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Abstract

Recently, Wang and Theeuwes used the additional singleton task and showed that atten-

tional capture was reduced for the location that was likely to contain a distractor [1]. It is

argued that due to statistical learning, the location that was likely to contain a distractor was

suppressed relative to all other locations. The current study replicated these findings and by

adding a search-probe condition, we were able to determine the initial distribution of atten-

tional resources across the visual field. Consistent with a space-based resource allocation

(“biased competition”) model, it was shown that the representation of a probe presented at

the location that was likely to contain a distractor was suppressed relative to other locations.

Critically, the suppression of this location resulted in more attention being allocated to the

target location relative to a condition in which the distractor was not suppressed. This sug-

gests that less capture by the distractor results in more attention being allocated to the tar-

get. The results are consistent with the view that the location that is likely to contain a

distractor is suppressed before display onset, modulating the first feed-forward sweep of

information input into the spatial priority map.

Introduction

It is important to be able to attend to events that are relevant to us and ignore information that

may distract us. Typically, salient objects in the environment have the ability to automatically

grab our attention and disrupt our ongoing tasks [2, 3]. The extent to which we are able to

avoid such distraction from salient events has been a central question for decades. Tradition-

ally, it was assumed that the competition between top-down, goal-directed signals and bot-

tom-up, salience-based signals determined the selection priority in the visual field [for reviews

see 2, 4]. Recently, it was pointed out that a third category labeled “selection history” plays a

larger role than previously assumed [5]. It was argued that the repeated exposure to stimuli

creates (often implicitly) learned selection biases, shaped by the repeated associations of value,

emotion valence, or other statistical regularities [3, 6, 7]. These effects cannot be explained by
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top-down nor by bottom-up factors. As such, these learning processes provide competitive

advantages for certain spatial locations and/or visual features by means of altering their prior-

ity for attentional selection [1, 8–15].

Extracting regularities from the environment in service of automatic behavior is one of the

most fundamental abilities of any living organism and is often referred to as statistical learning

(SL). Statistical learning has been a subject of investigation in many domains, particularly in

language acquisition, object recognition, attention, scene perception, visual search, condition-

ing and motor learning [16–24].

Previous research on statistical learning and attention has shown that observers can learn to

prioritize locations that are likely to contain a target. For example, learning contextual regular-

ities biases attentional selection such that searching for a target is facilitated when it appears in

a visual lay-out that was previously searched relative to visual lay-outs that were never seen

before; research known under the term of "contextual cueing" [25–28]. Typically, in these stud-

ies, participants searched for a ’T’ target among ’L’ distractors in sparsely scattered configura-

tions. Half of the display configurations were repeated across blocks while others were only

seen once. The classic result was that participants were faster in finding targets when they

appeared in repeated configurations than in configurations that they had not seen before, sug-

gesting that participants have learned the association between the spatial configuration and the

target location. These studies show that observers can learn the association between display

configurations and the target location, consistent with findings that have shown that observers

are faster to detect targets appearing in probable locations than improbable locations [29, 30].

Consistent with this notion are studies that have shown that observers are faster to respond to

targets that appear at more probable locations than in all other locations [31–33].

Recently, however, it has been shown that lingering biases due to statistical learning history

play an important role in avoiding and/or reducing distraction. In a series of experiments,

Wang & Theeuwes employed a variant of the additional singleton task and showed that through

statistical learning, attentional capture by the salient distractors could be significantly reduced [1,

14, 15]. Specifically, in these experiments, participants searched for a salient shape singleton (i.e., a

diamond between circles or a circle between diamonds) while they ignored a salient colored dis-

tractor singleton. Critically and unknown to the participants, the presentation of the salient dis-

tractors was biased such that it was more likely to appear at one specific location (high-probability

location) than at all other locations (low-probability location) in the visual field. The results indi-

cated that there was less capture by the salient distractor when it appeared at this high-probability

location than low-probability locations, suggesting that capture by salient distractor was attenu-

ated. Moreover, when the target happened to be presented at the high-probability location, its

selection was less efficient (in terms of RT and accuracy). In all studies, there was also a spatial gra-

dient from the high-probability location as the attentional capture effect scaled with the distance

from this location, and observers were basically unaware of the regularities.

These findings have led to the conclusion that the exposure to regularities regarding a dis-

tractor induces spatially selective suppression [12, 34–36]. Critically, this suppression is not

found when participants actively try to suppress such a location in a top-down fashion [14,

37]. Importantly, a recent EEG study employing the same paradigm as in Wang and Theeuwes

[1] showed that ~1200 ms before display onset, there was increased alpha power contralateral

to the high-probability location relative to its ipsilateral location [38]. This type of alpha-band

oscillations has been associated with neural inhibition serving as an attentional gating mecha-

nism [39]. These neural signatures suggest that, well before the display is presented, the loca-

tion that is likely to contain a distractor is suppressed. Because the location is suppressed

before display onset, this type of suppression is referred to as “proactive suppression”, suggest-

ing that on the spatial priority map this location competes less for spatial attention than all
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other locations in the visual field [3]. Proactive suppression can be contrasted with retroactive

suppression, which is the type of suppression that occurs only after attention has been directed

to a location, disengaged and subsequently suppressed [13].

In the current study, we used a probe task to investigate the nature of this proactive suppres-

sion effect further. Participants performed a variant of Wang and Theeuwes [1] task in which the

distractor singleton was presented more often in one location (high-probability location) than in

all other locations (low-probability location). This task was performed on the majority of trials

(66.7%). In the remaining trials, the search display was presented briefly (200 ms) immediately fol-

lowed by a probe display, in which six orientation bars were presented [For an illustation see Fig

1; and see a similar probe task design in 40, 41]. Following the probe display, a bar appeared at

one of the 6 locations, and participants had to adjust the bar such that its orientation would match

the orientation of the element in the corresponding probe display. The distribution of response

errors (i.e., response orientation value minus the correct orientation value) was characterized by

fitting a standard mixture model [42] allowing us quantify independently measures of guess rate

and standard deviation. This will allow us to examine whether the observed suppression effect

was due to lower chance to encode the items (reflected by guess rate), or whether inhibition

occurred after processing the items (reflected by standard deviation).

According to the biased competition theory of attention, objects in the visual field compete

for cortical representation in a mutually inhibitory network [43]. Directing attention to one

object comes at a cost of less attention for other objects. Bahcall and Kowler offered a similar

space-based, resource allocation account, arguing that at the attended location, processing

strength is increased by borrowing resources from other regions in the visual field [44]. Impor-

tant for the current study, according to a biased competition resource allocation model of

attention, proactive suppression of a particular location should result in more resources being

available for target processing [38].

The probe task allows us to examine this distribution of attention across the visual field

immediately following the display onset during the first 200 ms [41, 45]. If the location that is

likely to contain a distractor is already suppressed before display onset (i.e., proactively), then

one expects that a probe presented at that location is suppressed, resulting in a poor probe

representation and consequently more probe response errors. Specifically, this poorer

Fig 1. Experimental procedure. Search-only trials, in which participants were required to search for a shape singleton and to

indicate the position (i.e., left or right) of the white dot inside. Search-probe trials, in which the search display was present for a

short period (200 ms), then participants were required to memorize six orientations and to recall one of them by rotating the

response wheel as accurate as possible. This figure was used for illustration purpose only, for details see the text.

https://doi.org/10.1371/journal.pone.0233544.g001
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representation should result in a lower chance to encode the items resulting in a higher guess

rate; if the suppression is retroactive and occurring later in time we expect effects on the stan-

dard deviation. At the same time, according to a biased competition (resource) account, this

proactive suppression should allow more resources being available for target processing,

resulting in a better probe representation and fewer probe response errors, and lower guess

rate. The reverse conjecture should also hold: if a distractor is presented at a low-probability

location, it is basically not inhibited leading to stronger attentional capture than a distractor is

presented at a high-probability location.

Attentional capture implies that attention is directed to this location, resulting in a better

representation of the probe presented at that location (i.e., fewer probe response errors), while

at the same time less resources should be available for target processing leading to more probe

response errors [46]. Previous studies [1, 8, 14–15] only showed that capture was reduced

when the distractor was presented the high-probability location relative to the low-probability

location. The current study goes much beyond these findings and provide insights on how sta-

tistical learning impacts the distribution of attention across the display. Overall, we claim that

the probe task adopted in the present study could provide a window of how, due to statistical

learning, the weights within the spatial priority map are changed.

Method

Participants

Sixteen undergraduates (1 man and 15 women: with a mean age of 18.9 ± 1.0 years old) were

recruited from Zhejiang Normal University in China. All participants provided written

informed consent, and reported normal color vision and normal or corrected-to-normal visual

acuity. Sample size was predetermined based on the significant difference between the high-

probability location and low-probability location in Wang and Theeuwes [1], with an effect

size of 1.83. With 16 subjects and alpha = .001, power for the critical effect should be> 0.99.

The study was approved by both the Ethical Review Committee of the Vrije Universiteit

Amsterdam and the Ethical Review Committee of Zhejiang Normal University.

Apparatus and stimuli

Stimulus presentation and response registration were controlled by custom scripts written in

Python 2.7. In a dimly lit laboratory, participants held their chins on a chin rest located 63 cm

away from the liquid crystal display (LCD) color monitor. The primary search display con-

tained one circle with a radius of 0.7˚ and five diamonds (subtended by 1.6˚ × 1.6˚) colored in

red or green, or vice versa (see Fig 1 for an example). Each display-element was centered 2.0˚

from the fixation (a white cross, 0.5˚ × 0.5˚), containing a 0.2˚ white dot located 0.2˚ from

either the left or the right edge of the element.

In search-probe trials, six white lines (subtending 0.1˚ × 1˚) with different orientations

(randomly selected from seven orientations: 10˚-160˚, in 25˚ steps) were presented at the same

locations as the display-elements of the search array (see Fig 1 bottom panel). A continuous

response wheel (subtending 0.5˚ wide, 4.5˚ radius) presented at the center of the to-be-recalled

item and a red pointer were used to collect participants’ response.

Procedure and design

On each trial, a fixation cross was presented for 500 ms, followed by a primary search display

which consisted of five items in the same shape and a shape singleton (i.e., a circle among five

diamonds, or vice versa). Participants were asked to keep fixation at the cross throughout the
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trial. In search-only trials (66.7% of the trials), the search array was presented for 3000 ms or

until participants responded. Participants were required to search for one shape singleton and

indicate whether the line segment was on the left or right side of the target by pressing the left

or right key on the keyboard using left hand as fast as possible, respectively. Responses were

speeded and feedback, “You did not respond, please focus on the task” or “you responded

incorrectly, please focus on the task” was given when participants did not respond or

responded incorrectly, respectively.

In search-probe trials (33.3% of the trials), the search array appeared for 200 ms, followed

by 100 ms probe display containing six orientation bars. Participants were required not to

respond to the search task, but to attend and memorize these orientations. Then a horizontal

line and a response wheel were presented at the center of the to-be-reported item, remained

on until the response. Participants had to rotate the line and clicked the left key on the mouse

when they felt the orientation was the same as the one presented in the probe display.

Responses were unspeeded and only accuracy was emphasized. The inter-trial interval (ITI)

was between 500 and 750 ms at random.

The search target was presented on each trial, and it was equally likely to be a circle or a dia-

mond. A uniquely colored distractor singleton was randomly presented in 66% of the trials in

each block, with the same shape as other distractors but a different color (red or green bal-

anced between subjects). One of these distractor locations had a high proportion of 62.5%

(high-probability location), and other locations shared a low proportion of 37.5% with each

had a low probability of 7.5% (low-probability location). The high-probability location

remained the same for each participant and was counterbalanced across participants. In the

condition with a distractor the target never appeared at the high-probability location, but

appeared equally often at all other locations. This design adopted was the same as in Wang and

Theeuwes [1]. One might question whether the effect reported in the present study was due to

the fact that the target was never presented at the high-probability distractor location or

whether it has nothing to do with target probability but instead is completely due to the fact

that the distractor was presented at that location much more often. A recent study by Failing

et al., answered exactly this question and showed that the suppression is solely due to the prob-

ability of that the distractor is presented at that location [9]. Participants were first trained for

360 trials to understand the search task before the testing. Then, they completed 40 practice tri-

als and 7 blocks with each containing 360 trials in two successive days (a total of 2520 trials), in

which search-only and search-probe trials were mixed within blocks.

Additional analysis

For search-probe trials, a standard mixture model was fitted to characterize the distribution of

response errors in terms of response precision and guess rate [42]. The response error was cal-

culated by subtracting the correct value of probed orientation from the response value. The

distribution was assumed to consist of a uniform distribution of response errors for guessing

trials and a von Mises (circular normal) distribution of response errors for non-guessing trials.

By using maximum likelihood estimation, the distribution of the response error data from

each condition was entered into the model,

PðeÞ ¼ ð1 � gÞFsðeÞ þ g=2p;

Where one input parameter e (response errors) is required, and two output parameters g
(guess rate, the proportion of the guess trials) and σ (standard deviation [SD], the width of the

von Mises distribution, reflecting the precision of the internal representation) will be given.

The MemToolbox was used to fit the current dataset [47].
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Results

Search-only condition

Trials (2.1%) on which the response times (RTs) were slower than 1500 ms or faster than 200

ms were removed from analysis.

Attentional capture effect. Mean RTs and mean error rates are presented in Fig 2A. With

distractor condition (high-probability location, low-probability location, and no-distractor) as

a factor, a repeated measures ANOVA on mean RTs showed a main effect, F (2, 30) = 159.22,

p< .001, ηp
2 = .91. Subsequent planned comparisons showed that, against the no-distractor

condition, there were significant attentional capture effects when the distractor singleton was

presented at the high-probability location, t (15) = 11.25, p< .001, cohen’s d = 0.43, and when

it was presented at the low-probability location, t (15) = 14.01, p< .001, cohen’s d = 1.14.

Fig 2. Results of search-only trials. The mean response times (RTs) and mean error rates in different distractor

conditions (A) and in the distractor singleton absent condition (B). The spatial distribution of attentional capture

effect by the means of response times and error rates in the distractor singleton present condition (C). Here, Dist-0

represents the high-probability distractor location, Dist-1 represents the low-probability distractor location with 60˚

polar angle away from the high-probability distractor location (physical distance), and so on. Error bars denote 95%

confidence intervals (CIs).

https://doi.org/10.1371/journal.pone.0233544.g002
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Consistent with Wang and Theeuwes [1, 14–15], the difference between high- and low-proba-

bility locations was also reliable, t (15) = 10.71, p< .001, cohen’s d = 0.72, suggesting that the

attentional capture effect was attenuated for trials in which the distractor singleton appeared at

the high-probability location (see S1 Appendix for training results). Importantly, when analyz-

ing different blocks separately, we found that the suppression effect already occurred in the

first block, t = 8.49, p< .001, and remained present in the following blocks, all ps < .003, sug-

gesting that learning to suppress the high-probability location is very efficient. No such effect

was observed on error rates, F (2, 30) = 2.32, p = .116, ηp
2 = .13, BF01 = 1.32.

Target selection. Mean RTs and mean error rates are presented in Fig 2B. To further

examine the efficiency of target selection we calculated the mean RTs in the distractor absent

condition. Pairwise t-test showed that the selection was less efficient when the target was pre-

sented at the high-probability location compared to when it was presented at the low-probabil-

ity location, t (15) = 2.54, p = .023, cohen’s d = 0.26. There was no effect on error rates, t (15) =

1.18, p = .258, cohen’s d = 0.3, BF01 = 2.17.

The spatial distribution of the suppression effect. To explore the spatial gradient of the

suppression effect, we divided the distractor locations into four distances (dist-0, dist-1, dist-2,

and dist-3). The mean RTs and mean error rates for these conditions are presented in Fig 2C.

A one-way repeated measures ANOVA with distance as a factor showed a significant main

effect for RTs, F (4, 60) = 54.62, p< .001, ηp
2 = .79, but not for error rates, F (4, 60) = 1.42, p =

.237, ηp
2 = .09. We fitted the RT data with a linear function (as one of the options to capture

the gradient of the suppression effect [1]) and used its slope to describe the decrease of the sup-

pression effect with the increase of the distance relative to the high-probability location. The

slope (23.01 ms per display element) for mean RTs was significantly larger than zero, t (15) =

6.7, p< .001, cohen’s d = 2.37, suggesting that the suppression effect was not limited to one

location, but had an extended spatial gradient.

Search-probe condition

Response error. The mean response errors are presented in Fig 3A. To examine the

impact of statistical learning on the spatial distribution of attention, we sorted the distractor

singleton present condition into two conditions: distractor present at the high-probability

location and at the low-probability location. A new condition, named probe type (target,

neutral-element, distractor-singleton), was defined as well. It denotes that the probe could be

presented at target location, neutral-element location, or distractor-singleton location. A

repeated-measures ANOVA on mean response errors with factors of distractor location (high-

probability location vs. low-probability location) and probe type (target, neutral-element, dis-

tractor-singleton) showed a significant main effect for probe type, F (2, 30) = 26.92, p< .001,

ηp
2 = .64, but not for distractor location, F (1, 15) = 0.18, p = .674, ηp

2 = .01, BF01 = 2.05×1010.

Importantly, we observed a significant interaction between distractor location and probe type,

F (2, 30) = 5.42, p = .01, ηp
2 = .27. To unpack the main effect of probe type, we performed sub-

sequent t-tests. When the probed item was presented at the target location, the performance

was superior compared to that when the probed item was presented at the neutral-element

location, t (15) = 6.94, p< .001, cohen’s d = 1.31, and at the distractor-singleton location, t (15)

= 5.12, p< .001, cohen’s d = 1.1. When the probe was presented at the distractor-singleton

location, performance was better compared to that when the probe was presented at the neu-

tral-element location, t (15) = 2.36, p = .032, cohen’s d = 0.12.

Subsequent comparisons showed that when the probed item was presented at the distrac-

tor-singleton location, the performance was worse for distractor singletons that appeared at

the high-probability location than at the low-probability location, t (15) = 2.19, p = .045,
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cohen’s d = 0.29, suggesting that the high-probability location was suppressed relative to the

low-probability location. Consistently, we also found that when the probed item was presented

at the target location, the suppression pattern was reversed; i.e., the performance was now bet-

ter for distractors presented at the high-probability location than at the low-probability loca-

tion, t (15) = 3.42, p = .004, cohen’s d = 1.79, suggesting that the processing of the target was

facilitated due to more suppression when the distractor singleton was presented at the high-

probability location relative to the low-probability location. When the probed item was pre-

sented at any of the neutral-element locations (not at the target nor at the distractor singleton

location), there was no difference in performance between the distractor presented at the

high- vs. low-probability location, t (15) = 0.5, p = .626, cohen’s d = 0.07, BF01 = 3.51. This sug-

gests that the distractor suppression does not affect the processing of neutral elements.

In the no-distractor condition, a two-way ANOVA was conducted on mean response errors

as well, with factors of recall location (high-probability location vs. low-probability location)

and probe type (target vs. neutral-element). The results showed a significant main effect for

probe type, F (1, 15) = 46.0, p< .001, ηp
2 = .75, but not for recall location, F (1, 15) = 0.68, p =

.422, ηp
2 = .04, BF01 = 2.06×1010; and there was no interaction, F (1,15) = 0.75, p = .401, ηp

2 =

.05, BF01 = 2.66. The performance was better when the probe was presented at the target loca-

tion than at the neutral-element location (see Fig 3B).

We also examined the difference in mean response errors for probing the target location

between the no-distractor condition and the condition when the distractor was presented at

the high- and low-probability location. The results showed that, when the probe was presented

at the target location, there was no difference between the no-distractor condition and the con-

dition that the distractor was presented at the high-probability location, t (15) = 0.51, p = .618,

cohen's d = 0.07, BF01 = 3.5. However, when the distractor was presented at the low-probabil-

ity location, the mean response errors for probing the target location was significantly larger

than in the no-distractor condition, t (15) = 3.57, p = .003, cohen's d = 0.47.

Fig 3. Results of search-probe trials. The mean response errors in different distractor conditions (A) and in the distractor

singleton absent condition (B). The mean guess rates (C) and mean standard deviation (D) in different distractor conditions.

Error bars denote 95% CIs.

https://doi.org/10.1371/journal.pone.0233544.g003
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Guess rate. The mean guess rates are presented in Fig 3C. A repeated-measures ANOVA

on mean guess rates with factors of distractor location (high-probability location vs. low-proba-

bility location) and probe type (target, neutral-element, distractor-singleton) showed a signifi-

cant main effect for probe type, F (2, 30) = 6.66, p = .004, ηp
2 = .31, but not for distractor

location, F (1, 15) = 0.17, p = .69, ηp
2 = .01, BF01 = 35.8. When the probed item was presented

at the target location, the guess rate was lower compared to that when the probed item was pre-

sented at the neutral-element location, t (15) = 3.01, p = .009, cohen’s d = 0.78, and at the dis-

tractor-singleton location, t (15) = 2.63, p = .019, cohen’s d = 0.69. Importantly, we observed a

significant interaction between distractor location and probe type, F (2, 30) = 4.6, p = .018,

ηp
2 = .24.

Subsequent comparisons showed that when the probed item was presented at the distrac-

tor-singleton location, the guess rate was higher for distractor singletons that appeared at the

high-probability location than at the low-probability location, t (15) = 2.54, p = .023, cohen’s d
= 0.7. We also found that when the probed item was presented at the target location, the pat-

tern was reversed; i.e., the guess rate for the target was lower when the distractor singleton was

presented at the high- relative to the low-probability location, t (15) = 2.77, p = .014, cohen’s d
= 0.68. When the probed item was presented at any of the neutral element locations, there was

no difference between distractor singletons present at the high-probability location and at the

low-probability location, t (15) = 0.44, p = .669, cohen’s d = 0.14, BF01 = 3.6. Clearly, the results

of guess rate mimic what we have found for response errors.

Standard deviation. The mean SDs are presented in Fig 3D. A repeated-measures

ANOVA on mean SDs with factors of distractor location (high-probability location vs. low-

probability location) and probe type (target, neutral-element, distractor-singleton) showed a

significant main effect for probe type, F (2, 30) = 5.41, p = .01, ηp
2 = .27, but not for distractor

location, F (1, 15)< 0.01, p = .982, ηp
2< .01, BF01 = 12.15. When the probed item was pre-

sented at the target location, the SD was lower compared to that when the probed item was

presented at the neutral-element location, t (15) = 2.73, p = .015, cohen’s d = 0.81, and at the

distractor-singleton location, t (15) = 3.38, p = .004, cohen’s d = 0.69. However, there was no

interaction, F (2, 30) = 0.7, p = .507, ηp
2 = .04, BF01 = 3.22.

Discussion

The current study replicated precisely all previous findings of Wang and Theeuwes [1]. We

showed that for the high-probability location there were (1) less capture by the salient distrac-

tor and (2) less efficient selection of the target. There was also a spatial gradient from the high-

probability location as the attentional capture effect scaled with the distance from this location.

In addition to this replication, the search-probe condition elegantly demonstrates the initial

distribution of attentional resources across the visual field. Consistent with a space-based

resource allocation (“biased competition”) model we showed that the high-probability location

was suppressed relative to the low-probability location as there were more response errors and

higher guess rate in the high- relatively to the low-probability location. At the same time, this

suppression of the high-probability location resulted in more attention being allocated to the

target location relative to a condition in which the distractor was not proactively suppressed,

i.e., when presented at a low-probability location.

The current findings are consistent with notion that this type of learning results in proactive
suppression. Indeed, because the high-probability location is proactively suppressed (i.e.,

before display onset) this location competes less for attention than the other locations, giving

rise to more response errors for probes presented at the high-probability location than at the

low-probability location. If suppression would have been applied after attention has initially
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shifted there (so called retro-active suppression), then we would have expected that probes

would have been picked up at the high-probability location just as well as any other location

within short time window. Several speculations might be derived from the results in the

search-probe task. It seems to suggest that the reduction in interference of a salient distractor

when presented at a high-probability location is the result of a combination of less capture by

the distractor and at the same time more attentional allocation to the target. Similarly, when a

distractor is presented at the low-probability location, the strong attention capture observed

summons so much attention that less attention is available for target processing.

It should be noted that our analysis can say little, if anything, about whether attention is

allocated in parallel or serially. The search display was presented for 200 ms and previous

research has shown that within this time window, attention is first summoned by the salient

distractor before it is allocated to the target. For example, Kim and Cave [48] used Theeuwes’

additional singleton paradigm with only 4 items in the display and combined it with a probe

detection task. When the probe was shown 60 ms after the display onset, observers responded

20 ms faster when a probe was presented at the distractor location relative to the target loca-

tion. At 150 ms interval, this pattern was reversed: the mean RTs at the target location was

about 15 ms faster than at the distractor location. Kim and Cave [48] argued that, at 60 ms

after display onset, more attention was allocated at the distractor location than at the target

location signifying attentional capture. Soon thereafter (at 150 ms condition) attention was

disengaged from the distractor location and directed at the target location. Even though we

cannot take the exact timings reported by Kim and Cave as absolute (there were many differ-

ences between our singleton task and theirs, e.g., the number of items in the display), it is likely

that within a short time period of 200 ms, attention may have shifted between distractor and

target locations.

Our finding that the mean response errors for probing the target location in the no-distrac-

tor condition did not differ from that when the distractor was presented at the high-probability

location, suggests that the distractor presented at the high-probability location hardly com-

petes for attention. This analysis suggests that due to proactive suppression, there are equiva-

lent processing resources available for target processing as there are in a condition in which

the distractor is not present (i.e., the no-distractor condition), a finding consistent with the

notion that this type of suppression is proactive in nature [37].

Note that we employed here a version of the additional singleton task [49] in which the tar-

get and distractors switched roles across trials. When using this version, participants likely

employ the so-called singleton detection mode which may in turn result in stronger capture

effects than when having observers search consistently for one specific feature [so called “fea-

ture search mode”, see 50; but see 51]. We took the former approach to examine the interplay

between bottom-up capture and statistical learning minimizing top-down effects on search.

Note however that even when one uses displays that induce feature search, the same suppres-

sion effect is observed indicating that this type of suppression does not depend on the search

mode employed [15].
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