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Abstract

Understanding the genetic background of complex diseases requires the expansion of stud-

ies beyond univariate associations. Therefore, it is important to use interaction assessments

of risk factors in order to discover whether, and how genetic risk variants act together on dis-

ease development. The principle of interaction analysis is to explore the magnitude of the

combined effect of risk factors on disease causation. In this study, we use simulations to

investigate different scenarios of causation to show how the magnitude of the effect of two

risk factors interact. We mainly focus on the two most commonly used interaction models,

the additive and multiplicative risk scales, since there is often confusion regarding their use

and interpretation. Our results show that the combined effect is multiplicative when two risk

factors are involved in the same chain of events, an interaction called synergism. Synergism

is often described as a deviation from additivity, which is a broader term. Our results also

confirm that it is often relevant to estimate additive effect relationships, because they corre-

spond to independent risk factors at low disease prevalence. Importantly, we evaluate the

threshold of more than two required risk factors for disease causation, called the multifacto-

rial threshold model. We found a simple mathematical relationship (square root) between

the threshold and an additive-to-multiplicative linear effect scale (AMLES), where 0 corre-

sponds to an additive effect and 1 to a multiplicative. We propose AMLES as a metric that

could be used to test different effects relationships at the same time, given that it can simul-

taneously reveal additive, multiplicative and intermediate risk effects relationships. Finally,

the utility of our simulation study was demonstrated using real data by analyzing and inter-

preting gene-gene interaction odds ratios from a rheumatoid arthritis case-control cohort.
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Introduction

Genetic mapping studies of complex human traits have identified thousands of genetic loci

implicated in the susceptibility to complex diseases [1, 2]. In other words, genome-wide associ-

ation studies (GWAS) have linked thousands of single-nucleotide polymorphisms with com-

plex human traits [1, 2]. These findings have been beneficial in areas such as drug

repositioning [1, 3–5]. However, the identified individual genetic associations seldom exhibit

strong disease risks and explain a small portion of the calculated heritability for each trait [1,

6–8]. This implies that the genetic associations have a very poor predictive value [6]. Compre-

hensive interaction analysis between, and among, risk factors is an important tool for under-

standing the genetic background of complex traits [7–11]. In general, interaction is said to be

present when the combined effect magnitude of two or more factors is significantly different

from the combined effect magnitude predicted by the model being tested [12–14]. Neverthe-

less, it is challenging to address whether, and how, genetic risk factors interact in shaping

human traits, and to biologically interpret those interactions [9, 14]. Additionally, there is

often confusion in the interpretation of the results from different interaction models. We

therefore, in this study, provide a framework of simulated scenarios that represent common

and simple processes where two or more genetic factors may interplay in disease causation.

We investigate whether, and how, two or multiple genetic factors interact in each simulated

scenario. We also address these relationships in real data from a case-control study in rheuma-

toid arthritis (RA), the Swedish epidemiological investigation of RA (EIRA) [15, 16].

The association between an individual genetic variant and an outcome (e.g., disease) is typi-

cally quantified as an odds ratio (OR) or relative risks (RR). The case-control design is often

used for diseases with a low prevalence, where the resulting ORs approximate the RRs. Interac-

tions studies generally examine two risk factors at a time, yielding three ORs (or RRs) notated

as [13, 14]: OR11 for carrying both risk factors; OR10 and OR01 for the exclusive combinations;

and OR00 for the absence of both risk factors, which is used as reference (OR00 = 1). Two dif-

ferent models are commonly used to test interaction, the additive (whose null hypothesis is

OR11 = OR10 + OR01 − 1) and the multiplicative (whose null hypothesis is OR11 = OR10 ×
OR01). The additive model builds on the sufficient cause concept of KJ Rothman [12], who

showed that if two factors are part of the same sufficient cause of a disease (e.g., pathway), then

their joint risk will be larger than the sum thereof (often termed “departure from additivity”).

This additive model has been criticized for always giving positive results when used as a null

hypothesis [17, 18]. On the other hand, the multiplicative model has been criticized as a statis-

tical convenience without a theoretical basis, boosted by the implicit multiplicativity in logistic

regression [17, 19, 20]. There is often confusion regarding when and how to use and interpret

each of these models.

In addition to evaluate the additive and multiplicative interaction models, we study a third

model in this paper, the multifactorial threshold model [21]. This model assumes that there is

a minimum number of factors required for disease causation, an assumption with a theoretical

foundation in the concept of genetic liability [22]. Until now, no a statistical metric for the

multifactorial threshold model has been available. We therefore propose a new metric, AMLES

(additive-to-multiplicative linear effect scale), which compares the number of risk factors to a

threshold value. Our proposed metric could help to determine the validity of the multifactorial

threshold model, which has been criticized for simplifying disease biology [21].

Simulations are able to give answers with a high level of precision if enough data points are

generated. They also provide great flexibility to fit a number of scenarios. We here build differ-

ent scenarios in each of which we describe the cause of the outcome (disease or otherwise),

with the purpose of tracing how a particular type of causality would be represented in an
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interaction study. Our intension is to include commonly occurring and simple real-world sce-

narios, and practical examples from the literature are provided. We further build scenarios

where we model situations with confounding factors commonly identified in genetic associa-

tion studies, such as population stratification. We also show when the modelled scenarios can

be distinguished in real data, and where they cannot. Across all simulations the risk factors are

dichotomous, and neither necessary nor sufficient for disease to occur. While most of our sim-

ulated scenarios have two risk factors, we include modelling of more than two factors and

illustrate how it is possible to elucidate multifactorial interactions from a set of pairwise inter-

actions. We compare the simulated scenarios to additive and multiplicative risk scales, aiming

to contribute to the understanding and interpretation of different models of interaction.

Finally, we propose a metric in the framework of the multifactorial threshold model, which

can estimate the fit to the additive and multiplicative models, as well as testing against a partic-

ular threshold level involving more than two factors.

Methods

Simulations

To better understand interactions between risk factors, we first set up simulations of causation,

which are represented in Fig 1A to 1C. Each scenario included a dichotomous outcome (pres-

ent/absent), and causative processes, termed components. For each of the different scenarios,

we performed 1,000 simulations (Figs 1A–1C, 2B, 3A, 3B, S1A–S1C, S2A and S2B Figs). Each

simulation consisted of one million data points (i.e., simulated individuals) where presence or

absence of a risk allele and status of case or control was assigned in accordance with each

model. As sensitivity analysis, we performed simulations with 100,000 data points. These simu-

lations gave essentially the same results and were therefore not included. For the sake of sim-

plicity, binary factors, corresponding to a dominant or recessive scenario in genetics, were

used. We also used subgroups with equal ratio of cases and controls, named components,

except for the three factors model (Fig 2B), where components 2 and 3 had the same ratio and

component 1 had the same ratio as the logical-OR combination for the other two.

Allele frequencies for the two exposures, named X and Z, tested in each model, were estab-

lished before each simulation by drawing a random value within a given range. For instance, if

the lower frequency for the risk factor Z was set, a random value between 5% and 15% was

chosen, then the higher frequency for Z was set by multiplying this figure by a random number

between 1.1 and 4. The allele frequency for the exposure X was established in a similar fashion

but using a range between 5% and 25% to select the random value, which was then multiplied

by a random number between 1.1 and 2 to set the higher frequency.

For each scenario we calculated several metrics. We calculated ORs for the combinations of

the risk factors: OR01 for X = 0, Z = 1; OR10 for X = 1, Z = 0; OR11 for X = 1, Z = 1 (Fig 1D), to

address interactions between two risk factors using the additive (with the null hypothesis OR11

= OR10 + OR01 − 1) and the multiplicative (with the null hypothesis OR11 = OR10 × OR01)

models. Due to the nature of the components, more risk factors can exist in each scenario

without interfering with the calculations. For each component there was one risk factor that

was explicitly made to correlate with its "present" state (Fig 1A–1C), and the frequencies for

the risk factor were varied between simulation runs. We subsampled the controls to match the

number of cases and resemble how case-control studies reflect the population in a biased way

(Fig 1). We calculated Pearson correlation coefficients between the risk factors X and Z (Fig

1E). For the versions of the scenarios without the subsampling (S1 Fig) we calculated RRs

instead, as that is the appropriate population measure.
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Fig 1. Three simulated causal scenarios with selection of equal numbers of cases and controls. A-C: Simulation

schemes for three generalized scenarios in a case-control study context: Synergism of causes (A), heterogeneity of causes

(B), and a multifactorial or 5-factor threshold (C). The numbers are example frequencies, and numbers in bold highlight

the higher frequencies of the simulated risk factors (X and Z) associated with disease. For example, “Z: freq. 0.3” means

that each simulated individual in the group had a 30% chance of being assigned the risk factor Z. Numbers in italic are
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Interactions in rheumatoid arthritis GWAS

We evaluated both additive and multiplicative interaction models on a human case-control,

genome-wide association dataset for anti-citrullinated protein antibody positive (ACPA-posi-

tive) rheumatoid arthritis (RA), from EIRA [15, 16]. The two top genetic risk factors for

ACPA-positive RA in European-descendent populations, HLA-DRB1 shared epitope alleles

and PTPN22 rs2476601 T, were tested against all non-HLA risk SNPs. Shared epitope (SE) is a

group ofHLA-DRB1 alleles with similar effects, and rs2476601 is a non-synonymous coding

variant of the PTPN22 gene.

Genotyped and imputed GWAS data from the EIRA study were used in this part of the

study (see [15] for sources included). Standard data filtering was performed as previously

described [15]. Briefly, genotyping missing rate higher or equal to 5% and P-values of less than

0.001 for Hardy-Weinberg equilibrium in controls were excluded. The SNPs located in the

extended HLA region (chr6:27339429–34586722, GRCh37/hg19) were removed, due to the

high linkage disequilibrium and possible independent signals of association with ACPA-posi-

tive RA in the locus.

Departures from additivity or multiplicativity for risk factors were estimated pairwise in

the imputed GWAS data (3,138,911 SNPs for the test with HLA-DRB1 shared epitope and

3,308,784 SNPs for the test with PTPN22 rs2476601 T), using GEISA [23], where a dominant

model was assumed. In order to control by differences in allelic frequencies due to population

stratification and sex, the first ten principal components (which summarized the genotyping

data) and sex were used as covariates in this analysis. A cut-off of minimum five individuals

for each OR combination was applied. The HLA-DRB1 shared epitope alleles included �01

(except �0103), �0404, �0405 and �0408 and �1001. The P-values for interaction from these

analyses are plotted in Fig 4A and 4B. We included only SNPs at risk allele frequencies between

10% and 50%; however, when we tested all the SNPs at a minor allele frequency above 1% the

result provided the same conclusion.

To address both additive and multiplicative risk scales and evaluate the behavior of the ORs

for double risk exposure (OR11—Fig 4C, 4D, S3 and S4 Figs), we used genotyped EIRA GWAS

data (281,195 SNPs). For this analysis, the data was transposed using Plink 1.07 [24]. Known

risk SNPs were selected based on ORs higher than 1.1 and 95% confidence intervals do not

overlapping 1, together with the criterion of having been reported as associated to RA in pub-

lished case-control RA GWAS [5, 25, 26].

Computational packages

Calculations were done using Python, including the packages NumPy [27], SciPy [28], Matplo-

tlib [29], pandas [30], scikit-learn [31], seaborn [32], jupyter and geneview [33].

the average frequency in the other group of simulated individuals; note that this will depend on the prevalence (which is

adjusted in the scenarios in the “split” into cases and controls). “Components” (comp1 and comp2) were used as a

strategy to obtain probabilistic risk factors. D: ORs for double risk (OR11) were calculated from the simulation

scenarios, with boxes summarizing 1,000 simulation runs with different risk factor frequencies. The observed OR11 were

compared to the expected combinations of the odds ratio for single risk (OR10 and OR01) in the additive and

multiplicative models. Boxplots show median and quartiles for the simulations, but extreme values are omitted for

clarity. Yellow arrows highlight where the median is visibly close to the null hypothesis for the multiplicative model,

while blue arrows do the same for the additive model, for the two most extreme simulated prevalence rates. “M.

threshold” refers to multifactorial threshold (scenario C). E: Correlation coefficients between the risk factors X and Z,

for three sample sets (all, cases only, controls only). The relevant signal in each case is whether the median is negative,

zero or positive, highlighted with a -, 0 or + symbol for the two most extreme simulated prevalence rates.

https://doi.org/10.1371/journal.pone.0250282.g001
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Data access

Interaction tables are available at Mendeley Data, doi:10.17632/63b47w6zgr.1 and can be

viewed at https://data.mendeley.com/datasets/63b47w6zgr/1. Code is available at https://

github.com/danielramskold/additive_risk_heterogeneity_multiplicative_risk_synergism2

where we also provide the code used to generate the figures. Pre-existing genetic data from the

Fig 2. Relationships among risk factors in the context of the multifactorial threshold model and a 3-factor causal scenario. A: AMLES (additive-to-

multiplicative linear effect scale; grey boxes) and
p

fest (red curve) calculated using the scenario in Fig 1C and plotted on the y axis. The notches in the

box plots show bootstrapped 95% confidence intervals for the medians. The simulation had 0.5% cases and 99.5% controls, with a range ±0.04%. B: A

3-factor simulated scenario. The numbers are example frequencies, and frequencies in bold highlight the higher frequencies representing association with

disease. For example, “Z: freq. 0.3” means that each simulated individual in the group had a 30% chance of being assigned the risk factor Z. This scenario

required one “component” (where X is associated with risk) together with either one of another two components (where either Z or V is associated with risk)

to produce the outcome. C: Comparison of the eight possible combinations of additive (add) and multiplicative (mult) relationships from the simulation in

(B). The second combination, “mult,mult,add” is highlighted by a box since the theoretical expectation was met. There are AND relations between X and Z,

X and V but an OR relationship between Z and V. Therefore, RR100 (where only X is present) is multiplied by the addition of Z and V’s relative risks,

assuming that at a low trait prevalence the results from logical AND and OR follow the multiplicative and additive models, respectively.

https://doi.org/10.1371/journal.pone.0250282.g002
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Fig 3. Two simulated confounder scenarios. A: Simulated confounder I, where the cases and controls come from different genetic

backgrounds, which was simulated by testing interactions on the same data that the tested genetic risk factors were selected from. B: Simulated

confounder II, where a mix of groups with both different genetic backgrounds and different prevalence rates were simulated. The numbers are

example frequencies, and frequencies in bold highlight the higher frequencies of the simulated risk factors (X and Z) associated with disease.

For example, “Z: freq. 0.3” means that each simulated individual in the group had a 30% chance of being assigned the risk factor Z. In each

indicated circle the two risk factors have been added in an uncorrelated/independent manner. C: For each of the simulated confounder

scenarios, the observed OR11 (odds ratios for double risk) were compared to the expected ones for both the additive and multiplicative models.

The boxes summarizing 1,000 simulation runs with different risk factor frequencies. The boxplots show median and quartiles for the
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EIRA cohort was used. Due to ethical considerations, data from EIRA cannot be publicly

shared. Please contact the principal investigators for data requests for applicable studies. For

further information go to: https://www.eirasweden.se/Kontakt_EIRA.htm.

Results

Scenarios with risk factors contributing to the explicitly causal components

We arranged a simulation scenario for synergism, which is by far the most commonly identi-

fied type of interaction between genetic risk factors. For example, synergism has been shown

between peptide-presenting HLA-B and the peptidase ERAP1 in breast cancer [34]. We also

simulations, but extreme values are omitted for clarity. Yellow arrows highlight where the median is visibly close to the null hypothesis for the

multiplicative model, while blue arrows do the same for the additive model, for the two most extreme simulated trait prevalences. D:

Correlation coefficients between the risk factors X and Z. The relevant signal in each case is whether the median is negative, zero or positive,

highlighted with a -, 0 or + symbol for the two most extreme simulated prevalence rates. E: Like (C), but for RR.

https://doi.org/10.1371/journal.pone.0250282.g003

Fig 4. Application to genome-wide association data for rheumatoid arthritis. A-B: P-value distribution for two tests, one for deviation from additivity and one from

multiplicativity. Two risk factors (see text for alleles) were tested in EIRA data against the rest of the genome except nearby SNPs. Each bin is 0.01 wide. A uniform

distribution means a lack of deviation from the null model. C: Manhattan-like plots for the observed p-values from the tested multiplicativity or additivity models of

interaction, forHLA-DRB1 shared epitope against the rest of the genome except nearby SNPs. D: Odds ratio (OR) forHLA-DRB1 shared epitope and one other risk

factor, compared to that expected from an additive or multiplicative null model. Only known RA risk SNPs from the literature are shown. Black bars show median and

95% confidence intervals (bootstrap). E: The same SNPs as for D but shuffled within cases and shuffled within controls to match confounder I, thereby being a positive

control for multiplicative ORs and allowing a comparison of dispersion with D.

https://doi.org/10.1371/journal.pone.0250282.g004
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simulated a scenario for the heterogeneity model, which is less commonly identified between

genetic risk factors. An example of heterogeneity is the relationship between genetic variants

from the BLK and TNFSF4 genes in systemic lupus erythematosus [35]. In the synergism sce-

nario, two components need to be in the “present” state for the outcome “case” to occur (i.e.

logical AND; Fig 1A). In the heterogeneity scenario, it is enough that either one of two com-

ponents are in the “present” state for a “case” outcome (i.e. logical OR; Fig 1B). We also

sought to investigate the multifactorial threshold model, which has been thought of in terms

of genetic liability [36] and has been exemplified in diabetes [21]. Here we chose five compo-

nents, although any number from three upwards could have been used. In this model a mini-

mum number of factors need to be present for the disease or trait to occur, which in our

simulation set means that at least t number of components need to be in the “present” state

for a “case” outcome (Fig 1C). We also present the results without subsampling, which

matches population studies (S1 Fig). For the two risk factors, the synergism scenario corre-

sponds to Rothman’s synergism concept [13, 22], and the heterogeneity scenario corre-

sponds to genetic heterogeneity.

For phenotypes with a low prevalence the presence of both risk factors had a multiplicative

relation in the synergism scenario (Fig 1D), which is sometimes referred as "super-additive

interaction", or "positive interaction" on the additive scale. For the heterogeneity scenario the

presence of both risk factors instead had an additive relation at low prevalence (Fig 1D), which

is sometimes referred as "negative interaction" in the multiplicative scale. The multifactorial

threshold scenario equated to the heterogeneity scenario at threshold t = 1 and the synergism

scenario at t = 5, where 5 meant all components needed to be present for phenotype to occur.

We obtained intermediate results for intermediate thresholds; so that at low prevalence the

joint behavior of the factors was above additive, but below multiplicative (Fig 1D). Without

the subsampling (S1E Fig), the scenarios that produced multiplicative relationships lacked cor-

relation between risk factors, both within cases, controls, and the two combined (“all”). How-

ever, the subsampling caused a positive correlation between risk factors in the combined

(“all”) group (Fig 1E). On the other hand, the additive and intermediate relations, without the

subsampling, were reflected in negative correlations among risk factors in cases but not in con-

trols (S1E Fig). This negative correlation between two risk factors can be understood theoreti-

cally in the context of the additive model of interaction, since two independent sufficient

factors (meaning that there is heterogeneity of causation) should have a strongly negative cor-

relation. Thus, a similar, but attenuated, pattern of correlation between non-sufficient risk fac-

tors is expected. We also present results from a simulation of unbiased random sampling

(without the subsampling step) that is equivalent to population studies. In this analysis, we

detected a multiplicative relation between RRs or a synergism scenario at every prevalence rate

(fraction of cases in the population). For the heterogeneity scenario, the relationship between

risk factors was additive at low prevalence but less-than-additive at high prevalence.

AMLES, an interaction metric with a simple interpretation for

multifactorial thresholds

As we have seen, the multifactorial threshold model gives rise to intermediary interaction rela-

tionships between additivity and multiplicativity for the combinations of the risk factors

involved (Fig 1D). We therefore set a scale to calculate the intermediary relationships among

risk factors. To anchor the scale at 0 for additive relationships, the expected effect from the

additive model is subtracted from the observed double exposure OR. Consequently, to set the

scale at 1 for multiplicative relationships, the previous subtraction is divided by the difference

between the expected OR for the multiplicative model and the expected OR for the additive
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model. This provides an additive-to-multiplicative linear scale (AMLES):

AMLES ¼ ðOR11ðobservedÞ � expectedðadditiveÞÞ=ðexpectedðmultiplicativeÞ
� expectedðadditiveÞÞ

where expected(additive) = OR10 + OR01 − 1 and expected(multiplicative) = OR10 × OR01.

Then, to be able to compare AMLES with the threshold in our simulated threshold model,

we scaled the threshold as the ratio:

fthr ¼ ðt � 1Þ=ðF � 1Þ

where F is the number of components (factors) that could cross the threshold t, in order to

have a 0 to 1 scale (see Fig 2). We found that the square of the threshold ratio fits the scaled

OR. This means that the OR at a low prevalence (such as 0.5%) for doubly exposed (OR11) was

ð1 �
p
f Þ � expectedðadditiveÞ þ

p
f � expectedðmultiplicativeÞ;

where
p
f is the square root of fthr. The metric used, AMLES has the convenient properties of

having both a natural lower value (0 for additive) and higher value (1 for multiplicative), as

well as an interpretable scale between these values, therefore it is also related to the threshold

fraction fthr. However, the metric fest = sign(AMLES) × (AMLES)2 has a more natural scale,

but unlike AMLES this is not symmetric around the median, making it a less convenient scale

(S2 Fig). AMLES is related to another measure of interaction size, relative excess risk due to

interaction (RERI = RR11 − RR10 − RR01 + 1) [12, 22], by AMLES = RERI / (OR10 − 1) / (OR01

− 1) in cases when ORs and RRs tend to be the same. AMLES could perhaps be used instead of

measures like attributable proportion, synergy index and RERI, given that it can be indicative

of multiplicative or additive risk regardless of the scale (additive or multiplicative) used for

testing.

Three risk factors

Relationships involving more than two potential causes can be analyzed by pair-wise interac-

tions, as can be seen in our simulation scenario based on the multifactorial threshold model.

Although an outcome with more than two causes will not always entail a threshold model, it

may be possible to break down the multifactorial relationships into pairs by those involving

causal heterogeneity and synergism. For example, in the case of outcome = X AND (ZOR V)

= (X AND Z) OR (X AND V), the relationships among these risk factors should be distinguish-

able as causal heterogeneity between Z and V (from the logical OR) and synergism between X
and each of the other risk factors (from the logical AND) (Fig 2B). This might be how body

mass index (BMI) interacts with variants of the F5 and ABO genes (as if X = BMI, Z = F5 SNP,

V = ABO SNP) in ventral thromboembolism risk [37, 38]. Our simulation performs as pre-

dicted when we tested this example against the expected RR from all eight possible combina-

tions of both logical OR and AND (Fig 2C, S1C Fig).

Scenarios where confounder effects cause false interaction

We investigated two confounder scenarios, neither of which include any causal relationship

between the risk factors (e.g., heterogeneity or synergism) and are therefore applicable when

either or both are false risk factors. The first scenario describes when the genetic background

for cases and controls are mismatched (Fig 3A). It can also be described as an effect of data

reuse, where the same data set is used to define risk factors and to calculate interactions, as was

done in a previous interaction study [18]. In the other scenario we simulated multiple ancestry

groups, which may translate to different allelic frequencies across groups, a well-known

PLOS ONE Simulations to understand additive and multiplicative interactions

PLOS ONE | https://doi.org/10.1371/journal.pone.0250282 April 26, 2021 10 / 17

https://doi.org/10.1371/journal.pone.0250282


confounder that is generally considered in the design or corrected for in genetic association

studies [39]. In our simulation we condensed it down to two groups (Fig 3B). We did not

model linkage disequilibrium (LD) in our simulations, as the type of simulations we used do

not accommodate LD, but we tested our observations on a real GWAS of ACPA-positive RA

(anti-citrullinated protein antibody positive rheumatoid arthritis). It may be advisable to

prune for LD when addressing interactions in genome-wide data sets [40].

For the first confounder scenario (Fig 3A), ORs (Fig 3C) and correlations (Fig 3D) at high

fractions of cases are more relevant than RRs (Fig 3E). We found the ORs relationship to be

multiplicative, regardless of the balance between cases and controls, which makes this con-

founder scenario indistinguishable from real synergism. This was also true for correlation

coefficients, where it would only be in population data that it would be possible to distinguish

synergism from the confounder scenario (Figs 1E and 3D, S1E Fig) by the former’s lack of cor-

relation in that situation. The second confounder scenario (Fig 3B) had negative-additive ORs

and RRs relationships, matching additive in a high proportion of cases (Fig 3C and 3E). The

risk factors correlation among the three groups used (all, cases, controls) was always positive

(Fig 3D), which should be useful in distinguishing this confounder scenario from real interac-

tions. We also tested what happens when adding a biased subsampling step, as in Fig 1A–1C,

to Confounder II, but it made no difference to the results (S3 Fig). We also devised one simula-

tion scheme that always produced additive RRs relationships and one that always produced

additive ORs relationships (S4 Fig), because such schemes could guide randomization, and to

complement the always-multiplicative OR of the first confounder scenario.

Example from rheumatoid arthritis

Both the synergism and heterogeneity scenarios represent interesting relationships between

two risk factors, thus the appropriate interaction model to use depends on the hypothesis one

is interested in. Alternatively, a hypothesis-free approach would be ideal, and the closest to

that is to evaluate both additive and multiplicative hypotheses, as this would cover both models

as well as threshold-based scenarios due to their intermediate nature (i.e. they would fail both

types of tests, in the positive direction for additive and negative direction for multiplicative).

We therefore evaluated both additive and multiplicative interaction for the two top genetic

risk factors (HLA-DRB1 shared epitope alleles and PTPN22 rs2476601 T allele) for ACPA-pos-

itive RA in European-descent population, using GWAS data from the EIRA study. We

detected no deviation for multiplicativity, but did for additivity (Fig 4A and 4B), as reported

before for HLA-DRB1 [15]. The new simulations presented here increases our ability to inter-

pret this result as a widespread interaction betweenHLA-DRB1 shared epitope and all non-

HLA genetic risk factors, in the common meaning of interaction where synergism is a type of

interaction. Correlation analyses backed up synergism (but not heterogeneity or population

stratification) as an appropriate interpretation of the results (S5 Fig). From this, we could

derive that theHLA-DRB1 shared epitope cannot be substituted or phenocopied by a non-

HLA genetic risk factor for its part in the chain of ACPA-positive RA etiology (Fig 4A, 4C and

4D). The same was the case for the PTPN22 risk allele, given the similarities in P-value distri-

butions observed (Fig 4A and 4B). For both set of tests there were a majority of tested loci

where there was too little data to distinguish additive from multiplicative ORs. We followed up

the results of multiplicativity by looking only at known risk SNPs (Fig 4D), finding results sim-

ilar to a randomization based on the Confounder I scenario (and therefore bound to produce

multiplicative odds ratios), with similar variability (P = 0.6–0.8, Levene’s test, n = 9–11 SNPs)

implying a dearth of non-multiplicative ORs relationships (Fig 4E). This randomization is the

same as Test III of a previous study by Ignac et al [41]. We also devised a randomization
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scheme creating additive ORs based on the Additive O scheme of S4 Fig (intended to provide

always additive effect relationships) and tested it on the full SNP set (S6 Fig). This result

showed a very noticeable deviation from the real data, as expected.

Discussion

We herein present a simulation approach intended to help with the interpretation of additive

and multiplicative models of interaction of RRs and ORs. We show that addition of ORs, or

negative deviation from the multiplicative interaction model (OR11 < 1, when testing OR11 =

OR10 × OR01), occurs when the risk comprises two independent risk factors (heterogeneity

scenario, Fig 1B), or a process that approximating to that setup at a given fraction of cases (S4

Fig). Multiplication of ORs, or positive deviation from additive interaction model (OR11 > 1,

when testing OR11 = OR10 + OR01 − 1), follows if two different mechanisms are required for

disease (synergism scenario, Fig 1A). Depending on the hypothesis one should therefore

choose the appropriate statistical test. To identify deviation from synergism, deviation from a

multiplicative relationship could be tested. Often however, if we are interested in testing

whether disease is caused by the interaction of two factors, it is appropriate to test for deviation

from additivity. A multiplicative assumption would have merit in our testing against

HLA-DRB1 shared epitope and PTPN22, if ACPA-positive RA were a homogeneous set of

causes, rather than the kind of heterogeneity of causation that we have shown gives rise to

additivity between risk factors. Nevertheless, ACPA-positive RA may have a certain level of

heterogeneity of causes, despite being defined as a subgroup of patients where ACPA positivity

is a mediating risk factor [42]. Therefore, in this study, we also tested the multiplicative inter-

action between the strongest genetic risk for ACPA-positive RA and other risk-SNPs in the

same material as previously published by Diaz-Gallo et al [15], these results showed that there

is not deviation from the null hypothesis for the multiplicative model of interaction. However,

we only tested the main other model, not for example some version of the multifactorial

threshold model. In light of the new understanding that our simulations give, the presence of

deviation from additivity, along with no deviation from multiplicativity, supports the existence

of widespread synergism between the genetic risk factors in causing ACPA-positive RA. This

result is also applicable to the estimation of heritability for RA, since the assumption of an

additive model would lead to an underestimation of narrow-sense heritability [43].

Synergism can be viewed as a chain of events scenario, whereas causal heterogeneity corre-

sponds to phenocopying. In terms of Rothman’s sufficient-cause model, the risk factors X and

Z in the synergism scenario correspond to risk factors in the same cause, referred to as causal

co-action, joint action or synergism, whereas X and Z in the heterogeneity scenario corre-

spond to risk factors in different causes [22].

The fact that most loci showed no statistically significant deviation from neither additive

nor multiplicative interaction will be the unfortunate reality for many applications of interac-

tion testing. While statistical power for single risk factor testing scales with the inverse square

of the number of samples, already forcing large GWAS sample sizes, the statistical power for

interaction testing scales to the inverse power of four [43], thus requiring far larger sample

sizes than standard association testing.

Our inspiration for this work came from a simulation study [18] in which case or control

status was randomly assigned, and one risk factor was simulated to resemble the strongest

genetic risk factor for ACPA-positive RA, and interaction with other risk factors (selected by

P-value for risk) was computed. The simulation led to an overrepresentation of additive inter-

actions (i.e., deviation for additive odds ratios). Our Confounder I scenario (Fig 3A) was

produced an analogous result. The author [18] noted that his simulation produced a
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multiplicative null model that does not match additivity and concluded that the additive inter-

actions observed were erroneous, as no interaction should be present. We propose an alterna-

tive interpretation, based on the convergences we found: the Confounder I scenario, and

thereby also the previous simulation [18] perfectly mimics synergism in a case-control study

with a similar number of cases and controls selected from a population with a low prevalence,

as can be seen by comparing our figures (Figs 1D, 1E, 3C and 3D). By low prevalence, we

mean the 0.5% mark in our simulations, which is similar to RA prevalence: 0.7% for all RA in

Sweden [44], of which 60% are ACPA-positive [45]). It should be no surprise that a simulation

[18] of synergism, which of course is interaction [46], produces many significant results,

although it is of course worrying that a confounder like data reuse can produce this effect, as

the study [18] showed. We conclude that the previous simulation study [18] is in line with the

confusion over additive and multiplicative interaction that can sometimes be found in the lit-

erature [47], highlighting the need to understand better the relationships among risk factors

that different interaction types imply.

In this simulation study we demonstrate the causal interpretations of additive and multipli-

cative interaction in both the RR and OR settings. Some of this has been understood intuitively

in the past, especially the connection between multiplicative effect and logical AND [48], but

here we contribute with further clarification of the situation through simulation. We hope that

this will help guide the interpretation of future interaction studies.

Supporting information

S1 Fig. Three simulated causal scenarios. A-C: Simulation schemes for three generalized sce-

narios: synergism of causes (A), heterogeneity of causes (B) and a 5-factor threshold (C). The

numbers are example frequencies, and frequencies in bold highlight the higher frequencies of

the simulated risk factors (X and Z) associated with disease. For example, “Z: freq. 0.3” means

that each simulated individual in the group had a 30% chance of being assigned the risk factor

Z. The numbers in italics are the average frequency in the other group of simulated individuals;

note that this will depend on the prevalence (which is adjusted in the scenarios in the split

between cases and controls). “Components” (comp1 and comp2) were used as a strategy to

obtain probabilistic risk factors. D: The relative risks for double risk (RR11) calculated from

the simulation scenarios, with boxes summarizing 1,000 simulation runs with different risk

factor frequencies. The observed RR11 are compared to the additive and multiplicative combi-

nations of the relative risks for single risk (RR10 and RR01). Boxplots show median and quar-

tiles for the simulations, but extreme values are omitted for clarity. Yellow arrows highlight

where the median is visibly close to multiplicativity, while blue arrows do the same for additiv-

ity, for the two most extreme simulated prevalence rates. “M. threshold” means scenario C. E:

Correlation coefficients between the risk factors X and Z. The relevant signal in each case is

whether the median is negative, zero or positive, highlighted with a -, 0 or + symbol for the

two most extreme simulated prevalence rates. We left out the highest prevalence results due to

division-with-zero difficulties in the multiple threshold scenario.

(PDF)

S2 Fig. Multifactorial threshold model with fest metric. The y axis is the signed square of the

y axis in Fig 2A, otherwise this is the same plot, i.e. based on the scenario in Fig 1C. The red

curve is the threshold fraction; this and fest make up the y axis. The notches in the box plots

show bootstrapped 95% confidence intervals for the medians. The simulation had 0.5% cases

and the rest controls, with a range ±0.04%.

(PDF)
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S3 Fig. No apparent difference from subsampling to equal number of controls and cases in

confounder II. As in the scheme to the left, we simulated with (purple arrows) or without

(green arrow) a step that reduced the number of controls to the same as the number of cases.

As can be seen in the box plots above, this does not appear to have any effect on the results.

(PDF)

S4 Fig. Schemes providing additivity. A-B: Simulation for two schemes intended to pro-

duce additive effect. The numbers are example frequencies, and frequencies in bold highlight

the higher frequencies of the simulated risk factors (X and Z) associated with disease. For

example, “Z: freq. 0.3” means that each simulated individual in the group had a 30% chance

of being assigned the risk factor Z. The numbers in italics are the average frequency in the

other group of simulated individuals; note that this will depend on how many cases there are

to controls, specifically, higher_freq × case_fraction + lower_freq × (1 –case_fraction). In

each indicated circle the two risk factors have been added in an uncorrelated/independent

manner. C-D: The relative risks (C) and odds ratios (D) for double risk (RR11 or OR11)

calculated from the simulation schemes, with boxes summarizing 1,000 simulation runs with

different risk factor frequencies. The observed RR11 were compared to the expected combi-

nations of the relative risks for single risk (OR10 and OR01) in the additive and multiplicative

models. Boxplots show median and quartiles for the simulations, but extreme values are

omitted for clarity. Yellow arrows highlight where the median is visibly close to the null

hypothesis for the multiplicative model, while blue arrows do the same for the additive

model, for the two most extreme simulated trait prevalence rates. E: Correlation coefficients

between the risk factors X and Z. The relevant signal in each case is whether the median is

negative, zero or positive, highlighted with a -, 0 or + symbol for the two most extreme simu-

lated prevalence rates.

(PDF)

S5 Fig. Shared epitope correlation relationships. Correlation between HLA-DRB1 Shared

Epitope (calculated as codominant) and other SNPs (calculated as dominant) in EIRA data

within cases, control or all samples, for all non-HLA SNPs (A, C) or only known non-HLA

risk SNPs (B). P-values come from 1-sample t-tests against zero. Regressing out sex and

the first ten principal components gave essentially the same result (C) as without this step

(A, B).

(PDF)

S6 Fig. Comparison of EIRA double risk odds ratios to two types of randomizations. A-C:

SE isHLA-DRB1 Shared Epitope, “other” are non-HLA risk SNPs for ACPA-positive RA.

Unmod. or Unmodified is the EIRA data as it is, Rand1 shuffles, for each locus independently,

within cases and shuffling within groups to match the independence part of the confounder

scenario of Fig 3A (confounder I), Rand2 assigns individuals randomly into two groups and

then in one group samples risk factor SE from controls and in the other group samples the

other SNP risk factor from controls, to match S2B Fig (Additive O). We suspect that Rand2

unfortunately moderates odds ratios, meaning it could use a better replacement. Unmodified

and Rand1 have similar variability (P = 0.04–0.8, Levene’s test, excluding (C) where calcula-

tions failed (NaN)). The middle of the scale for (C) is magnified to ease viewing. Blue arrows

highlight where the median is visibly close to additivity, while yellow arrows do the same for

multiplicativity. D: SNPs from Fig 4C and 4D, in varying numbers due to division-by-zero

errors, with effect scaled between additive (blue line) and multiplicative (yellow line), as in

Fig 2A.

(PDF)
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interaction study of contrasting interaction effects with smoking in ACPA-positive versus ACPA-nega-

tive rheumatoid arthritis. Rheumatology 2016; 55: 149–155. https://doi.org/10.1093/rheumatology/

kev285 PMID: 26272072

47. Källberg H, Bengtsson C. Chapter One—Terminology and definitions for interaction studies, in between

the lines of genetic code. In: Padyukov L, Between the Lines of Genetic Code. Academic Press. pages

3–23. 2014.

48. Li W, Reich J. A complete enumeration and classification of two-locus disease models. Hum Hered.

2000; 50: 334–349. https://doi.org/10.1159/000022939 PMID: 10899752

PLOS ONE Simulations to understand additive and multiplicative interactions

PLOS ONE | https://doi.org/10.1371/journal.pone.0250282 April 26, 2021 17 / 17

https://doi.org/10.1111/j.1538-7836.2012.04810.x
http://www.ncbi.nlm.nih.gov/pubmed/22672568
https://doi.org/10.1371/journal.pgen.1008241
http://www.ncbi.nlm.nih.gov/pubmed/32130208
https://doi.org/10.1186/s13040-019-0199-7
https://doi.org/10.1186/s13040-019-0199-7
http://www.ncbi.nlm.nih.gov/pubmed/31198442
https://doi.org/10.1371/journal.pone.0092310
https://doi.org/10.1371/journal.pone.0092310
http://www.ncbi.nlm.nih.gov/pubmed/24670935
https://doi.org/10.1007/978-3-319-68888-6%5F2
https://doi.org/10.1073/pnas.1119675109
https://doi.org/10.1073/pnas.1119675109
http://www.ncbi.nlm.nih.gov/pubmed/22223662
https://doi.org/10.1111/biom.12166
http://www.ncbi.nlm.nih.gov/pubmed/24621448
https://doi.org/10.1136/ard.2010.133371
https://doi.org/10.1136/ard.2010.133371
http://www.ncbi.nlm.nih.gov/pubmed/21149495
https://doi.org/10.1093/rheumatology/kev285
https://doi.org/10.1093/rheumatology/kev285
http://www.ncbi.nlm.nih.gov/pubmed/26272072
https://doi.org/10.1159/000022939
http://www.ncbi.nlm.nih.gov/pubmed/10899752
https://doi.org/10.1371/journal.pone.0250282

