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Abstract The rate-limiting enzyme in the mevalonic acid (MVA) pathway which can lead to triterpenoid
saponin glycyrrhizic acid (GA) is 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR). In order to reveal the
effect of copy number variation in the HMGR gene on the MVA pathway, the HMGR gene from Glycyrrhiza
uralensis Fisch. (GuHMGR) was cloned and over-expressed in Pichia pastoris GS115. Six recombinant
P. pastoris strains containing different copy numbers of the GuHMGR gene were obtained and the content of
ergosterol was analyzed by HPLC. The results showed that all the recombinant P. pastoris strains contained
more ergosterol than the negative control and the strains with 8 and 44 copies contained significantly more
ergosterol than the other strains. However, as the copy number increased, the content of ergosterol showed an
increasing–decreasing–increasing pattern. This study provides a rationale for increasing the content of GA
through over-expressing the GuHMGR gene in cultivars of G. uralensis.
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1. Introduction

Besides the use as an industrial raw material and tobacco additive, the
roots of Glycyrrhiza uralensis Fisch. are widely used in many Chinese
herbal remedies for their ability to nourish “Qi”, alleviate pain, tonify
the spleen and stomach, eliminate phlegm and relieve cough1,2. The
source of this pharmacological activity is a number of active
components of which glycyrrhizic acid (GA) is considered the most
important. This has led to its adoption as a marker compound of the
quality of G. uralensis. Many studies have shown that GA possesses
antiinflammatory, antiturmor and immune-stimulating activities3–7.

Excessive exploitation of wild G. uralensis plants in the years
leading up to 2000 decreased the supply to such an extent that the
Chinese government imposed restrictions on their collection. As a
result, cultivars have now become the main source of this herb.
However, the low content of GA in these cultivars has placed severe
restrictions on their sustainable development. Attempts have been
made to solve this problem using cell suspensions of G. uralensis8–11

but without success. We therefore decided to genetically engineer
G. uralensis plants through modifying the triterpene biosynthetic
pathway which leads to the formation of GA.

In the biosynthesis of GA, the rate-limiting enzyme is 3-hydroxy-3-
methylglutaryl-CoA reductase (HMGR)12–16 which catalyzes the
reaction of HMG-CoA and NADPH to form mevalonic acid
(MVA). Many previous studies17–19 have shown that the accumulation
of terpenes is significantly increased by increasing the content of the
HMGR gene but, to date, over-expression of the HMGR gene in G.
uralensis (GuHMGR) to increase the production of GA has not been
reported. In this study, we investigated how copy number variation
(CNV) of the GuHMGR gene affects the formation of ergosterol. We
maintain that the results indicate that over-expression of the GuHMGR
gene increases the accumulation of GA in cultivars of G. uralensis.
2. Materials and methods

2.1. Construction of the yeast expression vector containing
GuHMGR gene

NotI and SnaBI of pPIC9K (Fig. 1) were selected as the specific
enzyme cutting sites to insert the GuHMGR gene. Primer pairs
with the specific enzyme sites underlined are as follows:
HF: 50-CGGTACGTAATGGACGTTC
GCCGGAG-30 (SnaBI)
HR: 50-ATAGCGGCCGCTGGAGGCTT
TCGTTATTGGT-30 (NotI)
Figure 1 Structure of pPIC9K.
The cycling parameters of PCR were as follows: 94 1C for
5 min; 30 cycles of 94 1C for 30 s, annealing at 64 1C for 30 s,
extension at 72 1C for 2 min; and a final extension at 72 1C for
10 min. The amplified fragments were purified and subcloned into
pMD19-T (Takara, Japan). The resulting vector (GuHMGR-T)
was digested with SnaBI (2 h at 37 1C) and NotI (2 h at 37 1C) and
then subcloned into pPIC9K (Invitrogen, USA). The resulting
recombinant pPIC9K–GuHMGR plasmid was transferred into the
disarmed E. coli DH5α20 and sequenced for correct insertion.

2.2. Construction of recombinant P. pastoris containing
GuHMGR gene

The recombinant pPIC9K–GuHMGR plasmid was linearized by
restriction enzyme SalI and mobilized by electroporation (1500 V,
25 mF, 400 Ω) into the disarmed P. pastoris GS115 (Invitrogen,
USA). An aliquot (0.5 mL) of yeast peptone dextrose (YPD)
medium was then added and the cells were cultured at 30 1C,
200 rpm for 1 h. An aliquot (200 mL) of the suspension was placed
on minimal dextrose (MD) solid medium and cultured at 30 1C for
2 days. Single colonies were removed and incubated on minimal
medium (MM) and MD solid medium simultaneously at 30 1C for
2–4 days; the colonies growing on both MM and MD media were
selected.

PCR was used to check that the recombinant P. pastoris
contained the GuHMGR gene. The single colonies were used as
PCR template21 and primers were as follows: forward primer, 50-
TACTATTGCCAGCATTGCTGC-30; reverse primer, 50-GCAA
ATGGCATTCTGACATCC-30. The cycling parameters were as
follows: 94 1C for 5 min; 30 cycles of 94 1C for 30 s, annealing at
60 1C for 30 s, extension at 72 1C for 2 min; and a final extension
at 72 1C for 10 min.

Selected recombinant P. pastoris was induced to express the
GuHMGR gene using BMGY and BMMY liquid media (30 1C,
250 rpm). The supernatant from a 96 h culture was examined
by 12% SDS-PAGE using Coomassie brilliant blue staining.
P. pastoris containing a void vector was used as a negative
control.
2.3. Copy number determination

The GAP gene was selected as the internal control gene for real-time
PCR22. The primer pair of GAP (GenBank accession number:
U62648) was as follows: GF: 50-CACAATGGCTATCACTGTCG-30;
GR: 50-GACACACTACAGCCCGCATT-30. The primer pair of the
GuHMGR gene was as previously stated. The cycling parameters were
as follows: 94 1C for 5 min; 30 cycles of 94 1C for 30 s, annealing at
60 1C for 30 s, extension at 72 1C for 2 min; and a final extension at
72 1C for 10 min. The amplified fragments were subcloned into
pMD19-T and transformed into disarmed E. coli DH5α. Then the
standard plasmids pMD19-T–GuHMGR and pMD19-T–GAP were
obtained, extracted and diluted to 109, 108, 107, 106, 105, 104, 103, and
102 copy numbers/2 mL. For real-time PCR analysis, the primer pairs
in Table 1 were used with the following cycling parameters: 95 1C for
10 min; 40 cycles of 95 1C for 15 s, 60 1C for 60 s, saving at 4 1C.
Standard curves of Ct (Cycle threshold) on the X-axis and log
(concentration of standard plasmid) on the Y-axis were constructed.
All recombinant P. pastoris strains were amplified by real-time PCR.
The ratio of the Y values of GuHMGR and GAP was taken as the
copy number of the GuHMGR gene in each recombinant P. pastoris
strain.



Table 1 Primers used for real-time PCR analysis.

Gene Primer

GAP rGF: 50-GGTATTAACGGTTTCGGACGTATTG-30

rGR: 50-GATGGTGACAGGGTCTCTCTCTTGG-30

GuHMGR rHF: 50-CACGGTTTCCTCGTCTTCAA-30

rHR: 50-CGTCTACCTCCTCGGCTTCTT-30
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2.4. Semi-quantitative RT-PCR analysis

Total RNA was isolated from different recombinant P. pastoris strains
using a yeast RNA rapid extraction kit (Beijing BoMaiDe Medical
Technology Co., Ltd.). To remove plasmid DNA, RNase-free DNase I
enzyme (Tiangen Biotech Co., Ltd.) was used according to the
manufacturer's instructions. Spectrophotometry was used to determine
the concentration of RNA. The cycle number was set at 18, 20, 22, 24
and 26, and the optimal cycle number determined by electrophoresis in
1% (w/v) agarose gel. The cycling parameters of RT-PCR were as
follows: 50 1C for 30 min; 94 1C for 2 min; optimal cycles of 94 1C
for 30 s, annealing at 60 1C for 30 s, extension at 72 1C for 45 s; and a
final extension at 72 1C for 10 min; saving at 4 1C. The primer pair,
GF (50-CACAATGGCTATCACTGTCG-30) and GR (50-GACA-
CACTACAGCCCGCATT-30), was used to amplify the GAP gene
as an internal control.

2.5. Assay of ergosterol in recombinant P. pastoris

HPLC analysis of ergosterol in samples was carried out on a Waters
2695 system equipped with a Phenomenex LUNA C18 column
(250 mm� 4.6 mm, 5 mm) using a mobile phase of methanol:water
97:3 (v/v) delivered at a flow rate of 1.0 mL/min. The detection
wavelength was 283 nm and the injection volume 20 mL.

A stock solution of ergosterol (purity: 97.7%) containing 11.38 mg
in 10 mL absolute ethanol was used to prepare a series of standard
solutions containing 0.01%, 0.05%, 0.1%, 0.5%, 2%, and 5% of the
stock solution in absolute ethanol. Intra-day precision (as relative
standard deviation, RSD) was determined by replicate analysis (n¼6)
of a solution containing 5.559 mg/mL ergosterol. The limit of detection
(LOD) and lower limit of quantity (LLOQ) were determined using
sequentially more dilute solutions of ergosterol. Recovery was assessed
using 9 samples of blank P. pastoris cells accurately weighed (50 mg)
and spiked with 2.91 mg, 5.05 mg and 8.41 mg ergosterol.

Recombinant P. pastoris strains containing different copy
numbers of the GuHMGR gene were induced to express the gene;
P. pastoris GS115 without the GuHMGR gene was used as
negative control. All 96 h cultures were collected by centrifugation
at 5000 rpm and lyophilized. Samples of the dried powders
(50 mg) were extracted into 8 mL ethyl acetate by ultrasonication
for 1 h. The ethyl acetate was evaporated to dryness, the residue
reconstituted in 2 mL ethanol analyzed for ergosterol.
Figure 2 PCR analysis of the construction of recombinant plasmid
pPIC–GuHMGR. Lane 1: marker; lanes 2 and 3: fragments obtained
by PCR.
3. Results

3.1. Construction of the yeast expression vector containing the
GuHMGR gene

A 1745 bp fragment was shown by PCR and BLAST analysis to have
a 99% identical sequence to that of the GuHMGR gene (GenBank
accession number: GQ345405.1). It was successfully inserted at the
SnaBI–NotI site of pPIC9K to give the recombinant plasmid pPIC–
GuHMGR shown in Fig. 2 where lane 1 is the marker and lanes 2 and
3 are fragments obtained by PCR with the correct length.

3.2. Construction of recombinant P. pastoris containing
GuHMGR gene

The linearized pPIC–GuHMGR was transformed to P. pastoris
GS115. Most single colonies of recombinant P. pastoris simulta-
neously growing on MM and MD media were shown by PCR to have
the correct fragment length. After inducing for 96 h, the negative
control was dark yellow while the recombinant P. pastoris was
yellowish-white. SDS-PAGE (Fig. 3) showed a band between 86 and
47 kDa in samples from recombinant P. pastoris which was not
present in the negative control. These results demonstrate that the
construction and inducible expression of recombinant P. pastoris
strains containing the GuHMGR gene were successful.

3.3. Copy number determination of the GuHMGR gene in
transgenic P. pastoris

PCR and sequencing showed that the standard plasmids were correct.
The melting curves of the GAP and GuHMGR genes were both
unimodal suggesting that the primers used in real time PCR were
specific. Using real time PCR, two fragments with 220 and 237 bp
were obtained which sequencing and BLAST analysis showed were
the GuHMGR gene and the GAP gene of P. pastoris, respectively.
Their standard curves were described by the equations Y¼�2.609
Xþ32.21 (R2¼0.995) and Y¼�2.994Xþ35.27 (R2¼0.997), corre-
spondingly. The copy numbers of the GuHMGR gene in the different
transgenic P. pastoris strains were found to be 1, 2, 4, 8, 13 and 44
(Table 2).

3.4. Semi-quantitative RT-PCR analysis of transgenic
P. pastoris

Semi-quantitative RT-PCR was employed to detect the relative
abundance of the GuHMGR gene in the transgenic P. pastoris
strains. The cycle number was finally fixed at 20 based on a
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preliminary experiment. RT-PCR analysis revealed the GuHMGR
gene was expressed in all transgenic P. pastoris strains at different
levels (Fig. 4b) whereas expression of the GAP gene was roughly
similar (Fig. 4a). As shown in Fig. 4c, the relative expression of
the GuHMGR gene in the recombinant P. pastoris strain contain-
ing 4 copies was higher than in the other strains consistent with the
results listed in Table 3 (Po0.05 for the strain containing 4 copies
versus all other strains).
Figure 4 Semi-quantitative RT-PCR analysis of the expression of the
GuHMGR gene in different recombinant P. pastoris strains. (a) RT-PCR
results of the GAP gene; (b) RT-PCR results of the GuHMGR gene (the
numbers are the copy numbers of the GuHMGR gene in the recombinant
P. pastoris strains); (c) relative expression of the GuHMGR gene in
3.5. Assay of ergosterol in recombinant P. pastoris

The retention time of ergosterol in HPLC was 8.16 min. The
standard curve was linear over the concentration range 0.1–
50.0 mg/mL and described by the equation Y¼3.8184� 10�5

X–7.9302� 10�3 (R2¼0.9999). The LLOQ (S/N of 10) was
2.22 ng and the LOD (S/N of 3) 0.89 ng. The assay was precise
(RSD 0.0592%, n¼6) with recovery in the range 97.3%–101.0%
(RSD 0.55%–0.82%). The content of ergosterol in all samples is
shown in Fig. 5. The results of independent t-tests of the content of
ergosterol in different recombinant P. pastoris strains (n¼3) are
listed in Table 4. The level of ergosterol in all recombinant
P. pastoris strains was 1.07–2.51 times higher than in the negative
control but with increase in the copy number of GuHMGR gene;
the content of ergosterol showed an increasing–decreasing–
increasing pattern. For strains with copy number o4, the content
of ergosterol was similar; at copy number 8, the content of
ergosterol was highest (2.5 times the negative control); for copy
number 13, the content of ergosterol was only 1.04 times negative
control; and for copy number 44, the content of ergosterol was 1.8
times negative control. Clearly, the copy number of the GuHMGR
gene influences the level of ergosterol in transgenic P. pastoris.
Figure 3 SDS-PAGE analysis of the expression of the GuHMGR
gene. Lane 1: marker; lanes 2–4: recombinant P. pastoris containing
the GuHMGR gene; lane 5: negative control.

Table 2 Copy numbers of the GuHMGR gene in different recombin

No. of strain Average Ct value Y value in standard

GAP GuHMGR GAP G

1 23.10 21.18 1.2� 104 1.
2 17.29 15.51 1.0� 106 2.
3 24.26 20.83 4.7� 103 2.
4 20.38 16.81 9.4� 104 8.
5 22.36 18.06 2.0� 104 2.
6 25.12 19.07 2.5� 103 1.
4. Discussion

In our previous studies, we found functional genes in G. uralensis
such as those of HMGR and SQS were subject to CNV23–25. We
were therefore interested to analyze the relationship between the
ant P. pastoris.

curve Copy number of GuHMGR (GuHMGR/GAP)

uHMGR

7� 104 1
5� 106 2
3� 104 4
0� 105 8
7� 105 13
1� 105 44

recombinant P. pastoris strains with different copy numbers.

Table 3 Independent t-test results of expression of the
GuHMGR gene in different recombinant P. pastoris strains
by RT-PCR.

Copy number P value

1 2 4 8 13 44

1 – 0.425 0.000 0.736 0.994 0.019
2 0.425 – 0.000 0.264 0.421 0.082
4 0.000 0.000 – 0.000 0.000 0.000
8 0.736 0.264 0.000 – 0.741 0.010
13 0.994 0.421 0.000 0.741 – 0.018
44 0.019 0.082 0.000 0.010 0.018 –
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copy number of functional genes and the content of GA acid in
G. uralensis.

CNV arises from deletions, insertions, duplications, and more
complex variations ranging from 1 kb to submicroscopic sizes26.
Genes with CNV have wide distribution, hereditability, relative
stability and high heterogeneity. CNV can lead to changes in gene
dosage and phenotypic character and, to date, many reports have
documented a close relationship between CNV and human
disease27–30. Despite the high level of interest in CNV, there are
few reports of CNV in plant genes.

In this study, recombinant P. pastoris strains containing 1, 2, 4,
8, 13 and 44 copies of the GuHMGR gene were constructed. RT-
PCR analysis revealed that the GuHMGR gene was expressed in
all transgenic P. pastoris strains at different levels with the strain
containing 8 copies, showing highest expression as indicated by
the content of ergosterol. However, with increasing copy number,
the content of ergosterol did not increase in a linear fashion but
showed an increasing–decreasing–increasing pattern with the
strains containing 8 and 44 copies containing higher levels of
ergosterol than those containing 1, 2, 4 and 13 copies.

The reason for the non-linear dependence of expression on copy
number is unclear but one possibility is that it involves gene
silencing caused by integration sites of exogenous genes. Recently,
several studies have demonstrated feedback inhibition in over-
expressing exogenous genes in plants31,32 and it may be that an
increase in the GuHMGR gene results in feedback inhibition of
upstream steps of the MVA pathway to reduce the accumulation of
ergosterol. Then when an enzyme level decreases, feedback
Figure 5 Content of ergosterol in recombinant P. pastoris strains
with different copy numbers of the GuHMGR gene (n¼3).

Table 4 Independent t-test results of the content of ergos-
terol in different recombinant P. pastoris strains (n¼3).

Copy
number

P value

0 1 2 4 8 13 44

0 – 0.000 0.002 0.000 0.000 0.142 0.001
1 0.000 – 0.959 0.847 0.000 0.001 0.006
2 0.002 0.959 – 0.951 0.000 0.006 0.011
4 0.000 0.847 0.951 – 0.000 0.001 0.007
8 0.000 0.000 0.000 0.000 – 0.000 0.004
13 0.142 0.001 0.006 0.001 0.000 – 0.001
44 0.001 0.006 0.011 0.007 0.004 0.001 –
inhibition may be interrupted leading to reopening of the metabolic
pathway which could explain why the level of ergosterol is
increased in the P. pastoris strain containing 44 copies of the
GuHMGR gene.

In this study, the dependence of the content of ergosterol on the
copy number of the GuHMGR gene suggests that an increase in
the latter could lead to an increase in the production of GA in G.
uralensis. However, it must be recognized that the production of
GA involves a very complex metabolic network which is regulated
and controlled by many key enzymes, of which HMGR is but one.
Nevertheless we maintain that the current results provide an
important basis for further studies aimed at increasing the GA
content of G. uralensis and exploring its biosynthesis in vitro. In
addition, other herbs used in Chinese medicine such as Glycyr-
rhiza glabra and Glycyrrhiza inflate also produce GA and this
work is relevant to further studies of its biosynthesis in these
medicinal plants.
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