These factors were ignored in this paper. Fifth,
as we mentioned in section 2.4, no early stopping of
training was adopted in this study. However, as shown
in Figures 2, 5 and Figure S4, we cannot witness the
improvements of the model’s performance during train-
ing. This may mean that the generator of the cycle GAN
does not learn the real data distribution, since the loss
function fluctuated in all training steps (50,000 steps
in our case). Therefore, early stopping techniques and
AutoML-based hyperparameter selection63 seem like
promising topics for further research. Sixth, in this study,
the trained models were only tested in two applications:
improving radiomics reproducibility in same-day repeat
low-dose CTs and radiomics performance survival
prediction. More experiments to better understand the
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relationship between denoising and radiomics per-
formance are needed. Seventh, radiation dose is not
the only source of lack of reproducibility of radiomics’
features,64 and in some cases, it might not be the most
relevant.12 Therefore,a denoising model might not solve
all the reproducibility issues of radiomic features and
other measures will need to be put in place to address
other sources of inconsistency (slice thickness, recon-
struction parameters, contrast enhancement, etc.). Our
GANs were trained on datasets collected from differ-
ent scanners with different scanning parameters, and
images were reconstructed using different software and
kernels.This might lead to more robust models,but at the
same time, we cannot guarantee that our trained GAN
does not introduce new inconsistencies to radiomics.
Moreover, there are some deep learning-based methods
for extracting radiomics features, usually referred to as
‘deep radiomics’.65,66 However, there are limited studies
focusing on extracting features from low-dose CT and,to
the best of our knowledge, no study focused on improv-
ing deep radiomics reproducibility or performance in
low-dose CT. Studies focusing on assessing deep
radiomics’ reproducibility and performance in low-dose
CT would be of interest. Eighth, we did not compare
the performance of the cycle GAN with non-AI com-
mercial low-dose CT reconstruction algorithms, such as
model-based iterative reconstruction (MBIR)67). Such
a comparison would be of interest, but we could not
perform it in our study due to the absence of sinograms
(which are required to use reconstruction algorithms)
in the datasets used. Finally, due to the absence
of a structure similarity term in our cycle GAN’s cost
function,some images develop distortions in microstruc-
tures. Therefore, further adjustments on cost function
and network architecture should be assessed in the
future.

5 CONCLUSIONS

In this study, we investigate the potential of denoising
low-dose CT using cycle GANs to improve the repro-
ducibility of radiomics features and the performance
of radiomics-based prediction models. We trained two
cycle GANs: using paired simulated low-dose CTs and
unpaired real low- and high-dose CT images. To accel-
erate convergence,we introduced a slice-paired training
strategy.

The results of our experiments show that a cycle GAN
trained to denoise low-dose CT scans from unpaired
low- and high-dose CT scans can improve the repro-
ducibility of radiomic features in simulated low dose
CTs and same-day repeat low dose CTs. In addition, we
showed that radiomics based pretreatment survival pre-
diction models trained on low-dose CT scans denoised
with said cycle GAN can achieve better performance.
The improvement in reproducibility and prediction model

performance are comparable to those achieved with
CGANs and encoder–decoder networks trained on
simulated paired data. Cycle GANs may have a better
future potential because they do not need paired data,
but they are burdened by the volatility of the treatment
process, which limits their applicability. More research
is needed to make cycle GAN training more robust,
for them to be able to be trained on a more diverse
dataset.
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