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Abstract: As a rare hereditary disease, congenital nephrogenic diabetes insipidus (NDI) is clinically
characterized by polyuria with hyposthenuria and polydipsia. NDI results from collecting duct
principal cell hyporesponsiveness or insensitivity to the antidiuretic action of arginine vasopressin
(AVP). The principal cell-specific water channel aquaporin-2 (AQP2) plays an essential role in water
reabsorption along osmotic gradients. The capacity to accumulate AQP2 in the apical plasma
membrane in response to decreased fluid volume or increased plasma osmolality is critically regulated
by the antidiuretic hormone AVP and its receptor 2 (AVPR2). Mutations in AVPR2 result in X-linked
recessive NDI, the most common form of inherited NDI. Genetic defects in AQP2 cause autosomal
recessive or dominant NDI. In this review, we provide an updated overview of the genetic and
molecular mechanisms of congenital NDI, with a focus on the potential disease-causing mutations
in AVPR2 and AQP2, the molecular defects in the AVPR2 and AQP2 mutants, post-translational
modifications (i.e., phosphorylation, ubiquitination, and glycosylation) and various protein-protein
interactions that regulate phosphorylation, ubiquitination, tetramerization, trafficking, stability, and
degradation of AQP2.

Keywords: nephrogenic diabetes insipidus; AVPR2; AQP2; mutation; trafficking; phosphorylation;
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1. Introduction

There are two major forms of diabetes insipidus: central diabetes insipidus (CDI) and nephrogenic
diabetes insipidus (NDI). CDI is caused by the failure of the hypothalamic-pituitary axis to produce
or release the appropriate physiologic amounts of vasopressin. NDI results from vasopressin
hyporesponsiveness or insensitivity of the collecting duct principal cells, which are responsible
for water reabsorption through coordinated actions of apical AQP2 and basolateral AQP3 and AQP4.
In both CDI and NDI, the kidney is unable to concentrate urine, leading to the production of excess
urine or polyuria. NDI can be further classified into acquired and congenital forms. Compared to
congenital NDI, acquired NDI is significantly more prevalent and occurs in various pathophysiologic
conditions. The primary cause of acquired NDI is chronic administration of lithium, which is frequently
used to treat a common chronic psychiatric disease, bipolar disorder. NDI develops as a result of
long-term lithium therapy, although obstruction of the urinary tract, hypercalcemia, hypokalemia,
and protein malnutrition can also cause NDI [1]. Congenital NDI is a genetic disorder, which we will
discuss in detail below.
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2. Signs and Symptoms

Symptoms often develop in patients with congenital NDI quickly after birth and the majority
of newborns are diagnosed during the first year of life. The primary symptoms include polyuria,
polydipsia, and nocturia. In addition, patients may exhibit a variety of other symptoms such as
unexplained fever, poor feeding, constipation, diarrhea, vomiting, lethargy, irritability, and retching.
Therefore, some infants may not be able to grow or gain weight at the normal rate. Adult patients
gradually develop orthostatic hypotension, megacystis hydronephrosis, and hydroureter because of
persistent polyuria (reviewed in [2]).

3. Genetic Basis of Congenital NDI

There are two forms of congenital NDI: primary inherited NDI and secondary inherited NDI.
The vast majority of the primary inherited NDI cases (90%) show an X-linked recessive mode of
inheritance. This disorder results from mutations in the antidiuretic hormone arginine vasopressin
receptor 2 gene (AVPR2) on the long arm of the X chromosome (Xq28) [3]. To date, a total of 287
potential disease-causing mutations in AVPR2 have been described, with 177 (62%) being missense
mutations (The Human Gene Mutation Database at the Institute of Medical Genetics in Cardiff;
http://www.hgmd.cf.ac.uk). The second major type involves small deletions, with an incidence of
approximately 18%. Splicing mutations, small insertions, and gross deletions have been also reported,
although they occur less frequently.

About 10% and 1% of cases of the primary inherited NDI exhibit an autosomal recessive or
dominant mode of inheritance, respectively. In both scenarios, the disorder is associated with defects
in AQP2 on the long arm of chromosome 12 (12q13). The first such NDI patient described was a male,
who was determined to be a compound heterozygote for two AQP2 missense mutations (R187C and
S217P) [4]. Since then, at least 70 putative disease-causing AQP2 mutations have been reported in
74 families (Figure 1 and Table 1). Among them are 54 missense mutations, 4 splicing mutations, 9
small deletions, 1 gross mutation, and 2 small insertions (The Human Gene Mutation Database at the
Institute of Medical Genetics in Cardiff; http://www.hgmd.cf.ac.uk). In brief, inactivation of AVPR2 or
AQP2 is the genetic basis of congenital NDI.

http://www.hgmd.cf.ac.uk
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Figure 1. Diagram of the AQP2 protein and the locations of the affected residues by the putative 

disease-causing AQP2 mutations. AQP2 is depicted with six transmembrane domains. The 

extracellular, transmembrane and cytoplasmic domains are represented as reported [4]. Solid 

symbols indicate the affected residues because of the mutations (Table 1). 

Table 1. Potential disease-causing mutations in AQP2. 
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Mis-sense 

1 CM086773 M1I  NH2  ATG-to-ATT  Met-to-Ile  [5] 

1 CM137423  A19V TMI GCC-to-GTC Ala-to-Val [6] 

1 CM970097  L22V  TMI  CTC-to-GTC  Leu-to-Val  [7] 

1 CM106380  V24A  TMI  GTC-to-GCC Val-to-Ala  [8] 

1 CM024085  L28P  TMI  CTC-to-CCC  Leu-to-Pro  [9] 

1 CM086774  G29S  TM1  GGC-to-AGC Gly-to-Ser  [5] 

Figure 1. Diagram of the AQP2 protein and the locations of the affected residues by the putative
disease-causing AQP2 mutations. AQP2 is depicted with six transmembrane domains. The extracellular,
transmembrane and cytoplasmic domains are represented as reported [4]. Solid symbols indicate the
affected residues because of the mutations (Table 1).

Table 1. Potential disease-causing mutations in AQP2.

No. of
Family

Accession
Number

Name of
Mutation Domain Nucleotide

Change
Predicted
Change Ref

Mis-sense

1 CM086773 M1I NH2 ATG-to-ATT Met-to-Ile [5]

1 CM137423 A19V TMI GCC-to-GTC Ala-to-Val [6]

1 CM970097 L22V TMI CTC-to-GTC Leu-to-Val [7]

1 CM106380 V24A TMI GTC-to-GCC Val-to-Ala [8]

1 CM024085 L28P TMI CTC-to-CCC Leu-to-Pro [9]

1 CM086774 G29S TM1 GGC-to-AGC Gly-to-Ser [5]

2 CM024086 A47V TMII GCG-to-GTG Ala-to-Val [9]

2 CM021246 Q57P TMII CAG-to-CCG Glu-to-Pro [10]
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Table 1. Cont.

No. of
Family

Accession
Number

Name of
Mutation Domain Nucleotide

Change
Predicted
Change Ref

1 CM940082 G64R CII GGG-to-AGG Gly-to-Arg [11]

1 CM970098 N68S CII AAC-to-AGC Asn-to-Ser [12]

1 CM056523 A70D CII GCC-to-GAC Ala-to-Asp [13]

2 CM950080 V71M CII GTG-to-ATG Val-to-Met [14]

1 CM153550 A86V TMIII GCC-GTC Ala-to-Val [15]

1 CM138317 G96Q TMIII GGG-GAG Gly-to-Glu [16]

2 CM021247 G100V TMIII GGA-to-GTA Gly-to-Val [10]

1 CM062427 G100R TMIII GGA-to-AGA Gly-to-Arg [17]

1 CM068766 I107N EII ATC-to-AAC Ile-to-Asn [18]

1 CM146787 T108M EII ACG-ATG Thr-to Met [19]

1 CM980100 T125M EII ACG-to-ATG Thr-to-Met [20]

1 CM970100 T126M EII ACG-to-ATG Thr-to-Met [12]

1 CM1411333 A130V TMIV GCG-to-GTG Ala-to-Val [21]

1 CM1210558 L137P TMIV CTG-to-CCG Leu-to-Pro [22]

1 CM970101 A147T TMIV GCC-to-ACC Ala-to-Thr [12]

2 CM071560 D150E ICII GAT-to-GAA Asp-to-Glu [23]

1 CM973106 V168M TMV GTG-to-ATG Val-to-Met [24]

1 CM980101 G175R TMV GGG-to-AGG Gly-to-Arg [20]

1 CM062428 G180S EIII GGC-to-AGC Gly-to-Ser [17]

1 CM970102 C181W EIII TGC-to-TGG Cys-to-Trp [7]

1 CM1411334 N184H EIII AAT-to-CAT Asn-to-His [21]

1 CM950081 P185A EIII CCT-to-GCT Pro-to-Ala [14]

3 CM940083 R187C EIII CGC-to-TGC Arg-to-Cys [11]

1 CM056522 R187H EIII CGC-to-CAC Arg-to-His [13]

1 CM950082 A190T EIII GCT-to-ACT Ala-to-Thr [14]

1 CM024087 V194I EIII GTC-to-ATC Val-to-Ile [9]

1 CM087015 G196D EIII GGC-to-GAC Gly-to-Asp [25]

1 CM120677 H201Y EIII CAC-to-TAC His-to-Tyr [26]

1 CM960073 W202C EIII TGG-to-TGT Trp-to-Cys [27]

1 CM120678 G211R TMVI GGC-to-CGC Gly-to-Arg [26]

1 CM156813 G215S TMVI GGC-to-AGC Gly-to-Ser [28]

1 CM071561 G215C TMVI GGC-to-TGC Gly-to-Cys [23]

2 CM940084 S216P TMVI TCC-to-CCC Ser-to-Pro [11]

1 CM099886 S216F TMVI TCC-to-TTC Ser-to-Phe [29]

1 CM106381 K228E CIV AAG-to-GAG Lys-to-Glu [8]

1 CM096039 R254Q CIV CGG-to-CAG Arg-to-Gln [30]

1 CM056296 R254L CIV CGG-to-CTG Arg-to-Leu [31]

1 CM1514252 R254W CIV CGG-to-TGG Arg-to-Trp [32]

1 CM980102 E258K CIV GAG-to-AAG Glu-to-Lys [33]

2 CM950083 P262L CIV CCG-to-CTG Pro-to-Leu [14]

Non-sense
2 CM972978 R85X CII CGA-TGA Arg-to-Stop [24]

1 CM970099 G100X TMIII GGA-to-TGA Gly-to-Stop [34]



Cells 2020, 9, 2172 5 of 18

Table 1. Cont.

No. of
Family

Accession
Number

Name of
Mutation Domain Nucleotide

Change
Predicted
Change Ref

Frame-shift

1 CD034849 127–128del TMII 2bp deletion Post-elongation [35]

1 CD941595 369delC EII 1bp deletion Stop at Codon
131 [11]

1 CD024169 652delC TMVI 1bp deletion Post-elongation [9]

1 CD014628 721delG CIV 1 bp deletion Post-elongation [36]

1 CD024654 727delG CIV 1 bp deletion Post-elongation [37]

1 CD137424 750delG CIV 1 bp deletion Post-elongation [6]

1 CD014629 763–772del CIV 10 bp deletion Post-elongation [36]

1 CD137425 775delC CIV 1 bp deletion Post-elongation [6]

1 CI156810 501–502insC CIV 1 bp insertion Post-elongation [28]

1 CI034768 779–780insA CIV 1 bp insertion Post-elongation [38]

1 CD983834 812–818del CIV 7 bp deletion Post-elongation [36]

Splicing
site

1 CS1213334 IVS2-1G>A NA G-to-A NA [14]

1 CS024161 IVS3+1G>A NA G-to-A NA [9]

1 CS034835 IVS3-1G>A NA G-to-A NA [35]

Note: All mutations listed in http://www.hgmd.cf.ac.uk as of 09/20/2020 are presented.

The secondary inherited form refers to NDI as a complication associated with inherited human
diseases, such as Bartter syndrome, apparent mineralocorticoid excess, Renal Fanconi syndrome, cystic
kidney disorders, familial hypomagnesemia with hypercalciuria and nephrocalcinosis, and distal renal
tubular acidosis (reviewed in [39]).

4. The AVP-AVPR2-AQP2 Signaling Pathway and Beyond

The general mechanisms involved in the AVP-AVPR2-AQP2 signaling pathway have been
reviewed in detail elsewhere [40,41], only a succinct overview is given here. In response to decreased
plasma volume or increased plasma osmolality, AVP is generated in the hypothalamus and secreted from
the pituitary gland. AVPR2 is the cognate G protein-coupled receptor for AVP. In the principal cells of the
collecting duct, binding of AVP to AVPR2 triggers a signaling cascade including involvement of a number
of kinases, changes in the activities of phosphatases and other enzymes, and reorganization of the
cytoskeleton. Collectively, these signaling events facilitate AQP2 routing to the apical plasma membrane
and inhibit endocytosis-mediated AQP2 internalization. Consequently, there is an accumulation of
AQP2 in the apical plasma membrane permitting water to move down its osmotic gradient through
the membrane into the interstitium and subsequently into the circulation. AVP stimulation of AVPR2
also activates the adenylyl cyclases AC3 and AC6, promoting conversion of ATP to cyclic adenosine
monophosphate (cAMP) mobilizing cAMP-dependent kinases such as PKA to function in AQP2
trafficking. AQP2 translocation can also take place in a cAMP-independent manner (reviewed in [2]).

The short-term effect of AVP on AQP2 is the movement of AQP2 from the intracellular vesicles to
the apical membrane. A sustained increase of circulating AVP for 24 h or more can induce a long-term
effect on water reabsorption by increasing the abundance of AQP2 [42,43]. This increase is considered
as a consequence of enhanced AQP2 transcription [42,44].

Apart from the AVP-AVPR2-AQP2 signaling pathway, AVP affects other targets including the
urea transporter UT-A1 [45], and the epithelial sodium channel [46]. Hence, AVP selectively increases
the permeabilities of the apical membrane to water, urea, and sodium.

AQP2 is also controlled by multiple endogenous signaling molecules/hormones. They modulate
AQP2 trafficking primarily through G protein-coupled receptors. Important among them are purines,
calcitonin, secretin, glucagon, angiotensin II, serotonin, and prostaglandins (reviewed in [47]). Various

http://www.hgmd.cf.ac.uk
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alternative receptors also appear to impact AQP2 as well (reviewed in [48]). These include the farnesoid
X receptor [49], the peroxisome proliferator-activated receptor-γ [50], angiotensin II receptor type I [51],
the bile acid receptor TGR5 [49], the glucocorticoid and mineralocorticoid receptors [52], the estrogen
receptor-α [53], and the liver X receptor-β [48].

5. Molecular Defects of AVPR2 Mutants

Genetic defects in AVPR2 may result in: (1) improperly processed or unstable mRNA like promoter
alterations, exon skipping, aberrant splicing, frame-shift or non-sense mutations, which result in
truncated proteins, (2) decreased binding capacity of the receptor to AVP, or (3) mis-folding of the
receptor that is retained intracellularly and incapable of routing to the basolateral membrane to bind
AVP (reviewed in [54,55]). The vast majority of the AVPR2 mutations lead to mis-folding of the
receptor [56]. The mis-folded receptors concentrate in the Golgi apparatus and are subsequently
degraded by the ubiquitin-proteasome pathway, conferring loss-of-function phenotypes on AVPR2 [57].
Rescuing the normal function of these mis-folded proteins, therefore, may provide new therapeutically
useful strategies for the management of NDI patients. The key step in any such approach is to facilitate
the freeing of the trapped receptor from the intracellular compartments. Nonpeptide inhibitors could
be explored to rescue the mis-folded AVPR2 variants by acting as pharmacologic chaperons rather than
endocytosis antagonists [58]. Indeed, administration of the vasopressin inhibitor SR49059 significantly
ameliorated the symptoms of polyuria and polydipsia without affecting other renal physiological
parameters such as creatinine excretion and electrolyte measurements [59]. These findings support the
concept that pharmacologic chaperons might have clinical utility in the management of some forms of
congenital NDI.

6. Molecular Defects of Recessive AQP2 Mutants

Patients with congenital autosomal recessive NDI are homozygous for a mutation in AQP2 or
carry two different AQP2 mutations. Currently, all AQP2 mutations causing recessive NDI are located
throughout the six transmembrane domains and five connecting loops of AQP2. With a few exceptions
that possess a residual water transport capacity, these mutants are non-functional [9,12,60] and are
retained in the endoplasmic reticulum (ER) as evidenced by their scattered ‘reticular’ expression
pattern, by their unglycosylated (29 kDa) or high mannose glycosylated (32 kDa) variants, and by their
decreased stability in comparison with WT AQP2 [60–62]. Consistent with the recessive nature of
inheritance and possibly because of their mis-folding, these AQP2 mutants exist as monomers and are
incapable of heteroligomerizing with and impeding the routing and maturation of WT AQP2 in its
pathway to the apical membrane. Typical examples showing all these features are the AQP2-R187C
and AQP2-A190T mutants [38,60,63,64]. R187 and A190 reside in one of the two most highly conserved
fragments of the major intrinsic protein family. The signature motif consisting of three invariant amino
acids (Asn-Pro-Ala) in this region is positioned just proximal to the mutated R187 and A190. Both
R187 and A190 themselves are also strongly conserved in the major intrinsic protein family.

7. Molecular Defects of Dominant AQP2 Mutants

Unlike recessive AQP2 mutants, the dominant AQP2 mutants are functional water channels.
However, they are mis-routed to other subcellular compartments rather than to the apical
membrane [33,36–38]. Because these AQP2 dominant mutants are correctly folded in the ER, they
interact with WT-AQP2 to form heterotetramers and alter intracellular trafficking of the WT and mutant
AQP2 complexes [65]. Consequently, the apical membrane of the renal collecting duct principal cells
lacks sufficient levels of WT-AQP2, leading to dominant NDI. In contrast to the recessive mutants,
all AQP2 mutations identified in dominant NDI are detected in the carboxyl terminus of AQP2,
highlighting the crucial role of this domain in regulating the AQP2 sorting. AQP2-P262L, nevertheless,
is a unique mutation, which was identified in two families with recessive NDI [64]. These patients are
compound heterozygotes for AQP2-P262L together with AQP2-A190T or AQP2-R187C. Functional
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analyses in oocytes revealed that AQP2-P262L was a properly folded and functional aquaporin.
AQP2-P262L localized to intracellular vesicles and was not retained in the ER when expressed in
polarized cells. Upon co-expression, AQP2-P262L formed heteroteramers with WT-AQP2, but not
with AQP2-R187C, leading to a rescued apical membrane localization of AQP2-P262L [64]. Hence,
AQP2-P262L exhibited a cellular phenotype clearly distinct from other AQP2 mutants in recessive
NDI. Instead, and in line with the molecular location of the mutation, it showed all the characteristics
observed for AQP2 mutants in dominant NDI. Nevertheless, the mis-sorting of AQP2-P262L, unlike
other AQP2 dominant mutants, is overruled by apical sorting of WT-AQP2, resulting in the carriers of
the P262L mutation being asymptomatic as are those of AQP2 recessive mutations [64].

8. Regulation of AQP2 by Post-Translational Modifications

Post-translational modifications play a crucial role in signaling transduction, protein maturation
and folding by altering the cellular distribution, stability, function, and binding partners of their
substrate proteins. Recent studies suggest that phosphorylation, ubiquitination, and glycosylation
are major post-translational modifications that regulate AQP2 function, routing, stability, and
protein–protein interactions.

8.1. Phosphorylation

Bioinformatic analysis identified a number of putative phosphorylation sites in AQP2 for various
kinases including protein kinases A (PKA) and casein kinase II [66], with the C-terminal S256 residue
perhaps being the best characterized. As discussed above, binding of AVP to AVPR2 triggers a signaling
cascade that leads to increased cAMP levels. One of the cAMP effectors is PKA. The PKA holoenzyme
is a heterotetramer comprised of two inactive catalytic subunits and two regulatory subunits. Each
regulatory domain binds one catalytic subunit. Upon interaction of cAMP with the PKA regulatory
elements, the catalytic subunits are released from the heterotetramer, allowing them to function as
active serine-threonine kinases, phosphorylating several substrates including AQP2. PKA-catalyzed
AQP2 phosphorylation at S256 increases the rate of exocytosis [66]. Altering cAMP abundance and/or
PKA enzymatic activity with calcitonin or prostaglandin E2 changes both AQP2 phosphorylation and
trafficking [67,68]. Nevertheless, the AQP2 S256 residue can be phosphorylated and, thereby, regulated
in response to vasopressin even in PKA-null cells, indicating that AVPR2-mediated AVP signaling in
collecting duct cells is not entirely PKA-dependent [69].

Casein kinase II also phosphorylates S256, which is necessary for transition of AQP2 through
the Golgi [70]. Vasopressin or forskolin was unable to stimulate translocation of the AQP2-S256A
mutant when expressed in LLC-PK1 cells [71,72]. Since the AQP2-S256L mutation also prevents
phosphorylation at S256 and the subsequent accumulation of AQP2 on the apical membrane of the
collecting duct principal cells, mice homozygous for this mutation had severe urine concentration
defects and developed congenital progressive hydronephrosis [73]. These studies illustrate a critical
role of S256 phosphorylation in the apical targeting of AQP2 and thus water transport.

Large-scale phospho-proteomic analysis later revealed that AQP2 S261, S264, and S269 are
additional AVP-mediated phosphorylation targets [74,75]. Phosphorylation at these sites also impacts
AQP2 trafficking. S261 phosphorylation may stabilize ubiquitinated AQP2 and intracellular localization,
since it is primarily found in the intracellular vesicles after ubiquitination and endocytosis and S261
phosphorylation is reduced in response to AVP treatment [76]. S269 phosphorylation has been
detected exclusively on the plasma membrane [75], however, suggesting a role in promoting AQP2
plasma membrane targeting and/or in inhibiting AQP2 endocytosis [77]. Phosphorylation at S256
appears unnecessary for AQP2 recycling because substitution of S256 into alanine has little effect since
AQP2-S256A recycles rapidly and constitutively. Nevertheless, S256 phosphorylation is essential for
subsequent phosphorylation of other C-terminal serines [75] since phosphorylated forms of AQP2 at
S264 and S269 are not detected in cells expressing the AQP2 S256 mutant or in kidneys from AQP2
S256 mutant mice [75].



Cells 2020, 9, 2172 8 of 18

8.2. Ubiquitination

The ubiquitin proteasome and lysosomal proteolysis pathways are two primary mechanisms for
protein degradation in mammalian cells. Ubiquitination is a complex post-translational modification
in which ubiquitin is covalently added to a target protein through a system consisting of E1 activation,
E2 conjugation, and E3 ligation enzymes. Ubiquitination facilitates protein endocytosis and lysosomal
degradation as well as impacting the interaction of the target protein with its binding partners. AQP2
possesses three potential ubiquitination sites (K228, K238, and K270) [78]. Mutagenesis analyses
revealed, however, that ubiquitination occurs only at K270 whereby a K63-linked chain comprising
generally two to three ubiquitin moieties is attached [78]. This modification at the plasma membrane
enhances AQP2 endocytosis, routing to intraendosomal vesicles and subsequent degradation [78].
Cullin-5 is a vasopressin-activated calcium-mobilizing receptor and a member of the Cullin family
of scaffold proteins of the E3 complex. It may be involved in the attachment of ubiquitin to AQP2,
leading to ubiquitination, internalization, and lysosomal and/or proteosomal degradation of AQP2 after
1-desamino-8-d-arginine vasopressin withdrawal [79]. Analyses of several large-scale transcriptomic
and proteomic datasets defined a panel of E3 ligases that are most likely to form complexes with AQP2,
with NEDD4 and NEDD4L being the most prominent [80], although there are other required effectors.
Indeed, while NEDD4 and NEDD4L mediate ubiquitination and degradation of AQP2, NDFIP is
required to link NEDD4 and NEDD4L to AQP2 [81].

It appears that AQP2 phosphorylation at S256, S261, S264, S269 and ubiquitination at K270
are coordinately regulated to fine tune AQP2 intracellular distribution. Phosphorylation usually
takes place as a priming event for ubiquitination which, in turn, affects protein phosphorylation by
regulating kinase activities [82]. Moreover, AQP2 phosphorylation can nullify the dominant endocytic
signal of K63-linked polyubiquitination. Specifically, phosphorylation at S269 and ubiquitination at
K270 of AQP2 can occur simultaneously, with elevated S269 phosphorylation and lowered AQP2
endocytosis occurring in the presence of the maximal K270 polyubiquitination levels [83]. Hence,
AQP2 phosphorylation is apparently able to counterbalance polyubiquitination and governs its
final localization.

8.3. Glycosylation

Glycosylation is the enzymatic process in which oligosaccharides (also referred as to glycans)
are attached to proteins. N-linked glycans are almost always attached to the nitrogen atom of an
asparagine (Asn) side chain. This particular Asn appears as a part of the Asn-X-Ser/Thr consensus
sequence, where X is any amino acid excluding proline [84]. The sequence Asn123-Ser124-Thr125 in
the second extracellular loop of AQP2 is a consensus N-linked glycosylation site.

Glycosylation induces a complex effect on AQP2 function. In an AQP2-transfected Madin–Darby
canine kidney cell line (clone WT10), 34% of the AQP2 molecules were glycosylated, which was reduced
to 2% after treatment with the glycosylation inhibitor tunicamycin. Moreover, in tunicamycin-treated
WT10 cells, all the AQP2 in the apical membrane was unglycosylated, whereas in untreated cells 30%
of AQP2 in the apical membrane was glycosylated. These observations suggest that glycosylation
is not involved in the routing of AQP2 in Madin–Darby canine kidney cells [85]. Analyses of the
AQP2 N123Q mutant, which carries the disrupted N-linked glycosylation consensus site, revealed that
this mutation still allowed for generation of the nonglycosylated 29-kDa precursor, but neither the
31-kDa nor the mature glycosylated 42-46-kDa variants. The mutant protein, however, had a shorter
half-life, compared to WT-AQP2 [86]. A shorter half-life was also observed for the AQP2-S256D and
AQP2-E258K mutants [86], although their glycosylation was similar to WT-AQP2 [86]. These findings
indicate that glycosylation per se is not crucial for AQP2 folding and that AQP2 folding is independent
of the primary calnexin/calreticulin ER quality control mechanisms [86,87]. The AQP2-T125M mutant
identified in patients with recessive NDI [9,20], nevertheless, is not glycosylated due to the loss of the
consensus N-linked glycosylation sequence. This mutant is not localized to the plasma membrane [9],
implying that it is not correctly folded and retained in the ER, or because of other unknown mechanisms,
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does not translocate to the cell surface. Further analyses of the AQP2-N123Q revealed that glycosylation
is neither required for tetramerization in the ER nor for trafficking from the ER to the Golgi complex.
Addition of the N-linked glycan, instead, is critical for exit from the Golgi complex and routing of
AQP2 to the plasma membrane [86], conflicting with what was reported in WT10 cells [85].

9. Regulation of AQP2 by Protein–Protein Interactions

Multiple proteins interact with AQP2 and regulate AQP2 degradation, post-translational
modification, and trafficking (Figure 2 and Table 2).
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Figure 2. AQP2-interacting proteins. AQP2 binding partners are indicated, as well as the location for
the interaction in those cases where it has been mapped (Table 2).

Table 2. AQP2-interacting proteins.

Target Interacting Protein Proposed Function
Method Applied

Ref
YTH PD IP IHC MS

hAQP2 LIP5 Lysosomal degradation Xa Xa X X [88]

hAQP2 Caveolin-1 AQP2 internalization X X [89]

hAQP2 MAL Increases apical surface expression X X [90]

rAQP2 SPA-1 Regulates trafficking to the apical membrane Xa X X X [91,92]

rAQP2 Hsc70 Co-localized in the apical membrane:
involved in trafficking Xac X X X [93,94]

hAQP2 AKAP220 Phosphorylation of AQP2 triggering trafficking Xd Xb [95]

rAQP2 Ezrin Endocytosis Xd Xd X [96]

hAQP2 hAQP5 Impairing AQP2 membrane localization X X [97]

rAQP2 Annexin II Phosphorylation dependent binding
to the C-terminus X X [94]

rAQP2 PP1c Phosphorylation dependent binding
to the C-terminus Xd X X [94]

rAQP2 Bip Phosphorylation dependent binding
to the C-terminus Xd X X [94]

rAQP2 Actin Trafficking X X [94,98]

mAQP2 Rab7 Trafficking X X X [94,99]

mAQP2 USP4 Deubiquitination X X [100]

rAQP2 SNX27 Lysosomal degradation X X X [101]

Note: a: using AQP2 C-terminus; b: using rat kidney; c: using human kidney cDNA library; d: using full-
length AQP2. YTH: yeast two-hybrid; PD: glutathione S-transferase pull-down; IP: immunoprecipitation; IHC:
immunohistochemistry; MS: mass spectroscopy.
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One of the AQP2-binding proteins is lysosomal trafficking regulator interacting protein 5 (LIP5) [88].
LIP5 functions in multivesicular body formation. The complex formation between LIP5 and the
AQP2 C-terminal tail promotes AQP2 lysosomal degradation and occurs regardless of the state of
phosphorylation at S256 and ubiquitination at K270 [88]. This interaction was identified by yeast
two-hybrid and confirmed by glutathione S-transferase pull-down, co-immunoprecipitation, and
colocalization assays. Knockdown of LIP5 in mpkCCD cells attenuated phorbol ester-induced AQP2
degradation [88]. LIP5, therefore, appears important in the regulation of AQP2 degradation, possibly
by inhibiting the formation of late endosomes [88].

Dynamic intracellular mobilization of AQP2 depends on its specific interactions with the
components of the trafficking machinery and the actin cytoskeleton. These include Caveolin-1 [89], the
myelin and lymphocyte-associated protein (MAL) [90], the signal-induced proliferation-associated
gene-1 (SPA-1) [91], the 70-kDa heat shock proteins hsc70 and hsp70 [93], A-kinase anchoring protein
220 (AKAP220) [95], 14-3-3 [102], Ezrin [96], and AQP5 [97]. Each of these AQP2-intercating proteins
is co-expressed and colocalized with AQP2 in the collecting duct cells [89–91,93,95–97,102].

AQP2-Caveolin-1 interaction is believed to regulate the internalization of AQP2 through a
caveolin-1-dependent pathway in MDCK cells [89]. MAL is a detergent-resistant membrane-associated
protein involved in apical sorting events and AQP2 phosphorylation at S256 appears to enhance its
binding affinity with MAL. While MAL does not affect apical delivery of AQP2 or its detergent-resistant
association with membrane in renal epithelial cells, it promotes the S256 phosphorylation and apical
localization of AQP2 by inhibiting its internalization [90].

SPA-1, a PDZ-domain containing GTPase-activating protein for Rap1 was identified in a
biochemical search for AQP2-interacting proteins [91]. The physiological relevance and significance
of this interaction is highlighted by the coincided distribution of SPA-1 with that of AQP2 in renal
collecting ducts, the concomitant co-relocation by hydration status, and the impaired AQP2 trafficking
to the cell surface membrane in MDCK cells expressing a SPA-1 mutant lacking Rap1 GTPase-activating
protein activity or the constitutively active mutant of Rap1 [91]. Moreover, AQP2 apical localization
was reduced in SPA-1-deficient mice. These studies illustrate that SPA-1 interacts with AQP2 and
promotes at least partially AQP2 trafficking [91].

The 70-kDa heat shock proteins were uncovered as proteins interacting with the AQP2 C-terminus
in a yeast two-hybrid screening [93]. The interaction was found to be direct, partially inhibited by
ATP, and critically affected by the Ser-256 residue in the AQP2 C terminus. Vasopressin enhances
their interaction, as evidenced by increased binding in immunoprecipitation assays and by an
increased co-localization of the two proteins on the apical membrane of principal cells in rat collecting
ducts. Hsc70 knockdown increased membrane accumulation of AQP2 and reduced endocytosis of
rhodamine-transferrin. Hence, the interaction influences AQP2 trafficking [93].

Structurally diverse A-Kinase Anchoring Proteins (AKAPs) share a common function: acting
as scaffold proteins binding to PKA and other signaling proteins and physically recruiting these
protein complexes to distinct cellular locations. This enables regulation of specific substrates through
phosphorylation by PKA and dephosphorylation by phosphatases. In response to dehydration, PKA
phosphorylates AQP2 at S256 to promote its apical membrane sorting. AKAP220 interacts with AQP2
in yeast two-hybrid assays and co-localizes with AQP2 in the cytosol of the inner medullary collecting
ducts [95]. AKAP220 co-expression increases forskolin-stimulated phosphorylation of AQP2 expressed
in transiently transfected COS cells. Based on these results, AKAP220 is thought to enhance AQP2
trafficking by recruiting PKA to phosphorylate AQP2 [95]. The low molecular weight compound
3,3′-diamino-4,4′-dihydroxydiphenylmethane (FMP-API-1) and its derivatives are disruptors of the
AKAP-PKA complex. These drugs elevated AQP2 membrane activity to the same extent as vasopressin
in mpkCCD cells and robustly activated AQP2 in an AVPR2-inhibited NDI mouse model [103]. Direct
activation of PKA by dissociating AKAP led to the phosphorylation of a very specific group of proteins
compared to G protein-coupled receptor agonists or adenylyl cyclase activators such as forskolin,
which induced phosphorylation of many more PKA substrates (reviewed in [47]). FMP-API-1/27
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appears to be a renal-specific AKAP-PKA disruptor, which acted mainly in collecting ducts without
phosphorylating most of the PKA substrates in the whole kidney and heart [103]. This specificity would
lower the potential adverse side effects in other cells and organs. Hence, FMP-API-1/27 may represent
a promising lead compound for the treatment of congenital NDI caused by AVPR2 mutations [103].

Proteins that differentially bind to phosphorylated versus non-phosphorylated peptides of the
AQP2 C-terminus were identified by mass spectroscopy and validated by co-immunoprecipitation [94].
This approach not only confirmed previously documented hsc70 and hsp70 as AQP2 binding partners,
but also revealed a higher affinity of these proteins to the nonphosphorylated form rather than to the
S256-phosphorylated AQP2. Contrarily, the interaction of hsp70-5 (BiP/grp78), another heat shock
protein, with phosphorylated AQP2 was found to be stronger when compared to the nonphosphorylated
protein [94]. In aggregate, these data support the concept that S256 phosphorylation governs AQP2
trafficking by modulating interactions of hsp70 family members with the AQP2 C-terminus [94].

Phosphorylation at S256 and other sites in the AQP2 C-terminus also modulates AQP2 interaction
with 14-3-3ζ and -θ [102]. 14-3-3ζ silencing increased AQP2 ubiquitination, reduced AQP2 protein
half-life, and decreased AQP2 levels while 14-3-3θ knockdown had an opposite effect [102]. The
binding of 14-3-3 proteins to AQP2, therefore, apparently impacts AQP2 phosphorylation, trafficking,
ubiquitination, and degradation [102].

Ezrin is an actin-binding protein that also interacts with AQP2 [96]. Knockdown of Ezrin elevated
AQP2 membrane accumulation and decreased AQP2 endocytosis. Direct binding of Ezrin to AQP2
promotes AQP2 endocytosis, linking AQP2 trafficking to the dynamic actin cytoskeletal network [96].

We reported that AQP5 interacts with Aqp2 in multiple assays [97]. AQP2 and AQP5 are close
homologs and possess 66% sequence identity. AQP5 is normally synthesized in the eyes, salivary
glands, lung, and sweat glands [104–106]. Impaired AQP5 trafficking in the lacrimal gland results
in Sjögren’s syndrome, featured by dry eye and mouth [107]. While Aqp5 is undetectable in the
normal mouse kidney [108], it is readily detectable and co-localizes with Aqp2 in Dot1lAC mice in
which the histone H3 K79 methyltransferase Dot1l is specifically inactivated in the epithelial cells of
the connecting tubule/collecting duct. Overexpression of AQP5 reduced AQP2 cell surface expression.
AQP5 is also expressed and co-localizes with AQP2 at the perinuclear region of the collecting duct cells
in patients with diabetic nephropathy [97]. These discoveries demonstrate that AQP5 may regulate
AQP2 trafficking, possibly by forming heterotetramers with AQP2, and that the impaired apical
localization of AQP2 because of abnormal AQP5 expression may contribute to the deterioration of
glucosuria-induced polyuria in diabetic patients as well as to the development of hypoosmotic polyuria
in Dot1lAC mice [97,109].

Most recently, an AQP2 interactome listing 139 AQP2-interacting proteins was reported (https:
//hpcwebapps.cit.nih.gov/ESBL/Database/AQP2-interactome/) [110], including the 70-kDa heat shock
proteins and 14-3-3 proteins discussed previously. This interactome offers an overall picture of a
dynamic biological process in which AQP2 is synthesized in the rough ER, matures via the Golgi
apparatus, transported to endosomes that move into or out of the plasma membrane, and regulated in
the plasma membrane [110].

10. Summary and Perspectives

AQP2-mediated water reabsorption in the collecting duct principal cells is tightly controlled
by the molecular action of AVP through its receptor AVPR2. AVP binding to AVPR2 triggers a
signaling cascade, leading to increased apical localization of AQP2 and, thus, increased osmotic water
permeability of the apical membrane in collecting duct principal cells. To date, a total of 287 (in
AVPR2) and 70 (in AQP2) potential disease-causing mutations have been identified in patients with
hereditary NDI. These mutations cause or are suggested to cause mis-folding, mis-routing, impaired
binding to AVP (for AVPR2 mutants), and/or impaired function as a water channel (for AQP2 mutants).
Phosphorylation, ubiquitination, and glycosylation are the major post-translational modifications that
regulate AQP2 trafficking and degradation. Numerous AQP2 binding partners promote or inhibit

https://hpcwebapps.cit.nih.gov/ESBL/Database/AQP2-interactome/
https://hpcwebapps.cit.nih.gov/ESBL/Database/AQP2-interactome/
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AQP2 post-translational modifications, translocation to the plasma membrane, and/or degradation.
AQP2 appears to be a “model membrane protein” for elucidating protein trafficking in epithelial cells,
and an excellent candidate to evaluate the role of post-translational controls on protein function and
the highly interactive hormone-regulated signaling networks that coordinate exocytic and endocytic
processes. As more data regarding the sophisticated signaling and regulatory mechanisms regulating
AQP2 trafficking is gained, novel potential therapeutic strategies for NDI will likely emerge [47].
Successful development of these strategies may hold promise for future management of the disease.
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