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Information on the time when a stain was deposited at a crime scene can be valuable
in forensic investigations. It can link a DNA-identified stain donor with a crime or provide
a post-mortem interval estimation in cases with cadavers. The available methods for
estimating stain deposition time have limitations of different types and magnitudes.
In this proof-of-principle study we investigated for the first time the use of microbial
DNA for this purpose in human saliva stains. First, we identified the most abundant
and frequent bacterial species in saliva using publicly available 16S rRNA gene next
generation sequencing (NGS) data from 1,848 samples. Next, we assessed time-
dependent changes in 15 identified species using de-novo 16S rRNA gene NGS in the
saliva stains of two individuals exposed to indoor conditions for up to 1 year. We selected
four bacterial species, i.e., Fusobacterium periodonticum, Haemophilus parainfluenzae,
Veillonella dispar, and Veillonella parvula showing significant time-dependent changes
and developed a 4-plex qPCR assay for their targeted analysis. Then, we analyzed
the saliva stains of 15 individuals exposed to indoor conditions for up to 1 month.
Bacterial counts generally increased with time and explained 54.9% of the variation
(p = <2.2E–16). Time since deposition explained ≥86.5% and ≥88.9% of the variation
in each individual and species, respectively (p = <2.2E–16). Finally, based on sample
duplicates we built and tested multiple linear regression models for predicting the stain
deposition time at an individual level, resulting in an average mean absolute error (MAE)
of 5 days (ranging 3.3–7.8 days). Overall, the deposition time of 181 (81.5%) stains
was correctly predicted within 1 week. Prediction models were also assessed in stains
exposed to similar conditions up to 1 month 7 months later, resulting in an average MAE
of 8.8 days (ranging 3.9–16.9 days). Our proof-of-principle study suggests the potential
of the DNA profiling of human commensal bacteria as a method of estimating saliva
stains time since deposition in the forensic scenario, which may be expanded to other
forensically relevant tissues. The study considers practical applications of this novel
approach, but various forensic developmental validation and implementation criteria will
need to be met in more dedicated studies in the future.

Keywords: forensic genetics, microbial forensics, stain deposition time, prediction, qPCR, bacterial DNA, saliva
stains
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INTRODUCTION

In routine forensic investigations, DNA profiling based on short
tandem repeats (STRs) is the gold standard for identifying
the individuals who left a biological sample at the crime
scene (Butler, 2004). However, the presence of a person’s DNA
at a crime scene does not necessarily allow us to conclude
that the sample donor is the perpetrator, which is typically
done in court using additional (non-genetic) information. One
important additional piece of information, which can be crucial
to solving a case, is knowledge of the time frame when the
person identified by DNA-based profiling left the biological stain
at the scene. Knowing the time since deposition of a crime
scene stain can help the police assess the alibis of suspects
or provide investigative information to search for the right
suspect. Moreover, when multiple biological traces belonging to
different donors are found at a scene, information on their time
since deposition may help investigators select the ones with the
highest investigative value for further analysis, in cases where
the time of the crime is known. Furthermore, in some missing
person cases, such knowledge of the time of stain deposition
on relevant items (such as clothing) might also be linked with
the time a person went missing if it is unknown. In crime
scenes involving (parts of) a corpse, estimation of the time since
deposition of the stains found around/on the body can serve as
an additional method for determining the time since death, i.e.,
post-mortem interval (PMI).

For estimating the time since deposition of human biological
stains, the most studied molecular approach to date is the
differential time-dependent degradation of human RNA, using
mainly mRNA markers (Bauer et al., 2003; Anderson et al.,
2011; Weinbrecht et al., 2017; Amany et al., 2018; Fu and
Allen, 2019; Asaghiar and Williams, 2020), but also miRNA
markers (Amany et al., 2018; Alshehhi and Haddrill, 2019). In
principle, RNA decay continues ex vivo after a stain has been
deposited, even if the biological material is dehydrated (Bauer,
2007). However, not all markers investigated for their potential
time-dependent degradation are informative, as outlined in
published studies, due to their reported time-stability for months
(Watanabe et al., 2017; Amany et al., 2018; Alshehhi and
Haddrill, 2019) or even a year (Alshehhi and Haddrill, 2019).
Nevertheless, the majority of studies to date have reported the
time-dependent decay of selected RNA markers, and a few have
also attempted to use this for estimating the time since deposition
of body fluid stains.

A qPCR-based study on degradation profiles of two human
hypoxia sensitive mRNA markers up to a month obtained mean
absolute error (MAE) values of 2.7, 3.5, and 6.4 days in blood,
saliva, and semen stains, respectively (Asaghiar and Williams,
2020). However, the sample size was small (n = 5 for each
body fluid) and stain exposure did not mimic realistic forensic
scenarios. In the cases of saliva and semen, fluids were left in
tubes until swabbed rather than left to dry as stains. Bauer et al.
(2003) analyzed two mRNA markers in dried bloodstains using
qPCR under the hypothesis that the 5′-end degrades at a faster
rate than the 3′-end in mRNA, and that relative degradation
could be used to estimate the time since deposition of the stains.
Significant levels in mRNA degradation were only reported in

stains with large deposition time differences of at least 4–5 years,
resulting in very large estimation intervals of several months
or even a few years. Another qPCR-based study analyzed four
mRNA markers in dried bloodstains under the same previous
hypothesis and reported a time estimation error of 2–4 weeks
for stains exposed less than 6 months and 4–6 weeks for stains
exposed between six and 12 months (Fu and Allen, 2019).
Furthermore (Alshehhi and Haddrill, 2019) employed qPCR
targeting two and four mRNA/miRNA markers in dried saliva
and semen stains, respectively, for up to a year. On the one hand,
the mRNA markers showed large fluctuation, no degradation,
or were not detected at all due to the assay’s sensitivity past
90 days. On the other hand, the miRNA markers remained
stable across all analyzed time points, making them not suitable
for investigating time-dependent changes. Lastly, another study
employed RNA next-generation sequencing (NGS) to analyze the
potential time-dependency of the transcripts present in dried
blood, saliva, semen, and vaginal fluid stains for up to a year
(Weinbrecht et al., 2017). Particularly for the saliva transcripts,
abundance values decreased rapidly and erratically; hence, no
comprehensive analysis could be performed. For other stains,
the time-dependency of transcripts was useful for a limited time
period of less than a year. Overall, a RNA-based approach for
estimating the time since deposition of stains could be promising
but suffers from significant drawbacks including inter-individual
degradation variation.

The human microbiome has been recently proposed as a
promising tool in forensic science, especially for forensically
relevant topics, for which other approaches present challenges
and limitations. For example, the human microbiome has proven
to be a promising forensic tool for PMI estimation based on
predictable succession and colonization of microorganisms over
time at different body sites (Hyde et al., 2013; Adserias-Garriga
et al., 2017; Pechal et al., 2018; Dash and Das, 2020). However,
caution must be taken due to the environmental (Pechal et al.,
2017; Dash and Das, 2020) and individual-specific (Dash and
Das, 2020) factors affecting time-dependent changes. The human
microbiome, particularly the skin microbiome, can also serve
as a kind of “fingerprint” that is transferred to touched objects,
which is promising for individual identification in cases where
recovered human DNA is not sufficient for obtaining a STR
profile (“touched” samples; Schmedes et al., 2017, 2018; Yang
et al., 2019). Additionally, we also showed that the human
microbiome is suitable for the identification of the body site
of origin of human body fluid stains, which can be of great
value in crime scene reconstruction. For instance, when it
comes to crime scene stains that contain epithelial cells from
different body sites of origin including skin, saliva, and vaginal
fluids (Díez López et al., 2019), and bloodstains from different
body sites of origin including venous/arterial blood, menstrual
blood, nasal blood, or blood from skin injuries (Díez López
et al., 2020), where previous molecular approaches such as
RNA-based ones have limitations (Haas et al., 2014; Holtkotter
et al., 2017; Ingold et al., 2018). On top of these previously
investigated forensic microbiome applications, we envisioned it
a promising tool for estimating the time since deposition of
human biological stains at a crime scene, which has not been
studied yet.
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Particularly, the oral human microbiome has been extensively
characterized (Escapa et al., 2018) and the microorganisms living
in the oral cavity comprise the second largest and most diverse
microbial community of the human body (Huttenhower et al.,
2012) after the gut. Notably, 1 mL of saliva in healthy adults is
estimated to contain approximately 100 million bacterial cells
(Curtis et al., 2011). Considering the normal salivary flow rate
to be around 750 mL/day, 8 × 1010 bacterial cells are shed
daily from the oral surfaces (Curtis et al., 2011). As a result,
human saliva samples are likely to contain a high number
of bacterial cells, including dried saliva stains found at crime
scenes that often are small and based on just a few microliters
(µL) of liquid saliva. Additionally, it has been shown that the
“core” oral microbiome, which can be defined as the taxa shared
among unrelated individuals (Zaura et al., 2009), is quite large,
and is larger than in other body sites such as the gut or skin
(Costello et al., 2009). Finally, the oral microbiome has shown
a high degree of in vivo time-wise stability within an individual,
with no significant changes over months (Costello et al., 2009;
Lazarevic et al., 2010; Zhu et al., 2012) and even a few years
(Stahringer et al., 2012). The time-stable biological information
of any biomarker used in forensics is crucial in investigations,
especially in approaches where old crime scene samples may be
used retrospectively, such as for estimating the time since stain
deposition. To date, only a few studies have investigated the time-
dependent changes in the microbiome in dried saliva samples
exposed to indoor conditions (Dobay et al., 2019; Salzmann
et al., 2019), and due to their small sample size, no meaningful
conclusions could be made on how suitable the approach is for
forensic purposes.

This proof-of-principle study is the first to investigate the
potential of the genetic profiling of human saliva commensal
bacteria for estimating the time since deposition of saliva stains,
which has promising applications in future forensic scenarios.
We first identified the most abundant and most frequent bacterial
species in saliva from a large publicly available 16S rRNA gene
NGS data set. Next, we assessed time-dependent changes in
the relative abundance of the top identified bacterial target
species in 16S rRNA gene NGS data produced from dried saliva
stains exposed to indoor long-term conditions for up to 1 year.
Based on the observed significant time-dependent changes, we
further selected four bacterial species, for which we developed
a multiplex qPCR assay. Finally, this assay was used to analyze
dried saliva stains exposed to indoor short-term conditions with
various sample storage times up to 1 month.

MATERIALS AND METHODS

Saliva Microbiome Data Sets
Publicly available human saliva 16S rRNA gene NGS data
from two previously published studies were obtained from the
European Bioinformatics Institute (EMBL-EBI). These studies
included data from three cohorts: the American Cancer Society
Cancer Prevention Study II (ACS CPS-II; N = 543; Wu
et al., 2016), and the Prostate, Lung, Colorectal, and Ovarian
(PLCO) Cancer Screening Trial (N = 661; Wu et al., 2016)

from which the produced microbiome data was published as
part of the same study; and the American Gut Project (AGP;
N = 1,089; McDonald et al., 2018). The accession numbers were
PRJNA434300, PRJNA434312, and PRJEB11419, respectively.

The metadata of the studies were accessed via the National
Center for Biotechnology Information (NCBI) and matched
to the corresponding sample identifiers using custom Python
scripts to create flat metadata tables. In the first study (ACS
CPS-II/PLCO), quality control sample replicates were removed
to avoid data redundancy. We also discarded samples with
missing metadata information for age, sex, and/or ethnicity.
We also removed samples obtained from donors less than
15 years old, given that differences between adult and youth saliva
microbiomes are expected (Burcham et al., 2020).

Most Abundant and Frequent Bacterial
Species in Saliva
We analyzed the above-mentioned human saliva 16S rRNA gene
NGS data to identify the most abundant and frequent bacterial
species across individuals included in the two selected studies
(Figure 1A). Primer sequences were obtained from the original
studies and were removed from the raw sequencing reads using
cutadapt (v2.6; Martin, 2011) by setting the minimum-length
to 100, to discard processed reads shorter than 100 bp. The
resulting FASTQ files were quality-filtered and de-noised using
DADA2 (v1.12.1; Callahan et al., 2016). Parameter maxN was set
to 0 in the ACS CPS-II/PLCO study to prevent unambiguous
nucleotides in the sequencing reads, whereas maxN was set to
1 in the AGP study to avoid too few reads passing the filtering.
Parameter maxEE for the maximum number of “expected errors”
in the reads was set to 2 in the two studies. Parameter truncLen
was set based on the read quality profiles, ensuring to maintain
an overlap between forward and reverse reads to be merged
later. Following sample inference of true sequence variants, an
amplicon sequence variant (ASV) table was constructed and
chimeric sequences were removed. At this point, only high-
coverage samples (>1,000 reads) were chosen for downstream
analysis, resulting in 525 (ACS CPS-II), 452 (PLCO), and
871 (AGP) samples.

To assign taxonomy the ASV table was processed via the
assignTaxonomy function in DADA2 at taxonomic ranks of
interest (phylum, class, order, family, genus, and species). The
expanded Human Oral Microbiome Database (eHOMD; v15.2;
Escapa et al., 2018) was transformed to a DADA2-compatible
training format and used as the reference database. Since the
eHOMD database is bacteria-exclusive, the ASV table was further
compared against the SILVA SSU r132 database (Quast et al.,
2013) to check for sequences assigned to Eukarya, mitochondria,
or chloroplasts, which were subsequently filtered out. We
additionally filtered out taxa present in less than 0.005% of
relative abundance.

Finally, in each study, we ordered the bacterial species
according to their relative abundance (number of bacterial
species sequencing reads divided by the total number of
sequencing reads) and frequency (number of samples in which
the bacterial species is reported divided by the total number of
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FIGURE 1 | Overview of the study. (A) Identification of the most abundant and frequent bacterial species in saliva from publicly available 16S rRNA gene
next-generation sequencing (NGS) data. (B) Long-term (up to 1 year) time-dependent differentially abundance analysis in saliva stains from two individuals. The
individuals are color-coded; black is female, and orange is male. (C) Short-term (up to 1 month) targeted analysis of species informative for time since deposition of
saliva stains from 15 individuals and (D) from six individuals re-sampled 7 months later. (E) Hypothesized individualized solution to saliva trace timing as viewed in our
data set.

samples). As abundant and frequent bacterial species in saliva,
we selected the top 15 most common ones across the studies.
The processed NGS data in the form of the relative abundance
tables of the identified taxa can be found in Supplementary Data
Sheet 1.

Saliva Collection
Sample collection, handling, and subsequent analysis adhered
to the Medische Ethische Toestsings Commissie Erasmus MC
(MEC-2018–1731). All individuals who donated saliva provided
signed informed consent for this study. One individual included
in the long-term experiment (individual No 1) was also included
in the short-term one (individual No 2), with a time span of
2 years between saliva collection for each of the experiments. In
summary, we included 11 females and 5 males, with an average
age of 26.3 years and from various ethnic backgrounds, but
mainly white Europeans (13/16). Information on our donors’

sex, age, ethnicity, and sample donation can be found in
Supplementary Table 1.

In brief, as part of donating saliva, individuals were asked
to avoid all of the following for at least 1 h before saliva
donation: brushing their teeth, use of mouthwash, eating food,
chewing gum, and were asked to only drink non-sparkling
water. Individuals were independently asked to collect saliva
in their mouth for a minute and spit it into a sterile tube,
repeating the process several times until reaching∼5 mL of saliva.
Subsequently, for each individual, we prepared all stains per time
point, each consisting of 150 µL of saliva deposited on a sterile
swab (PurFlock Ultra 6” sterile standard flock swabs, Puritan,
Guilford, ME, United States). Therefore, for each individual, all
saliva stains were individual samples, even though they were
collected at the same time point. As a substrate, we chose sterile
swabs that are routinely used in forensics, for example, to collect
suspected saliva stains from objects found at the crime scene for
molecular analysis. The sterile nature of the swabs also allowed us
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to conclude that there was an absence of microbial contamination
before the saliva was deposited.

Dried Saliva Stains
With the exception of the fresh (t0) saliva swabs that were
processed straightaway, the prepared swabs were dried and
directly exposed to our laboratory’s environment apart from each
other, for a specific time prior to bacterial DNA isolation. The
swabs were stored at standard room temperature (20–25◦C), with
relative humidity (30-50%), and daily ambient light (8-11 h).
Ambient light included both artificial and natural light sources
as the swabs were placed 4 m away from a window (though not
directly hit by the sun). First, for the long-term time-dependent
bacterial composition analysis, saliva was collected from two
individuals (Figure 1B). To sufficiently cover selected time points
over a 1-year period, seven saliva swabs were prepared per
individual (single sample replicates per time point) and processed
at day 1 (t1), 7 (t2), 30 (t3), 120 (t4), 180 (t5), and 365 (t6)
after deposition. Second, for the short-term time-dependent
bacterial marker analysis, saliva was collected from 15 individuals
(Figure 1C). To sufficiently cover selected time points over a
1-month period, 32 saliva swabs were prepared per individual
(double replicates per time point); with the exception of one
individual (No 1) for which there was insufficient volume of
saliva to prepare the last time point. In this case, dried saliva
swabs were processed at day 2 (t1), 4 (t2), 6 (t3), 8 (t4), 10 (t5),
12 (t6), 14 (t7), 16 (t8), 18 (t9), 20 (t10), 22 (t11), 24 (t12), 26
(t13), 28 (t14), and 30 (t15) after deposition. Additionally, six
of these fifteen individuals also donated saliva 7 months after
the first collection date (Figure 1D). For this, eight saliva swabs
were prepared per individual (single replicates per time point)
and processed at day 2 (t1), 6 (t2), 10 (t3), 14 (t4), 18 (t5), 22
(t6), 26 (t7), 28 (t8 for individual No 1), and 30 (t8 for the
rest of individuals) after deposition, corresponding to 1-month
time frame as in the first collection date. Additionally, swabs
with no biological material were prepared as background blanks
in both the long-term and short-term experiments and were
exposed and processed in parallel at the same time points as the
dried saliva stains.

Bacterial DNA Isolation and
Quantification
Bacterial DNA isolation was performed with the QIAamp DNA
Mini Kit (Qiagen, Germany) following the buccal swab spin
protocol to simplify the isolation of DNA from human saliva
samples deposited on a swab. We chose a kit that can co-isolate
both the bacterial and human DNA present in the sample to
simultaneously allow for STR profiling, necessary to identify the
sample donor, and therefore, increasing the forensic applicability
of the proposed approach. After appropriate optimization, we
slightly modified the manufacturer’s instructions for maximizing
DNA yield. More specifically, the incubation time in step four
was increased from 10 to 30 min, the elution was performed with
nuclease-free water using a reduced 50 µL elution volume, spin
columns were incubated for 5 min at room temperature following
the addition of nuclease-free water and before centrifugation,
the centrifugation time and speed were increased to 2 min and

12,000 rpm, and finally, a second elution step using the eluate was
added. Isolated bacterial DNA was quantified with the FemtoTM

Bacterial DNA Quantification kit (Zymo Research, Irvine, CA,
United States) following the manufacturer’s instructions on a
CFX38 TouchTM Real-Time PCR System (Bio-Rad, Hercules,
CA, United States).

Library Preparation and Sequencing
For the long-term time-dependent bacterial composition
analysis, we sequenced the obtained bacterial DNA from
the dried saliva stains of the two individuals (N = 14) as
well as the background controls (N = 7). To also assess the
performance of the workflow we sequenced one negative
control sample, one smart control (SC) sample for monitoring
the library construction process and potential introduced
contamination, and one positive control – a commercial
microbial community DNA standard sample (ZymoBIOMICSTM

Microbial Community DNA Standard, ZymoResearch). Library
preparation was performed using the QIAseq 16S/ITS Panel Kit
(Qiagen) for sequencing the V4–V5 region of the 16S rRNA
bacterial gene. Library quality control was performed with the
Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA,
United States) using a high sensitivity DNA chip following
the manufacturer’s instructions. Library quantification was
performed using the KAPA Library Quantification Kit (Kapa
Biosystems, Inc. Wilmington, MA, United States) following
the manufacturer’s instructions on a CFX384 TouchTM Real-
Time PCR System (Bio-Rad). Libraries were diluted down to
2 nM, or the highest possible concentration in case the library
concentration was <2 nM, and pooled together for 2 × 276 bp
paired-end sequencing on a MiSeq platform using the MiSeq v3
Reagent Kit (Illumina, San Diego, CA, United States).

Long-Term Time-Dependent Differential
Bacterial Abundance Analysis
We performed differential abundance analysis to identify changes
in the relative abundance of bacterial species over time in the
16S rRNA gene NGS data derived from the long-term dried
saliva stains. Phased primer sequences were removed from the
raw sequencing reads using a custom Python script. Subsequent
filtering, de-noising, ASV table construction, and taxonomy
annotation were carried out as previously described for the
publicly available saliva microbiome data sets (section “Most
abundant and frequent bacterial species in saliva”). We chose
gneiss (Morton et al., 2017) for the differential abundance
analysis since it acknowledges the compositional nature of
microbiome data. Based on this compositional nature it is only
possible to infer relative, but not absolute, abundance changes
with time, since the abundance change of one species influences
the abundance changes in the other species. Gneiss was run
using the q2-gneiss plugin in QIIME2 (v.2019.10; Bolyen et al.,
2019). Input data comprised of a microbial profile sub-selection
of the 15 most abundant and most frequent bacterial species
in saliva as previously identified (section “Most abundant and
frequent bacterial species in saliva”). First, a bifurcating tree
was built relating bacterial species to each other based on how
they co-occur by using Ward’s hierarchical clustering via the
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correlation-clustering command. Each balance (internal nodes
in the tree) is calculated by taking the log ratio of geometric
means of subtrees via the ilr-transform command. Each balance
is indicated as “y” followed by an ordinal number, being y0 the
first balance in the root of the constructed tree. The taxa on one
side of the balance are termed as numerators and on the other side
as denominators. Each log ratio’s numerical value depends on the
balance between the numerator’s and denominator’s taxa and can
be either positive, negative, or null. Differences in the log ratio
balances can be compared between sample groups to infer relative
changes in the microbial composition. These log-transformed
balances were used to construct a multivariate response linear
model using the time since deposition and the individual ID
as covariates using the ols-regression command, where 10-fold
cross validation of 10 partitions showed no overfitting. The
regression summary showed the contributions of the covariates
to the abundances of the selected bacterial species. Balances
significantly affected by the covariates were determined with a p
value cutoff at 0.05 after Bonferroni correction. These p values
were based on relative, rather than absolute, values resulting
from inter-dependent taxa. Significant balances for time since
deposition but not for individual ID were selected as the most
informative for this study and used to analyze the informative
bacterial species via qPCR in the short-term dried saliva stains.

4-Plex qPCR Assay Design and
Optimization
Based on the differential abundance analysis results, four bacterial
species were selected for qPCR analysis of the short-term
dried saliva stains. The selected species were Fusobacterium
periodonticum, Haemophilus parainfluenzae, Veillonella dispar,
and Veillonella parvula. We aimed to design a suitable 4-plex
qPCR assay based on TaqMan probe technology that would allow
for the simultaneous analysis of all four selected bacterial species
using species-specific primers that target single-copy genes. For
F. periodonticum, V. dispar, and V. parvula we chose the beta
subunit of RNA polymerase gene (rpoB) as the target gene;
for H. parainfluenzae we chose the translation initiation factor
IF-2 gene (infB).

A literature search was conducted to find previously
designed suitable primers, resulting in the reverse primers for
V. dispar and V. parvula (Mashima et al., 2016). The rest
of the primer sequences as well as the probe sequences were
manually designed using the PrimerQuest Tool (Integrated DNA
Technologies, IDT, Coralville, IA, United States). The fluorescent
dyes labeled to the 5′-end of the probe sequences were: 6-
carboxyfluorescein (6-FAM) for F. periodonticum, cyanine 5
(Cy5) for H. parainfluenzae, Texas red-615 (TEX-615) for
V. dispar, and hexachloro-fluorescein (HEX) for V. parvula.
To test primer pair specificity, each pair was compared against
the nucleotide collection database from the NCBI using Primer
BLAST. The Autodimer software (Vallone and Butler, 2004) was
also used to assess the potential formation of primer dimers and
hairpins under our experimental conditions. Final primer and
probe sequences are summarized in Supplementary Table 2.

The 4-plex qPCR assay was developed based on the CFX384
TouchTM Real-Time PCR System (Bio-Rad). The assay was

optimized according to various parameters including annealing
temperature and primer/probe concentrations. The optimal
oligo concentrations varied for each bacterial target and
were determined as follows (primers/probe): F. periodonticum
(0.7/0.5 µM), H. parainfluenzae (0.6/0.5 µM), V. dispar
(0.2/0.05 µM), and V. parvula (0.9/0.5 µM). Synthetic double
stranded DNA fragments (gBlocks, IDT) for each of the
bacterial target gene fragments were used as standard samples
(positive controls; Supplementary Table 2). Concentrations were
converted to copy numbers by using the formula:

(C) ∗ (M) ∗
(
1∗10−15 mol/fmol

)
∗
(
Avogadro′s number

)
= copy number/µL.

where C is the concentration of the gBlock gene fragment in
ng/µL and M is the molecular weight in fmol/ng. gBlocks were
mixed in known concentrations ranging from 125,000 down
to 61 copies per bacterial target gene fragment. The assay was
performed in a 20 µL reaction in triplicate, including 10 µL
of iQ Multiplex Powermix (Bio-Rad), 4 µL of each primer
(forward and reverse), and probe mix (5X), 1 µL of 25 µM of
MgCl2 (Thermo Fisher Scientific, Waltham, MA, United States),
0.5 µL of 20 mg/mL of bovine serum albumin (New England
Biolabs, Ipswich, MA, United States), 1 µL of bacterial DNA
(corresponding to 2 ng) and 3.5 µL of nuclease-free water. The
thermocycling program included an initial denaturation and
polymerase activation step at 95◦C for 3 min, followed by 35 PCR
cycles of 95◦C for 10 s and an extension step of 60◦C for 45 s.

qPCR Data Analysis
Using our developed and optimized 4-plex qPCR assay we
analyzed the short-term dried saliva stains of 15 individuals.
The standard samples with known concentrations per bacterial
target gene fragment (gBlocks) were used to create the best-fitted
linearity curve. The efficiency of each qPCR assay was calculated
from the slope of the serially diluted standard samples according
to the equation (Kubista et al., 2006):

E = 10−(1/slope).

For each reaction, we obtained the quantification cycle (Cq)
value, the point at which fluorescence above the threshold level
is detectable. To standardize, the threshold was set to 100 relative
fluorescence units (RFU) for all reactions and fragments. The
copy number (cn) for each bacterial target gene fragment was
calculated according to the equation:

cn = e−Cq.

Since we target single-copy genes, reported copy numbers can
be translated to bacterial cell counts. Between-plate variation was
removed using the Factor-qPCR tool (Ruijter et al., 2015) in the
stains produced at the first donation time point and 7 months
later for six individuals. We set the qPCR plate ID as the variable
causing the variation to be removed, while the bacterial marker
and time since deposition as the variables for which preserve their
effects. In some cases, the between-plate correction resulted in
negative count values.
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Short-Term Time-Dependent Bacterial
Analysis
We aimed to investigate the statistical relationship between the
time since deposition and the four selected bacteria cell counts
in the short-term dried saliva stains. Since the focus was on
dried saliva stains, fresh (t0) samples were excluded from this
analysis. Sample duplicates collected at each time point for each
donor were analyzed independently from each other to assess the
magnitude of sample variation. For each analyzed stain qPCR
triplicates were considered as separate samples to account for
potential reaction variation. Various linear regression models
were built using the lm() function in the lme4package (v.1.1.20;
Bates et al., 2015) in R (v.3.6.1 [2019-07-05]). The linear models
were based on the functions below, where C refers to the bacterial
cell count, I to the individual, S to the bacterial species, and
finally, T to the time since deposition (in days). Interactions
between variables are indicated with an asterisk (∗). The statistical
relationship between each bacterial species cell count for each
individual and the time since deposition was calculated based on
the function:

lm (C ∼ T).

The statistical relationship between the four species cell count and
the time since deposition, species, and their interaction for each
individual was calculated based on the function:

lm (C ∼ T ∗ S).

The statistical relationship between each species cell count and
the time since deposition, individual, and their interaction was
calculated based on the function:

lm (C ∼ T ∗ I).

Finally, the statistical relationship between the four species cell
count and the time since deposition, species, individual, and their
interaction was calculated based on the function:

lm (C ∼ T ∗ S+ T ∗ I).

Adjusted R2 and p values were evaluated for all the linear models.
Sample variation was assessed by testing for equality between
the coefficients in the linear regression models of each of the
sample duplicate sets using the Chow test implemented in the
gap R-package (v.1.2.2; Zhao, 2007). Significant p values were
determined with a value cutoff at 0.05 following Benjamini-
Hochberg correction. All plots were generated with the ggplot2
R-package (v.3.3.2; Hadley, 2009).

Time Since Deposition Prediction
Modeling
We further investigated the possibility to predict the time since
deposition in the short-term dried saliva stains. We once again
excluded fresh (t0) samples based on the notion that it is not
feasible to collect a purely fresh saliva sample at a real crime
scene. We first attempted a generalized time since deposition
prediction model based on random forest (RF) regression using
the randomForest R-package (v.4.6.14; Liaw and Wiener, 2002).

To evaluate the generalizability of this approach and to avoid
prediction biases, we built a model based on the average detected
microbial DNA cell counts of the four targeted species per time
point. We then used data from all time points from 14 of the
analyzed individuals as the training set, while keeping all the
time points of the remaining individual as the testing set. By
this, the tested individual was not present in the training set to
mimic real-life applications. We repeated this process 15 times
given the 15 individuals in our data set. The 15 RF models
were based on 5-fold cross-validation, which was repeated three
times, and 500 trees with the four variables (targeted bacterial
species) were sampled at each split. NA values were replaced with
column medians using the na.roughfix command. The average
performance of the generalized RF models was assessed using the
mean absolute error (MAE), which measures the discrepancies
between predicted and real values according to the formula
below:

MAE =
1
n

n∑
i =1

|yi− y|

where n is the total number of data points, yi is the real value and y
is the predicted value. Pearson’s correlation was used to calculate
the correlation (r) between real and predicted values. MAE and
r were calculated with the Metrics R-package (v.0.1.4; Hamner
et al., 2012).

In the individualized modeling approach, the sample
duplicates collected at each time point for each donor were
considered separately; namely, one duplicate was used as the
training sample, while the other was used as the testing sample,
mimicking a potential future forensic scenario of having both
reference and crime scene samples. As predictors, we chose the
bacterial cell counts of the four selected species at each time
point. Multiple linear regression models were built using the lm()
function in the lme4 R-package (Bates et al., 2015) based on the
function below:

lm (T ∼ C1 + C2 + C3 + C4)

where C refers to each bacterial species cell counts and T to the
time since deposition in days. Additionally, the follow-up dried
saliva stains of the selected six individuals were also analyzed as
testing samples. In this case, as time since deposition predictors,
we did not only consider the bacterial cell counts for the four
selected species, but all the possible combinations of also one,
two, and three predictor species to select the model with the
lowest error for each individual. The donor-specific prediction
models were evaluated based on the adjusted R2 and p values,
where significant p values were determined with a value cutoff
at 0.05 following Benjamini-Hochberg correction. The average
model performances were assessed using the MAE and Pearson’s
correlation was used to calculate the correlation (r) between real
and predicted values. All plots were generated with the ggplot2
R-package (v.3.3.2; Hadley, 2009). The processed qPCR data
used to build and test the prediction models can be found in
Supplementary Data Sheet 1.
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RESULTS

Selection of Most Abundant and Most
Frequent Bacterial Species in Human
Saliva From Large 16S rRNA Gene
Sequencing Data
Publicly available 16S rRNA gene NGS data from 1,848 human
saliva samples were analyzed to identify the most abundant
and most frequent bacterial species across the studies they were
retrieved from (Wu et al., 2016; McDonald et al., 2018). A total of
10,326,403 sequencing reads were retrieved from the ACS CPS-
II/PLCO study and 31,046,365 sequencing reads from the AGP
study. In the ACS CPS-II/PLCO study, 218 bacterial species from
35 families were identified, while in the AGP study 471 bacterial
species from 88 families were found.

We then selected the top 15 most abundant and most
frequent bacterial species from a total of 10 families that were
common across these studies, namely Actinomyces sp. HMT
180, Fusobacterium periodonticum, Granulicatella adiacens,
Haemophilus parainfluenzae, Leptotrichia sp. HMT 417,
Porphyromonas pasteri, Prevotella melaninogenica, Prevotella
salivae, Prevotella veroralis, Rothia mucilaginosa, Streptococcus
oralis subs. dentisani clade 058, Streptococcus parasanguinis clade
411, Streptococcus salivarus, Veillonella dispar, and Veillonella
parvula (Figure 2A). These 15 identified common species
accounted for 66.0% (6,817,142) of the sequencing reads in
the ACS CPS-II/PLCO study and 55.1% (17,095,402) of the
sequencing reads in the AGP study. In the ACS CPS-II/PLCO
study, S. oralis subs. dentisani clade 058 was the most abundant
species accounting for 24.9% (2,567,719) of the reads, whereas
L. sp. HMT 417 was the least abundant accounting for 0.59%
(61,475) of the reads. In the AGP study, R. mucilaginosa was the
most abundant species accounting for 10.7% (3,305,923) of the
reads, whereas P. salivae was the least abundant accounting for
0.47% (146,083) of the reads. Overall, these 15 common species
were similar in abundance across the analyzed studies, with
the exception of S. oralis subs. dentisani clade 058, which was
markedly more abundant in the ACS CPS-II/PLCO than in the
AGP study (24.9% vs. 9.1% of total reads), and R. mucilaginosa
which was more abundant in the AGP than in the ACS CPS-
II/PLCO study (10.6% vs. 5.4% of total reads). The most frequent
species was S. oralis subs. dentisani clade 058, which was present
in 97.0% (948) of the ACS CPS-II/PLCO study’s individuals,
and found in 95.2% (829) of the AGP study’s individuals. The
less frequent species in the ACS CPS-II/PLCO study was L. sp.
HMT 417 present in 46.2% (451) of the individuals, whereas
in the AGP study it was P. veroralis present in 33.9% (295) of
the individuals.

Selection of Bacterial Species With
Time-Dependent Relative Abundance in
Long-Term Dried Saliva Stains Using
de-novo 16S rRNA Gene Sequencing
We then analyzed the dried saliva stains produced from two
individuals and exposed to indoor conditions for different time

periods of up to 1 year. The obtained 16S rRNA microbial
profiles were distinct from the background blanks (empty
swabs) for each time point, indicating a low level of bacterial
contamination (Supplementary Figure 1). We then extracted
the data of the 15 most abundant and most frequent bacterial
species identified in our previous in silico analysis (Figure 2A) to
identify for which species their relative abundance significantly
changed over time. The fit of the overall multivariate response
linear model was R2 = 0.21, with the time since deposition
accounting for 7% and the person accounting for 15% of the
bacterial variation.

A total of 13 log ratio balances (from y0 to y12) were
generated as internal nodes in the built tree. Log ratio balances
y4 (p = 0.008), y5 (p = 0.004), and y7 (p = 0.022) were
significantly different for the time since deposition (Table 1).
Balance y4 was composed of A. sp. HMT 180, S. oralis
subsp. dentisani clade 058, S. parasanguinis clade 411, P.
pasteri, P. melaninogenica, and P. veroralis as numerator’s
taxa; and F. periodonticum, P. melaninogenica, V. dispar, and
V. parvula as denominator’s taxa. Balance y5 was composed
of F. periodonticum, H. parainfluenzae, and V. dispar as
numerator’s taxa; and V. parvula as denominator’s taxa. Balance
y7 was composed of F. periodonticum, and H. parainfluenzae
as numerator’s taxa; and V. dispar as denominator’s taxa.
It has to be noted that balance y7 is a subdivision of
balance y5 numerator (Table 1). An overview of the generated
log ratio balances, intercept, and p values for the time
since deposition and individual person can be found in
Supplementary Table 3.

For this study, we sub-selected the log ratio balance y5 as our
reference because of its strongest significant time dependency
(p = 0.004) in both individuals. We preferred y5 over its
subdivision y7 since balances toward the root of the tree
capture more information as they contain more tree tips.
Furthermore, three of the four bacterial species in y5 were
also present in y4, which also showed a strong significant time
dependency (p = 0.008), albeit less strong than y5 (Table 1).
For both individuals, there was a similar pattern in the log
ratio evolution of balance y5 through time since saliva stain
deposition, though the rate of change was individual-specific
(Figure 2B). From 7 to 365 days, the general trend was the
increase of the log ratios’ values for both individuals. Looking
at the relative abundances of the four species from balance
y5 at day 7 and day 365 since deposition we observed that
for H. parainfluenzae relative abundance increased in both
individuals; for V. dispar and V. parvula relative abundances
decreased in both individuals; and for F. periodonticum relative
abundance increased in individual 1, whereas it slightly decreased
in individual 2 (Figure 2C). Based on these results, the four
species composing balance y5 were selected for developing a 4-
plex qPCR assay for their targeted analysis in the short-term dried
saliva stains. Parallel to the NGS analysis, the relative abundance
of the four selected species in the background (blank) swabs
was very low (≤1%); on average (mean ± standard deviation),
as follows: F. periodonticum (0.008 ± 0.010), H. parainfluenzae
(0.010 ± 0.009), V. dispar (0.005 ± 0.006), and V. parvula
(0.006± 0.009).
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FIGURE 2 | (A) Relative abundances of the 15 most abundant and frequent bacterial species in human saliva from adults across the analyzed publicly available 16S
rRNA gene NGS data sets (N = 1,848). Highlighted in red are the four bacterial species subsequently included in the 4-plex qPCR assay. (B) Log ratio balance y5,
significantly different for the time since deposition in the de-novo generated 16S rRNA gene NGS data from the long-term (up to 1 year) dried saliva stains. Time
since deposition days (x-axis) were log-transformed to facilitate the visualization of the earliest time points. Each dot represents a long-term dried saliva stain with its
corresponding time since deposition. (C) Relative abundances of the four bacterial species from balance y5 (Fusobacterium periodonticum, Haemophilus
parainfluenzae, Veillonella dispar, and Veillonella parvula) in the long-term (up to 1 year) dried saliva stains at day 7 and day 365 since stain deposition for both
analyzed individuals.

Relationship Between Bacterial
Abundance and Time Since Deposition in
Short-Term Dried Saliva Stains Using
Multiplex qPCR
Dried saliva stains from 15 individuals up to 1 month since
deposition were analyzed using the 4-plex qPCR assay we
developed. Parallel to the qPCR analysis, no signal above the
set threshold was reported in the background (blank) swabs for

any of the four bacterial markers and time points. The qPCR
results obtained from the fresh (t0) samples confirmed that the
four selected bacterial species were abundant and frequent in
the saliva of all 15 individuals, although we observed high inter-
individual variation within and between species. For each of the
four species, the average and standard deviation (mean ± SD),
as well as the minimum and maximum value (range), of qPCR-
derived cell counts in 1 µL of isolated bacterial DNA solution
(equivalent to 2 ng of total bacterial DNA) were as follows:
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TABLE 1 | Significant log ratio balances for time since deposition in the differential
abundance analysis.

Balance Bacterial species p value;
time since
deposition

p value;
individual

person

y4numerator A. sp. HMT 180
S. oralis subsp.
dentisani clade 058
S. parasangunis clade
411
P. pasteri
P. melaningenica
P. veroralis

0.008 0.390

y4denominator F. periodonticum
P. melaningenica
V. dispar
V. parvula

y5numerator F. periodonticum
H. parainfluenzae
V. dispar

0.004 0.911

y5denominator V. parvula

y7numerator F. periodonticum
H. parainfluenzae

0.022 0.022

y7denominator V. dispar

The top 15 most abundant and frequent bacterial species in human saliva were
sub-selected from the de-novo generated 16S rRNA gene NGS data obtained from
the long-term dried saliva stains. Each balance is composed of the numerator’s
bacterial taxa and the denominator’s bacterial taxa.

F. periodonticum (23,386 ± 24,598; range 2,698–105,567), H.
parainfluenzae (83,854 ± 80,412; range 13,167–331,667), V.
dispar (20,071 ± 27,406; range 399–91,937), and V. parvula
(9,825 ± 21,354; range 309–92,347). A figure of the bacterial cell
count distribution in fresh saliva samples for each of the four
species can be found in Supplementary Figure 2.

We first investigated the time dependency of each of the four
species in each individual in the dried saliva stains ranging from
2 days (t1) up to 30 days (t15) since deposition. The Chow test for
equality showed no significant differences in the great majority of
the compared time point swab duplicates’ regressions. Exceptions
were the univariate linear regressions for F. periodonticum in
individual 2 (p = 0.010), individual 7 (p = 0.005), and individual
15 (p = 0.020) and for H. parainfluenzae in individual 6
(p = 0.020). We observed high inter-individual differences in
terms of the amount of variation explained by time for each
species’ cell count (Figures 3–6). For example, in individual
5 the variation explained for F. periodonticum cell count was
high in both duplicates (R2 = 0.663, p = 1.06E–10 in duplicate
1; and R2 = 0.522, p = 6.92E–08 in duplicate 2; Figure 3).
However, the variation explained for V. parvula was much lower,
even close to zero (R2 = 0.001, p = 0.374 in duplicate 1; and
R2 = 0.062, p = 0.092 in duplicate 2; Figure 6). The univariate
regression results including R2 values, BH-corrected p values, and
significance testing can be found in Supplementary Table 4.

For F. periodonticum, the qPCR-derived cell count increased
over time for most individuals, except for individual 11, although
at different rates in the different individuals. The average and
standard deviation fold-change between day 2 (t1) and day

30 (t15) were 2.0 ± 0.6, range 1.1–3.3. The highest time-
dependent bacterial increase was reported for individual 2
(R2 = 0.825, p = 2.59E–14, sample duplicate 1; Figure 3).
For H. parainfluenzae, the time-dependent behavior varied
in an individual-specific manner meaning either increasing
(individuals 1, 4, 5, 6, 7, 10, 13, and 14), decreasing (individuals
9 and 11), or barely changing (individuals 2, 3, 8, 12, and 15;
Figure 4). For V. dispar, the cell count increased with time in the
majority of the individuals at different rates, except individual 11.
The average and standard deviation fold-change between day 2
(t1) and day 30 (t15) were 1.7 ± 1.1, range 1.1–7.0. The highest
time-dependent bacterial increase was reported for individual
14 (R2 = 0.623, p = 8.70E–10, sample duplicate 1; Figure 5).
Lastly, for V. parvula, cell count increased with time for some
individuals (individuals 1, 2, 4, 7, 10, 13, and 14), whereas for
others it decreased (individuals 11, 12, and 15) or barely changed
(individuals 3, 5, 6, and 9; Figure 6).

We next investigated the time dependency of the four bacterial
species altogether in each individual (Table 2). The variation
explained by time in the four species cell count varied among
individuals, but it was very high in the majority of them with
R2 values ranging between 0.865 and 0.979 (p = <2.20E–16).
The individual with the highest variation explained on average
was individual 5 (R2 = 0.964 in sample duplicate 1, R2 = 0.979
in sample duplicate 2, p = <2.20E–16). The individual with
the lowest variation explained on average was individual 8
(R2 = 0.874 in duplicate 1, R2 = 0.908 in duplicate 2, p = <2.20E–
16). We also investigated the time dependency of each bacterial
species considering the 15 individuals altogether (Table 2).
The variation explained by time for each of the four bacterial
species cell count in all individuals together was very high
and significant. The strongest time dependency variation on
average (R2 in duplicate 1, R2 in duplicate 2, and p value) was
observed for V. parvula (R2 = 0.969, R2 = 0.948, p = <2.20E–
16), followed by H. parainfluenzae (R2 = 0.964, R2 = 0.920,
p = <2.20E–16), V. dispar (R2 = 0.959, R2 = 0.906, p = <2.20E–
16), and finally F. periodonticum (R2 = 0.941, R2 = 0.889,
p = <2.20E–16). Finally, we investigated the time dependency of
the four bacterial species together in the 15 individuals altogether
(Table 2) resulting in a significant variation, explained in the data
set of R2 = 0.544 in duplicate 1 and R2 = 0.548 in duplicate 2,
p = <2.20E–16.

Estimating the Time Since Deposition of
Dried Human Saliva Stains Based on
Bacterial DNA
We finally investigated the possibility of estimating the time since
deposition of the dried saliva stains exposed to indoor short-term
conditions of up to 1 month, using a generalized RF regression
model. The correlation between real and predicted time since
deposition values were very low (r = 0.11; Supplementary
Figure 3) and the average MAE was 8 days. The real and predicted
times since deposition for each individual are summarized in
Supplementary Table 5. From these predicted values we deduced
that the generalized approach was unable to discriminate between
early and late times since deposition in the analyzed interval

Frontiers in Microbiology | www.frontiersin.org 10 June 2021 | Volume 12 | Article 647933

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-647933 May 28, 2021 Time: 18:1 # 11

Díez López et al. Microbial DNA-Based Stain Age Prediction

FIGURE 3 | Time-dependency of qPCR-based Fusobacterium periodonticum cell count for each individual in the short-term (up to 1 month) dried saliva stains from
15 individuals. Sample duplicate set 1 is indicated in gray and sample duplicate set 2 in orange. Each dot represents a qPCR-run sample triplicate. R2 values
indicate the variation explained by the time since deposition in the bacterial cell count. Asterisks indicate the significance level of the Benjamini-Hochberg corrected p
values as follows: 0.001 “***”, 0.01 “**”, and 0.05 “*”.

of 1 month. For instance, in individual 4 for whom all
times since deposition were predicted as either 20 or 21 days
and individual 7 for whom all times since deposition were
predicted as 16, 17, or 18 days (Supplementary Table 5). Hence,
the time-dependent variation in the four targeted bacterial

species were surpassed by the high inter-individual variation
in our data set. The high inter-individual variation can be
observed using principal component analysis (PCA; Figure 7)
where the saliva stains cluster based on the individual. Hence,
because of the high inter-individual variation we observed, as
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FIGURE 4 | Time-dependency of qPCR-based Haemophilus parainfluenzae cell count for each individual in the short-term (up to 1 month) dried saliva stains from 15
individuals. Sample duplicate set 1 is indicated in gray and sample duplicate set 2 in orange. Each dot represents a qPCR-run sample triplicate. R2 values indicate
the variation explained by the time since deposition in the bacterial cell count. Asterisks indicate the significance level of the Benjamini-Hochberg corrected p values
as follows: 0.001 “***”, 0.01 “**”, and 0.05 “*”.

described in section “Relationship between bacterial abundance
and time since deposition in short-term dried saliva stains
using multiplex qPCR,” which limited the implementation of
a generalized model in our data set, we built individual-
specific models.

This individual-specific modeling approach enabled us to
present an individualized solution to saliva trace timing in
our data set, where the model training and testing data are
obtained from the individual’s reference saliva stored under
the same environmental conditions for a specific time period
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FIGURE 5 | Time-dependency of qPCR-derived Veillonella dispar cell count for each individual in the short-term (up to 1 month) dried saliva stains from 15
individuals. Sample duplicate set 1 is indicated in gray and sample duplicate set 2 in orange. Each dot represents a qPCR-run sample triplicate. R2 values indicate
the variation explained by the time since deposition in the bacterial cell count. Asterisks indicate the significance level of the Benjamini-Hochberg corrected p values
as follows: 0.001 “***”, 0.01 “**”, and 0.05 “*”.

(Figure 1E). We hypothesize that for certain indoor crimes where
environmental conditions are rather stable, various parameters
(temperature, humidity, etc.) could be measured at the crime
scene when the stain is collected and applied to the reference
saliva stains used to generate the model underlying data

with flexibility for the time window. Consequently, in our
experiments, we applied the same environmental parameters
to saliva samples stored up to 1 month that we used for
model training and model testing. The R2 and BH-corrected
p values of each individual-specific model can be found in
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FIGURE 6 | Time-dependency of qPCR-derived Veillonella parvula cell count for each individual in the short-term (up to 1 month) dried saliva stains from 15
individuals. Sample duplicate set 1 is indicated in gray and sample duplicate set 2 in orange. Each dot represents a qPCR-run sample triplicate. R2 values indicate
the variation explained by the time since deposition in the bacterial cell count. Asterisks indicate the significance level of the Benjamini-Hochberg corrected p values
as follows: 0.001 “***”, 0.01 “**”, and 0.05 “*”.

Supplementary Table 6. Overall, the average model fit was
R2 = 0.752. The best model fit was obtained for individual 11
(R2 = 0.921, p = 4.80E–05), whereas for individual 1 the model
barely fit (R2 = 0.178, p = 0.233).

Considering the testing stains of all 15 individuals, the average
correlation between the true and predicted time since deposition
was r = 0.742, while the average MAE was 5 days (16.7% of the
analyzed time frame of 1 month). The model for individual 8
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TABLE 2 | Time-dependency of the bacterial marker cell counts in the dried saliva stains exposed to indoor conditions up to 1 month for sample duplicate sets 1 and 2.

Sample duplicate 1 Sample duplicate 2

Linear regression analysis R2 p value R2 p value

lm(C ∼ T*S) Individual 1 0.922 <2.2E–16*** 0.865 <2.2E–16***

Individual 2 0.952 0.948

Individual 3 0.940 0.907

Individual 4 0.955 0.966

Individual 5 0.964 0.979

Individual 6 0.968 0.962

Individual 7 0.973 0.966

Individual 8 0.874 0.908

Individual 9 0.965 0.946

Individual 10 0.953 0.950

Individual 11 0.912 0.927

Individual 12 0.936 0.946

Individual 13 0.968 0.937

Individual 14 0.959 0.905

Individual 15 0.968 0.902

lm(C ∼ T*I) F. periodonticum 0.941 0.889

H. parainfluenzae 0.964 0.920

V. dispar 0.959 0.906

V. parvula 0.969 0.948

lm(C ∼ T*I + T*S) Overall 0.546 0.551

lm(C ∼ T*S): time-dependency of the four selected bacterial species altogether in each individual, lm(C ∼ T*I): time-dependency of each selected bacterial species
considering the 15 individuals altogether, and lm(C ∼ T*I + T*S): time-dependency of the four selected bacterial species and 15 individuals altogether. R2 values indicate
the variation explained by the time since stain deposition in the qPCR-derived bacterial cell counts. Asterisks indicate the significance level of the Benjamini-Hochberg
corrected p values as follows: 0.001 “***”, 0.01 “**”, and 0.05 “*”.

FIGURE 7 | Two-dimensional plot from principal component analysis (PCA) of the short-term dried saliva stains from 15 individuals. Projection of the counts of our
four targeted species in the first two PCs together explains 97.7 % of the total variation. The stains cluster based on the individual, which highlights the high
inter-individual variation in the data set.

presented the lowest MAE of 3.3 days with a correlation between
real and predicted values of r = 0.905 (Figure 8). The model
for individual 14 presented the highest MAE of 7.8 days with

a correlation between real and predicted values of r = 0.235
(Figure 8). The real and predicted times since deposition for
each individual are summarized in Supplementary Table 5. We
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FIGURE 8 | Individual-specific model performance for the prediction of the time since deposition of saliva stains, using data of the short-term (up to 1 month) stored
saliva stains based on four bacterial species from 15 individuals. Data from sample duplicates 2 were used for model testing, while data from sample duplicates 1
were used for model building. The mean absolute error (MAE) measures the discrepancies between the real and the predicted time since deposition values. The
correlation between real and predicted values is indicated with r.

further investigated errors in the time since deposition prediction
in the individual-specific approach (Supplementary Figure 4).
There was no clear pattern relating to certain individuals or time

points with lower errors. The time since deposition of eleven
stains (5.0%) was correctly predicted with zero days error. In the
rest of the predictions, there was a similar distribution in the
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stains in which time since deposition was underestimated (113
stains, 50.9%) or overestimated (98 stains, 44.1%). In 81.5% of the
cases (181 stains), the error of the predicted time since deposition
fell to within 1 week (up to ±7 days error). From those, more
than half of the samples fell within 3 days (±3 days error). More
precisely, 16.7% (37 stains) were predicted with ±1 day; 17% (38
stains) with±2 days; and 9% (20 stains) with±3 days error.

Additionally, we estimated the time since deposition of short-
term dried saliva stains from the six individuals that we collected
and exposed to indoor conditions 7 months after the first
collection time point. Considering the tested stains of all 6
individuals, the average MAE was 8.8 days (29.3% of the analyzed
time frame of 1 month). The one-variable predictor model for
individual 1 presented the lowest MAE of 3.9 days. The four-
variable predictor model for individual 2 presented the highest
MAE of 16.9 days. The MAE values of all the individual-specific
models of one, two, three, and four species as predictors for time
since deposition can be found in Supplementary Table 7.

DISCUSSION

Knowledge of the time when a human biological stain was
left at a crime scene – also known as time since deposition –
can be of great forensic value in assessing the alibis of known
suspects, searching for suspects, selecting the stains with the
highest informative value for further analysis, helping in missing
person cases when the time they went missing is unknown, and in
estimating PMI in scenes involving a corpse, or parts thereof. In
this study, we evaluated for the first time a microbial DNA-based
approach to estimating the time since deposition of dried saliva
stains exposed to indoor conditions.

First, we identified the most abundant and most frequent
bacterial species in human saliva samples from two publicly
available 16S rRNA gene sequencing data sets (Wu et al., 2016;
McDonald et al., 2018). On the one hand, we looked for abundant
species to ensure their detection in forensic-type saliva samples,
which are often as small as a few microliters (µL) in volume.
On the other hand, we also looked for frequent species, meaning
that they are more likely to be present in the general population;
hence, in the great majority of saliva stains found at crime scenes.
For our final choice, we focused on species that are both abundant
and frequent species at the same time since taxa “exclusive” to
an individual often account for a significant percentage of an
individual’s microbiome profile (Costello et al., 2009; Nasidze
et al., 2009; Zaura et al., 2009; Lazarevic et al., 2010; Huse et al.,
2012; Li et al., 2013, 2014; Hall et al., 2017). The top 15 bacterial
species identified as both most abundant and most frequent
in our samples belonged to genera previously reported to be
predominant taxa in saliva and part of the so-called “core” oral
microbiome (Costello et al., 2009; Nasidze et al., 2009; Zaura et al.,
2009; Lazarevic et al., 2010; Huse et al., 2012; Li et al., 2013, 2014;
Hall et al., 2017). Our observations agree with these previous
studies, reporting that the saliva microbiome is dominated by just
a few taxa, while most of the taxa detected per individual are rare.

Second, we analyzed the microbiome profiles of dried saliva
stains exposed to our laboratory environment long-term (up

to 1 year) and focused our time-dependent analysis on the
previously selected 15 most abundant and frequent bacterial
species. Based on differential abundance analysis, we identified
four species, the abundance of which significantly changed
over time since deposition: F. periodonticum, H. parainfluenzae,
V. dispar, and V. parvula. It is noted that three of the
species are obligate anaerobes (F. periodonticum, V. dispar, and
V. parvula), while the fourth one is a facultative anaerobe
(H. parainfluenzae). Theoretically, obligate anaerobes might be
depleted upon exposure to an oxygen-rich environment such
as our laboratory, as a previous study also reported this for
Veillonella genus (Salzmann et al., 2019). We hypothesize that the
selected bacterial species co-aggregate ex vivo with other saliva
microbes forming biofilms and having access to nutrients and
molecules for survival and protection. The removal of oxygen
by aerobic and facultative anaerobes could create “pockets” of
anoxia that support the growth of obligate anaerobes, in a process
similar to what happens in human dental plaque both in vivo
(Schaechter, 2009) and ex vivo (Diaz et al., 2002). Obligate
anaerobic organisms can also metabolize oxygen and produce
protective enzymes in response to oxidative stress (Marquis,
1995; Jabłońska and Tawfik, 2019). Additionally, the bacterial
ex vivo co-aggregates could be advantageous for the more
efficient utilization of nutrients and molecules found in saliva,
as previously reported (Bradshaw et al., 1994; Kuramitsu and
Ellen, 2000; Periasamy and Kolenbrander, 2009). The method
we employed reported only relative abundance changes of the
four species over time, though different scenarios could explain
the direction of these changes. For example, the increase in
the selected reference log ratio balance from 7 to 365 days
since deposition could be explained by one of the following five
scenarios of absolute abundance changes: (i) the numerator’s taxa
increased on average; (ii) the denominator’s taxa decreased on
average; (iii) a combination of the previous two happened; (iv)
both the numerator’s and denominator’s taxa increased, but the
numerator’s taxa increased more compared to the denominator’s
taxa; and (v) the numerator’s and denominator’s taxa both
decreased, but the denominator’s taxa decreased more compared
to the numerator’s taxa.

In line with our findings, other published studies also
indicated time-dependent microbiome changes in the dried saliva
samples exposed to indoor conditions. Though not the main
aim of their study, Salzmann et al., 2019 analyzed the microbial
communities in both the fresh and dried saliva samples exposed
to their laboratory environment for both 5 and 9 months. Via
differential abundance analysis using DESeq2 (Love et al., 2014)
they showed that four facultative and obligate anaerobic bacteria
were significantly depleted upon exposure to indoor conditions:
Actinomyces, Staphylococcus, Veillonella, and an unclassified
genus from the Leptotrichiaceae family. However, no definitive
conclusions could be drawn due to the small sample size in the
study (n = 4, two fresh and two dried saliva stains). Moreover, the
analysis employed for the differential abundance testing (DESeq2;
Love et al., 2014) was originally developed for RNA-Seq data and
requires further development for general use on microbiome data
(Weiss et al., 2017). While the authors did not report their results
at the species level, looking at the genus level two of the four
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bacterial species we selected as time-dependent markers belong to
the genus Veillonella, and one of the 15 species identified as most
abundant and most frequent belong to the Actinomyces genus and
another to the Leptotrichiaceae family.

We are aware of the limitation that only two individuals
were studied in the differential abundance analysis of the
long-term dried saliva stains. This was mainly due to the
technical and financial restrictions of our NGS analysis, but
we consider it sufficient for a proof of principle study. In
the future, analysis of more individuals for targeted time
periods will add to these results and perhaps reveal additional
promising biomarkers. Our study also only analyzed the four
most promising bacterial species via a targeted analysis. However,
based on the promising follow-up results, future work could
focus on the analysis of all the top 15 most abundant and
frequent species as identified from the publically available adult
human saliva 16S gene NGS data sets. The other eleven bacterial
species might potentially similarly participate in an ex vivo
microbial consortium (Kolenbrander, 2011). Hence, potential
time-dependent changes in their abundance could serve as
powerful additional estimators of the time since deposition
of saliva stains.

Based on the four differentially abundant and frequent
bacterial species, we developed a 4-plex qPCR assay to test the
forensic applicability in dried saliva stains exposed to indoor
short-term conditions of up to 1 month. A prerequisite for
applying such a qPCR assay in a stain would be to confirm
its body fluid source being saliva. For this, it is possible to
apply another microbiome-based approach for the conclusive
identification of saliva stains, as we recently showed in a previous
study (Díez López et al., 2019). The four species targeted
with the 4-plex qPCR assay were detected in the fresh saliva
(t0) of all 15 analyzed individuals, confirming that they are
abundant and frequent enough for forensic use. Interestingly,
the qPCR-reported cell counts of our four targeted bacterial
species increased with time since deposition for the majority
of the analyzed individuals. However, high inter-individual
differences were observed in the variation explained by time
in the species abundance. Nevertheless, there was no clear
relationship between a higher explained variation and initial
species abundance (t0). We are not very surprised by this,
as this variation between individuals could be explained by
bacterial interactions. For example, other bacteria taxa present
in the sample might have interacted with our targeted species
in different ways (i.e., mutualism, syntrophism, commensalism,
proto-cooperation, antagonism, competition, parasitism, and
predation). The presence and abundance of certain nutrients and
molecules in the saliva at the time since deposition could also
favor or impair some of these interactions. Finally, while qPCR
is a well-established and suitable method for this study, it is
also possible to transfer the protocol to newer, more sensitive
methods, such as digital droplet PCR, in the future.

For estimating the time since deposition of our saliva
stains, we first built a generalized prediction model. By this,
we attempted to estimate the time when an “unknown” test
stain was deposited based on a previously established model.
However, the high inter-individual variation in our data set

limited the possibility of implementing such a model. Though
time-dependent changes in the four targeted bacteria occurred in
the short-term dried saliva stains (up to 1 month) from all the 15
analyzed individuals, the magnitude and evolution through time
of those changes were very specific to each individual. As a result,
the estimation of the time since deposition of an individual’s
stains based on a model trained with stains from other individuals
was not feasible with our data set. To further explore the
possibility of a generalized model, future studies might employ
a much bigger sample size; not only regarding the number
of individuals but also regarding the tested environmental
conditions. This could enable a better understanding of whether
a broad range of inter-individual and different environmental
effects can be captured during model building. These effects,
together with the bacterial-based time-dependent information,
might result in a generalized model being applicable to unknown
stains that originate from random individuals in the population,
exposed to different environmental conditions.

Based on the limitation of applying a generalized model in
our data set, we decided to build individual-specific models
to predict the time since deposition of these short-term dried
saliva stains. For each individual, we employed the first sample
duplicate set for model training and the second for model
testing. With this, we aimed to mimic forensic investigations
with our data set, where the estimation of the time since
deposition of one or various stains is possible based on a
model built from a reference set of dried saliva stains from
the same individual exposed to adequate storage conditions and
time frames (e.g., indoor storage conditions for a particular
period of time; Figure 1E). We acknowledge that different
factors might affect the model building and accuracy; particularly,
the environment the stain is exposed to; i.e., temperature,
relative humidity, ambient light, availability of nutrients, and
molecules, the template bacterial community present in the
stain at the time of deposition (which seems to be affected
by individual characteristics), and the time since deposition
itself. All these factors are expected to influence the time-
dependent changes in the bacterial biomarkers, which could be
accounted for by an individualized solution as we do in our
data set in more dedicated future studies. The reported MAE
values in these individual-specific models further highlighted
the observed inter-individual differences, ranging from 3.3 to
7.8 days (average of 5 days). In contrast to RNA-based studies,
we did not observe increased prediction errors with increased
storage times. There is only one published RNA-based study
on the time since deposition estimation of dried saliva stains
we can compare our results with (Asaghiar and Williams,
2020). That study reported a slightly lower MAE value (3.5
vs. 5 days); however, the sample size was much larger in our
study (222 samples from 15 different individuals vs. 5 samples).
A different study analyzing dried blood stains reported a time
estimation error of 2–4 weeks for stains exposed less than
6 months, which we improved in our study for dried saliva stains
(Fu and Allen, 2019).

This study observed an increase in the MAE values in the
short-term dried saliva stains collected 7 months later, ranging
from 3.9 to 16.9 days (average of 8.8 days) compared to a
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range of 3.3 to 7.8 days (average of 5 days) from the first
sample collection. In the same way that different environmental
factors can affect the PMI of human cadavers (Belk et al., 2018;
Dash and Das, 2020), the time since deposition estimation of
dried body fluid stains could be affected by variations in the
exposure conditions. We hypothesize that one factor affecting
our predictions might be the season, since the first round
of stains were collected and exposed during spring and the
second round during autumn, with the consequent differences
in average temperatures (slightly lower in autumn) and daylight
duration (8 vs.11 h), even in indoor conditions (since stains were
placed 4 m away from a window). It could also happen that
the in vivo abundance of some of the four selected bacterial
species varied between the two saliva collection time points,
7 months apart from each other, which could happen due to
changes in an individual’s health status or lifestyle habits, affecting
the subsequent time-dependent bacterial abundance changes
in the prepared stains. However, given the more extensive
previous data sets demonstrating time-wise microbiome stability
in saliva in vivo (Costello et al., 2009; Lazarevic et al., 2010;
Stahringer et al., 2012; Zhu et al., 2012), and the absence of
available information on potential changes in our volunteers’
health status and lifestyle habits, our preliminary data need to
be considered with care and larger data evidence needs to be
established in the future.

More dedicated future research might focus on increasing
the reliability of the individual-specific prediction models by, for
example, increasing the model training sample size. For instance,
instead of preparing and collecting dried stains every 2 days,
shorter time frames could be analyzed (i.e., daily or every a
few hours), which may better reflect the rapid division rates
of bacterial cells when the conditions are favorable. A bigger
training set would also mean the possibility of investigating
more complex prediction models that can capture other time-
dependent changes that are less linear. Additionally, DNA-based
analysis can be reliable in time-dependent bacterial “growing”
patterns but might present limitations in “decaying” patterns
since living and dead cells cannot be distinguished. An alternative
could be bacterial RNA-based analysis in which only the live
bacterial fraction is analyzed or a combined approach of
bacterial DNA/RNA analysis. Before our proposed approach
is considered for future forensic applications various forensic
developmental and implementation criteria will need to be met.
For instance, future research should deal with the suitability of
the approach under different scenarios, such as sample volume
and sample substrate (e.g., cigarette butts, chewing gums, food
utensils, and fabrics) as well as environmental factors (e.g.,
average temperature, percentage of air humidity, and ambient
daylight hours).

CONCLUSION

To the best of our knowledge, this research is the first to show
from a forensic standpoint, how commensal human bacteria
absolute abundance changes can be used to estimate the time
since deposition of dried saliva stains. We focused on the

abundant and frequent commensal bacterial species of the saliva
of human adults, aiming for applications in forensic-type saliva
stains from the general population. We observed that, though
high inter-individual variation was found, the four selected
bacterial species present a high and significant correlation
between their abundance in saliva stains and the time since
deposition of saliva stains. The data set presents an individual-
specific solution for estimating stain time since deposition.
We hypothesize that this might be forensically feasible when
a saliva reference sample is used to produce the prediction
model underlying data based on samples stored for different time
intervals under specific environmental conditions that resemble
those to which the crime scene stain was exposed, such as in
cases of indoor crimes, though more dedicated future research is
needed to confirm our hypothesis. While we consider 1 month
as a forensically realistic time frame between stain deposition
at a crime scene and reference sample collection from potential
suspects for the majority of forensic cases, shorter or longer time
spans could be studied in more detail to analyze the extended
potential forensic utility of our approach.

Our proof-of-principle study suggests that like in other
forensic applications, the human microbiota has promising
future forensic applications for estimating the time since
deposition of a saliva stain at a crime scene. In the future,
this novel approach may be expanded to other forensically
relevant human stains containing microbial DNA. Before such
microbiome-based stain timing can be further considered
for practical forensic applications, further microbiome
research is needed to better understand and model all the
factors contributing to the bacterial time-dependent changes.
Additionally, various forensic developmental and forensic
implementation criteria will need to be met via more dedicated
studies in future.
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