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Abstract: Background: Bacterial biofilm on the surface of tracheostomy tubes (TTs) is a potential
reservoir of potentially pathogenic bacteria, including S. aureus. For this reason, our study aimed
to investigate biofilm production in vitro and the presence of icaAD and MSCRAMM genes in
clinical S. aureus strains derived from TTs, with respect to antibiotic resistance and genetic variability.
Methods: The clonality of the S. aureus strains was analyzed by the PFGE method. The assessment
of drug resistance was based on the EUCAST recommendations. The isolates were evaluated for
biofilm production by the microtiter plate method and the slime-forming ability was tested on Congo
red agar (CRA). The presence of icaAD genes was investigated by PCR and MSCRAMM genes were
detected by multiplex PCR. Results: A total of 60 patients were enrolled in the study. One TT was
obtained from each patient (n = 60). Twenty-one TTs (35%) were colonized with S. aureus. A total of
24 strains were isolated as 3 patients showed colonization with 2 SA clones (as confirmed by PFGE).
PFGE showed twenty-two unique molecular profiles. Two isolates (8%) turned out to be MRSA, but
50% were resistant to chloramphenicol, 25% to erythromycin and 8% to clindamycin (two cMLSB and
four iMLSB phenotypes were detected). The microtiter plate method with crystal violet confirmed
that 96% of the strains were biofilm formers. Representative strains were visualized by SEM. All
isolates had clf AB, fnbA, ebpS and icaAD. Different MSCRAMM gene combinations were observed.
Conclusions: the present study showed that the S. aureus isolated from the TTs has a high diversity
of genotypes, a high level of antibiotic resistance and ability to produce biofilm.
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1. Introduction

Staphylococcus aureus is a common opportunistic organism that colonizes human skin, the
area from the front of the anterior nasal vestibule to the back of the nasopharynx [1,2]. S. aureus
is a major human pathogen causing many clinical infections. It can cause bacteremia,
infectious endocarditis, osteoarthritis, skin and soft tissue infections, pleuritis and lung
infections, metastatic abscesses, sepsis and toxic shock syndrome [3].

An important group of S. aureus infections are biomaterial-associated infections (BAIs)
resulting from commonly used medical devices, including tracheostomy tubes (TTs) made
of various biomaterials. For their production, polyvinyl chloride and polyethylene are
most often used [4]. Very often, BAIs are a consequence of biomaterial colonization [5–8].
Patients with tracheostomy are colonized with a variety of microbiota, represented by
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various species of Gram-positive and Gram-negative bacteria [5,7]. Improper patient care
and too infrequent replacement of tracheostomy tubes may lead to colonization and then
translocation of microorganisms to the lower parts of the respiratory tract, initiating the
inflammatory process [5,7].

According to the current literature review, among Gram-positive bacteria, S. aureus
is a common microorganism that colonizes tracheostomy tubes and an etiological agent
in the pathogenesis of respiratory tract infections in hospitalized patients undergoing
tracheotomy surgery [5,7–9].

In 2002, the National Institutes of Health (NIH) estimated that over 80% of microbial
infections in the human body are associated with the formation of biofilm [5]. The ability
of S. aureus to form a biofilm on the surface of biomaterials, which are widely used in
medicine, plays a key role and is considered one of the main factors of virulence [10–14].

An important determinant of the adhesive capacity of S. aureus is the large family
of MSCRAMM (microbial surface components recognizing adhesive matrix molecules)
surface proteins. These proteins are anchored in the cell wall peptidoglycan by sortase
A and have multiple signaling domains, thanks to which the family is involved in the
initial stages of biofilm formation. MSCRAMMs are able to attach to many components of
the host extracellular matrix (ECM) and blood plasma, including to collagen, fibronectin,
elastin and many others that cover the surface of biomaterials [15]. In the early stages of
biofilm formation, the expression of these proteins is increased. Along with the subsequent
stages of maturation, there is a gradual reduction in the expression of MSCRAMM proteins
and an increased share of polysaccharide intercellular adhesins (PIA), which facilitate the
aggregation of bacterial cells. PIA is a linear homoglycan containing at least 130 β-1,6
linked N-acetylglucosamine residues, 15–20% of which are deacetylated [16]. Deacetylation
confers an electropositive nature to normally neutral molecules. This charge promotes the
aggregation of negatively charged staphylococci. The genes responsible for the production
of PIA are located on the ica operon, the most important of which is the icaA gene, which
encodes the enzyme responsible for the formation of N-acetylglucosamine oligomers, with
relatively low expression. The activity of this gene is enhanced by the presence of the icaD
gene [17]. Bacterial cells coated with intercellular polysaccharide adhesins are much more
resistant to the mechanisms of the host immune system and the action of antibiotics.

Due to the lack of available literature data on S. aureus strains isolated from TTs from
patients with tracheostomy, there is an urgent need to supplement these studies with
missing data. Therefore, in this study, we aimed at characterizing S. aureus strains isolated
from tracheostomy tubes, taking into account drug resistance, the ability to create biofilm,
and genes from the MSCRAMM family involved in the adhesion process.

2. Materials and Methods
2.1. Bacterial Strains

Swabs of external and internal surfaces of tracheostomy tubes were collected from
60 tracheostomy tubes from individual patients admitted to the 5th Military Hospital
with Polyclinic in Krakow, located in the Malopolska region (Poland). The strains were
collected from June 2019 to May 2021. All isolates were placed into the Microbank™ system
(Pro Lab Diagnostics Inc., Richmond Hill, ON, Canada) and stored at −80 ◦C for further
analyses. The following four reference strains were used: S. aureus ATCC® 25923™ and
S. epidermidis ATCC® 35984™ (RP62A) known for their slime production, S. epidermidis
ATCC® 12228™ known as non-slime-producing, and S. aureus ATCC® 29213™ as a quality
control in antimicrobial susceptibility testing.

2.2. Phenotypic Identification of Staphylococcus aureus

The tracheal swabs examined were plated on agar supplemented with 5% sheep blood
and later incubated overnight at 37 ◦C. Each culture underwent Gram staining and was
identified to species using basic microbiological techniques, such as catalase test, tube
coagulase tests, clumping factor and API Staph tests (bioMérieux) [18].
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2.3. Antimicrobial Susceptibility Testing

Drug resistance of the S. aureus was determined in accordance with the latest EUCAST
recommendations, version 11.0, 1 January 2021 [19].

Drug resistance was determined by the Kirby–Bauer disc diffusion method (Oxoid)
for amikacin (30 µg), clindamycin (2 µg), erythromycin (15 µg), and fusidic acid (10 µg).

The E-test method, determining the MIC (minimal inhibitory concentration) value with
the use of concentration gradient strips (Liofilchem MIC Test Strips), was used for chloram-
phenicol (0.016–256 mg/L), linezolid (0.016–256 mg/L), gentamicin (0.016–256 mg/L), tetra-
cycline (0.016–256 mg/L), tobramycin (0.016–256 mg/L), trimethoprim/sulfamethoxazole
(0.002–32 mg/L) and vancomycin/teicoplanin (0.008–128 mg/L). If the strains showed resis-
tance to norfloxacin (0.016–256 mg/L), an additional test for ciprofloxacin (0.002–32 mg/L),
levofloxacin (0.002–32 mg/L), moxifloxacin (0.002–32 mg/L) and ofloxacin (0.002–32 mg/L)
was performed. S. aureus ATCC® 29213™ was used as a reference strain.

2.4. Genomic DNA Extraction

Genomic DNA was isolated from S. aureus strains using the GeneMATRIX Bacterial
& Yeast Genomic DNA Purification Kit (EURX) according to the manufacturer’s protocol.
The concentration and purity of the isolated DNA were assessed using a NanoDrop Lite
spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA).

2.5. Pulsed Field Gel Electrophoresis (PFGE)

The PFGE method was used to determine the genetic relationship among the investi-
gated S. aureus isolates, following the previously described method with modifications [20].
The electrophoresis was performed using a CHEF-DR® II PFGE apparatus (Bio-Rad,
Hercules, CA, USA).

The similarity of the PFGE profiles was compared according to the percentage similar-
ity of the profiles estimated by the Dice coefficient and grouped by UPGMA (unweighted
pair group arithmetic mean method) using GelCompar II software version 6.5 (Applied
Maths). The analysis used S. aureus ATCC® 25923™ as a reference strain.

2.6. Molecular Confirmation of the Species Staphylococcus aureus

The bacterial isolates, which were identified to be S. aureus by specific conventional
phenotypic methods, were further tested by multiplex PCR with the use of specific primers
synthesized by Genomed [18].

2.7. Methicillin-Resistant Staphylococcus aureus Screening

Methicillin-resistant S. aureus (MRSA) were determined using cefoxitin discs (30 µg)
on Mueller–Hinton agar (bioMérieux, Marcy-l’Étoile, France) plates in accordance with
the European Committee on Antimicrobial Susceptibility Testing [19] Breakpoint tables,
version 11.0, 1 January 2021. Isolates with phenotypic resistance to oxacillin (1 µg) were
later confirmed to harbor the mecA gene by multiplex PCR with the use of specific primers
synthesized by Genomed [18].

2.8. Quantification of Biofilm in Microtiter Plates

The quantitative assessment of biofilm production by the tested S. aureus isolates was
based on the published literature data [21], with some modifications. Several identical looking
colonies were picked from agar media and then suspended in 8 mL of Tryptic Soy Broth
(TSB, Becton Dickinson, Franklin Lakes, NJ, USA) to obtain a 0.5 McFarland inoculum. The
wells were inoculated with a suspension of 2 mL of bacteria in sterile polystyrene 12-well flat
bottom microtiter plates (Costar® Corning). Incubation was carried out at 37 ◦C for 18 h.
After this time, the culture medium was very gently removed with a pipette, and the sealed
bacterial cells were washed three times with PBS and fixed with 2 mL of methanol (POCH
S.A., Gliwice, Poland) for 30 s and allowed to dry at 37 ◦C for 2 h. Thereafter, the wells were
stained with crystal violet (ANALAB) for 15 min, then the stain was rinsed with distilled
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water, and the plates were allowed to dry at 37 ◦C for 4 h. The negative controls were
wells filled with sterile TSB medium (Becton Dickinson). The experiment was performed
in triplicate. The absorbance was measured spectrophotometrically at a wavelength of
λ = 570 nm in an Infinite 200 Pro (TECAN) instrument supported by the i-control 2.0.10.0
software. Readings in the wells were made on a square-shaped grid with dimensions
of 15 × 15. Mean values (OD) and standard deviation (SD) values were calculated for
all replicates of the experiment. The cut-off point (ODc) was calculated according to the
following formula: ODc = average OD of negative control + (3 × standard deviation (SD)
of negative control). The estimated OD value of the tested strains was reduced by the
ODc value. The ODc value was determined separately for each 12-well plate separately.
The results were interpreted in accordance with the following definitions proposed by
Stepanović et al.: OD ≤ ODc is a no biofilm producer; ODc < OD ≤ 2xODc is a weak
biofilm producer; 2xODc < OD ≤ 4xODc is a moderate biofilm producer; 4xODc < OD is a
strong biofilm producer [22].

2.9. Phenotypic Characterization of Slime Producing Ability on Congo Red Agar (CRA)

The slime production assay was performed by cultivation of the S. aureus strains on
Congo red agar (CRA) plates, as described by Freeman et al. [23]. The plates were prepared
by adding 0.8 g Congo red (Sigma, St. Louis, MO, USA) and 36 g of sucrose (Sigma,
St. Louis, MO, USA) to 1 L of brain heart infusion agar (BHI, Oxoid, Basingstoke, UK). The
inoculated CRA plates were incubated at 37 ◦C for 24 h. Slime-producing strains develop
black colonies, whereas non-producing isolates form red colonies. In the study, a six-point
scale developed by Arciola et al. was used to assess the color of the colonies produced.
Very black (vb) and black colonies (b) were considered as normal slime producing strains,
while almost black (ab) colors were considered as indicative of a weak slime production
activity. On the other hand, bordeaux (brd), red ®, and very red (vr) were classified as
strains unable to produce slime [24].

2.10. MSCRAMM Gene Detection

Multiplex PCR (mPCR) with the use of specific primers (Genomed), as published by
Tristan et al. was used to detect the presence of genes encoding microbial surface compo-
nents that recognize adhesive matrix molecules (MSCRAMMs), including bbp (encoding
bone sialoprotein binding protein), clf A and clf B (encoding clumping factors A and B), cna
(encoding collagen binding protein), ebpS (encoding elastin binding protein), eno (encoding
laminin binding protein), fnbA (encoding fibronectin binding protein A), fnbB (encoding
fibronectin binding protein B) and fib (encoding fibrinogen binding protein) (Table 1) [25].
The amplification reaction was performed using the PCR Mix Plus kit (A&A Biotechnology,
Gdańsk, Poland).

Table 1. Primer sequences used in the study.

No. Species/Gene Sequence (5′ → 3′) Product Size (pz) Source

Molecular confirmation of the species Staphylococcus aureus and detection of mecA gene

1 S. aureus
AATCTTTGTCGGTACACGATATTCTTCACG

108

[18]

CGTAATGAGATTTCAGTAGATAATACAACA

2 S. epidermidis
ATCAAAAAGTTGGCGAACCTTTTCA

124
CAAAAGAGCGTGGAGAAAAGTATCA

3 S. haemolyticus
GGTCGCTTAGTCGGAACAAT

271
CACGAGCAATCTCATCACCT

4 mecA
TAGAAATGACTGAACGTCCG

154
TTGCGATCAATGTTACCGTAG
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Table 1. Cont.

No. Species/Gene Sequence (5′ → 3′) Product Size (pz) Source

Operon ica

5 icaA
ACACTTGCTGGCGCAGTCAA

188

[11]
TCTGGAACCAACATCCAACA

6 icaD
ATGGTCAAGCCCAGACAGAG

198
AGTATTTTCAATGTTTAAAGCAA

MSCRAMM

7 bbp
AACTACATCTAGTACTCAACAACAG

575

[25]

ATGTGCTTGAATAACACCATCATCT

8 cna
GTCAAGCAGTTATTAACACCAGAC

423
AATCAGTAATTGCACTTTGTCCACTG

9 eno
ACGTGCAGCAGCTGACT

302
CAACAGCATYCTTCAGTACCTTC

10 ebpS
CATCCAGAACCAATCGAAGAC

186
CTTAACAGTTACATCATCATGTTTATCTTTG

11 fnbA
GTGAAGTTTTAGAAGGTGGAAAGATTAG

643
GCTCTTGTAAGACCATTTTTCTTCAC

12 fnbB
GTAACAGCTAATGGTCGAATTGATACT

524
CAAGTTCGATAGGAGTACTATGTTC

13 fib
CTACAACTACAATTGCCGTCAACAG

404
GCTCTTGTAAGACCATTTTCTTCAC

14 clf A
ATTGGCGTGGCTTCAGTGCT

292
CGTTTCTTCCGTAGTTGCATTTG

15 clf B
ACATCAGTAATAGTAGGGGGCAAC

205
TTCGCACTGTTTGTGTTTGCAC

2.11. icaAD Gene Detection

Two PCR assays using specific primers (Genomed) were used to detect icaA and
icaD genes, as proposed by Piechota et al. [11] (Table 1). The amplification reaction was
performed using the PCR Mix Plus kit (A&A Biotechnology).

2.12. Scanning Electron Microscopy (SEM)

The polyethylene (DEMED) and polyvinyl chloride (SUMI) tracheostomy tubes were
aseptically cut into approximately 1 cm fragments and incubated in 4 mL of the 0.5 Mac-
Farland bacterial inoculum in 12-well plates (Costar® Corning). For this purpose, one
strain (TT_5) showing a large biofilm production was selected and it was incubated with
TT fragments in static culture at 37 ◦C for 24 h in an aerobic atmosphere. The samples
were fixed according to the procedure by Pajerski et al. [26]. The dry samples were glued
with carbon tape and carbon glue to an aluminum table and dusted with gold for 1 min
(Quorum Q150T S). Observation of the biofilm was performed using a HITACHI S-4700
microscope with the NORAN Vantage microanalysis system.

3. Results
3.1. Characteristics of Patients

Patients from whom tracheostomy tubes were obtained were hospitalized at the 5th
Military Hospital with Polyclinic in Krakow in 2019–2021 in the Department of Otolaryn-
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gology (83%, n = 50) due to laryngeal cancer (73%, n = 44), tonsil cancer (3%, n = 2), tongue
cancer (2%, n = 1), retromolar trigone cancer (3%, n = 2), cervical abscess (2%, n = 1), as
well as in the intensive care unit (17%, n = 10) due to respiratory failure (17%, n = 10).
In total, tubes were obtained from 60 people, including 20% (n = 12) of women and 80%
(n = 48) of men. The mean age of the people was 67.9 ± 11.9, while in the group of women,
it was 77.7 ± 10.2 and in the group of men, 65.5 ± 11.2. Tracheostomy tubes in the ORL
department were used for one day, while in the ICU department, they were used for
11.6 ± 6.6 days, on average.

3.2. Bacterial Strains and MRSA Screening

A total of 24 isolates were detected on the tested TTs. Using phenotypic and molecular
methods, it was confirmed that they belong to the species S. aureus, which was detected in
37% (n = 22) of tracheostomy tubes. Only two strains (8%) showed resistance to oxacillin
and cefoxitin and possessed the mecA gene (MRSA). The remaining 22 strains (92%) showed
phenotypic sensitivity to oxacycline and cefoxitin and lacked the mecA gene (MSSA).

3.3. Antimicrobial Susceptibility Testing

In the tested samples, a high number of strains showed resistance to the selected
antibiotics. The highest percentage was represented by strains resistant to chloramphenicol
(50%, n = 12), while 25% (n = 6) were resistant to erythromycin, and 8% (n = 2) were
resistant to clindamycin. Among these strains, two isolates with the constitutive MLSB
(cMLSB) phenotype and four with the inducible MLSB (iMLSB) were detected. Additionally,
17% of the observed strains were resistant to tetracycline (n = 4). One strain was resistant to
norfloxacin (4%), which also showed resistance to ciprofloxacin, levofloxacin, moxifloxacin
and ofloxacin. Strains resistant to aminoglycosides (amikacin, gentamicin, tobramycin),
glycopeptides (vancomycin and teicoplanin) or other antibiotics, such as linezolid, fusidic
acid and trimethoprim with sulfamethoxazole, were not observed (Figure 1).
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Figure 1. Percentage of S. aureus resistance to specific antibiotics. Abbreviations:
NOR—norfloxacin; CIP—ciprofloxacin; LEV—levofloxacin; MXF—moxifloxacin; OFX—ofloxacin;
AK—amikacin; CN—gentamicin; TOB—tobramycin; E—erythromycin; DA—clindamycin;
TEC—teicoplanin; VA—vancomycin; LZD—linezolid; C—chloramphenicol; FD—fusidic acid;
SXY—trimethoprim/sulfamethoxazole; TE–tetracycline.

3.4. PFGE

The study analyzed the similarity of SmaI PFGE restriction profiles for 24 S. aureus
strains isolated from tracheostomy tube swabs. Among the tested strains, 22 PFGE geno-
types (designated from A to W) were identified, 2 of which were distinguished (A and
B) because each of them was represented by 2 tested S. aureus isolates with a similarity
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of 100%. The remaining 20 strains showed unique restriction patterns (singletons), with
similar PFGE profiles ranging from 49.1% to 91.4%. Additionally, three TTs were colonized
by two genetically different strains of S. aureus. The dendrogram generated by the com-
puter assisted analysis of the PFGE profiles showed great genetic variation in the isolates
(Figure 2).
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3.5. Quantification of Biofilm in Microtiter Plates

The quantitative assessment of the biofilm showed that most of the strains tested (96%,
n = 23) produced biofilm, and among the tested isolates, 54% (n = 13) were characterized
by high biofilm production, 25% (n = 6) were classified as medium, and 17% (n = 4) as poor
biofilm producers. One strain (4%) did not form a biofilm (Figure 3).
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3.6. Phenotypic Characterization of Slime Producing Ability on CRA

A positive result of the CRA test showed that all tested strains (100%, n = 24) produced
slime to a different degree, 38% (n = 9) formed very black (vb) colonies, 21% (n = 5)
produced black colonies (b) and 42% (n = 10) formed almost black (ab) colonies (Figure 4).
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3.7. MSCRAMMs

In the studied group of isolates, the most common genes were those encoding the
bound coagulase (clfA and clfB), fnbA (encoding fibronectin binding protein A), fnbB (en-
coding fibronectin binding protein B) and elastin binding protein (ebpS), which were de-
tected in all 100% of the strains (n = 24). In contrast, the gene encoding laminin (eno) and
fibrinogen binding protein (fib) were present in 79% (n = 19) and the gene encoding colla-
gen binding protein (cna) in 67% (n = 16) of the specimens. The bone sialoprotein binding
protein (bbp) gene was detected in 54% of the isolates (n = 13) (Figure 5). The most com-
mon characteristic genotype was bbp/cna/eno/ebpS/fnbA/fib/clfA/clfB/icaA/icaD, observed
in 20.8% (n = 5) of isolates, followed by cna/eno/ebpS/fnbA/fib/clfA/clfB/icaA/icaD and
bbp/eno/ebpS/fnbA/fib/clfA/clfB/icaA/icaD genotypes occurring in 16.8% (n = 4) of isolates.
The genotypes eno/ebpS/fnbA/fnbB/fib/clfA/clfB/icaA/icaD, eno/ebpS/fnbA/fib/clfA/clfB/
icaA/icaD, bbp/cna/eno/ebpS/fnbA/clfA/clfB/icaA/icaD and cna/ebpS/fnbA/fnbB/clfA/clfB/
icaA/icaD were detected in 8.3% (n = 2) of the tested strains. The least common genotypes were
cna/ebpS/fnbA/fnbB/fib/clfA/clfB/icaA/icaD, bbp/cna/ebpS/fnbA/fnbB/fib/clfA/clfB/icaA/
icaD, bbp/cna/ebpS/fnbA/fnbB/clfA/clfB/icaA/icaD, which were found in one isolate (4.2%)
(Figure 6). A detailed analysis of individual genotypes was performed for TT-derived strains
from three patients colonized simultaneously with two S. aureus clones, including patient no.
23 (strain no TT_23 [1] and TT_23 [2]); patient no. 28 (strain no. TT_28 [1] and TT_28 [2]); and
patient no. 31 (strain no. TT_31 [1] and TT_31 [2]). For patient no. 23, the tested isolates did not
differ in genotype (no. TT_23 [1] and TT_23 [2]), and similarly, for patient no. 31, the isolates (no.
TT_31 [1] and TT_31 [2]) had an identical genotype. The only difference involving the genotype
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was the presence of the bbp gene in the isolates (no. TT_28 [1] and TT_28 [2]) originating from
patient no. 28 (Figure 2).
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3.8. icaAD Genes

By amplifying genes A and D from the ica operon, it was found that 100% (n = 24) of
the tested strains had both genes tested (Figure 4).

3.9. Scanning Electron Microscopy (SEM)

The formed biofilm was observed using a scanning electron microscope (Figure 7). The
study confirmed the ability of S. aureus to adhere to abiotic surfaces and showed diversity
in the number of bacteria adhering to both biomaterial surfaces. A significantly larger
number of single S. aureus cells was found on the inner surface of the PVC biomaterial. On
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the other hand, single S. aureus cells and bacterial biofilm were observed on the outer side
of the PE. In the case of tracheostomy tubes made of PVC and PE, the presence of single
bacterial cells was demonstrated on the external surfaces.
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4. Discussion

Researchers frequently discuss the role of S. aureus bacterial biofilm in the course of
infections associated with the use of medical devices made of biomaterials [6,11,27].

The ability of staphylococci to produce biofilm significantly increases the tolerance of
the immune system of the host and is the cause of numerous human infections. In addi-
tion, biofilm structures provide protection against antimicrobial agents and significantly
reduce the sensitivity to antibiotics; therefore, the applied antibiotic therapy becomes less
effective [28,29].

The results presented and discussed below were collected and considered in terms of
assessing the biofilm formation capacity of S. aureus isolates derived from tracheostomy
tubes from hospitalized adult tracheostomy patients. The research was carried out using
both phenotypic and genotypic methods.

Typing S. aureus with PFGE is widely used for the purposes of epidemiological anal-
ysis [30]. On the basis of the PFGE results obtained during this study, a large genetic
diversity of S. aureus strains was found. In the studied group, only one clonal line was
observed among the MRSA and MSSA strains. The results obtained in our study are very
difficult to compare with those of other authors because, to the best of our knowledge, no
one has ever genotyped S. aureus strains isolated from tracheostomy tube swabs obtained
from patients after tracheostomy.

The results of drug resistance studies showed that only 8% of the tested S. aureus
strains had the MRSA phenotype. Moreover, 50% of the tested strains showed resistance
to chloramphenicol, 25% to erythromycin, 17% to tetracycline, 8% to clindamycin and
4% to norfloxacin, ciprofloxacin, moxifloxacin and ofloxacin. In contrast, the group of
Jain et al. tested 79 S. aureus isolates, 63.29% of which were MRSA strains. The isolates
came from infections related to orthopedic implants. The study population showed high
resistance to erythromycin (82%), levofloxacin (72%), clindamycin and gentamicin (62%),
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trimethoprim-sulfamethoxazole (40%), amikacin (20%) and no vancomycin-resistant strains
were found [31]. On the other hand, the team of Zariza et al. surveyed a student population
for carriers of S. aureus in the nose. A total of 15% of the isolated strains showed the MRSA
phenotype. A total of 20% were resistant to erythromycin, and none were resistant to
moxifloxacin, vancomycin, or chloramphenicol [32]. The above findings demonstrate that
the strains analyzed in this study exhibited high resistance to antibiotics from the groups of
macrolides, lincosamides and streptogramins, tetracyclines and other antibiotics such as
chloramphenicol. Resistance to macrolides, lincosamides and streptogramin B (phenotype
MLSB) is caused by methylation of the target site of action and leads to cross-resistance of
bacteria to all antibiotics in this class. We distinguish two MLSB mechanisms. The inducible
one (iMLSB) can be encoded by small multi-copy plasmids and in the chromosomal DNA of
bacteria, while the constitutive MLSB (cMLSB) type is plasmid-encoded. Chloramphenicol
resistance is most often due to the activity of chloramphenicol acetyltransferase (CAT). It is
encoded by a group of small multicopy plasmids. Plasmid transfer of resistance genes in
S. aureus greatly facilitates transmission to other strains [33]. However, it should be noted
that the limited number of isolates tested is not representative of the entire population;
therefore, the strains tested are a limitation in estimating the percentage of resistance to the
antibiotics tested.

In the crystal violet method, the obtained results showed that 96% of the strains formed
a biofilm. The obtained results differ to some extent from the results of studies published
in 2006 by Mathur et al., which showed that, among the tested Staphylococcus spp. strains
isolated from blood, medical devices and skin surface, 14.47% of isolates formed large
biofilm, 39.4% average, and 46% of the strains showed little or no biofilm production [34].
Furthermore, the team of Piechota et al. examined a collection of clinical isolates of S. aureus
obtained from swabs of wounds, nose, anus, throat, tracheostomy tubes, catheters, blood,
urine, abscesses, bronchoalveolar lavage and sputum, among which 36.9% were strong,
49.2% medium and 13.1% poor biofilm producers. In that study, three strains were also
isolated from tracheostomy tubes. They were able to produce strong (66.7%) and moderate
(33.3%) biofilms [11].

The results obtained from the CRA test showed a higher proportion of strains capable
of producing mucus (100%) than the results of the experiment carried out by Arciola et al.
in which 57.5% of the isolates produced mucus [24]. A positive test result for 45.5% was
obtained by Nasr et al. [35]. The discrepancies may be due to the source of the isolated
strains. In this study, all isolates came from tracheostomy tubes, while Nasr et al. isolated
S. aureus from vascular catheters and from blood. In contrast, the group of Arciola et al.
isolated S. aureus from orthopedic devices. Moreover, it should be emphasized that the
CRA method is burdened with a certain error related to the subjective assessment of the
color by the experimenter and the large color differentiation by bacterial colonies; therefore,
the obtained results may be difficult to compare between the centers.

MSCRAMM adhesins are the main factors responsible for the formation of bacterial
biofilm and play an important role in the pathogenicity of S. aureus strains. However,
the role of these proteins in the pathogenesis of staphylococcal infections in patients with
tracheostomy is still little known; therefore, in this study, research was undertaken to detect
genes coding for them. There was a large variation in the frequency of adhesin-coding
genes among the tested S. aureus. In the studied pool of strains, the clf A and clf B genes
were characterized by the highest percentage of occurrence and were detected in all strains.
The results of the research team led by Ghasemian are consistent with the obtained results
because they also detected the presence of clf A and clf B genes in all tested strains isolated
from hospitalized children with systemic infections [27]. The clfA and clfB proteins have
been well studied and many of their functions have been detected in the pathogenesis of
S. aureus. They participate in endocarditis, bacteremia or pyonephrosis [28]. Additionally,
clfB is a surface protein that plays an important role in the colonization of the nasal cavity.
This is due to its high affinity for cytokeratin 10, which occurs in keratinocytes (basal
epithelium) [36]. Animal models also confirm that clf proteins are a virulence factor in
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endocarditis [28]. Moreover, the eno (96%), ebpS (83%) and cna (67%) genes were most often
detected in the studied pool of strains. Subsequently, the cna, eno and ebpS genes were
characterized by a frequency of 70%. In the work of Galant et al., the genes eno, ebpS and
cna were detected in 52%, 26.4% and 16.4% of S. aureus isolates isolated from patients with
chronic osteomyelitis, respectively [37]. On the other hand, the study by Ghasemian et al.
showed the presence of eno, cna and ebpS in 82%, 63% and 9% of the strains, respectively [27].
The protein encoded by the cna gene plays an important role in keratitis in an animal
model [38]. Moreover, along with clf A, it is involved in joint infections and bacteremia [39].
The eno protein allows it to bind to laminin, which is the main component of the basal
membrane of blood vessels, which facilitates adherence to the walls of blood vessels and
may contribute to the invasion of other tissues and organs [40]. Moreover, the ebpS gene
encodes an elastin binding protein, which is an important component of the elastic fiber of
the extracellular matrix [41]. The combination of the eno and ebpS genes may contribute to
the high human tissue colonization capacity. All strains showed the presence of the fnbA
gene and 29.2% strains had the fnbB gene. However, the fib gene was detected in 79% of
the strains, which is partially similar to Ghasemian et al., who confirmed the presence of
the genes fnbA in 63%, fnbB in 6% and fib in 50% of the examined S. aureus isolates [27].
The most common genotype was bbp/cna/eno/ebpS/fnbA/fib/clf A/clf B/icaA/icaD, which
occurs in 21% of the tested isolates and contained the complete set of genes detected.

The A and D genes from the ica operon were detected in all the strains characterized,
indicating that these strains are capable of synthesizing polysaccharide intercellular adhesin
(PIA). The team of Piechota et al. tested clinical isolates of S. aureus for the detection of genes
A and D from the ica operon, 98% of which had icaA and 96% had icaD [11]. In contrast, in
the studies of Nasr et al., the frequency of icaAD detection was 32% among 50 tested isolates
from intravascular catheters and blood [35]. In comparison, Nourbakhsh et al. detected
the above-mentioned genes in S. aureus, with the frequency of icaA at 34.2% and icaD at
54.8%. The researchers isolated the tested strains from blood, bedsores, wounds, abscesses,
tracheal secretions, catheters, synovial fluid, and cerebrospinal fluid [42]. However, one of
the tested strains, despite the presence of the icaAD genes, did not produce a biofilm. This
is consistent with the literature reports, which indicate that despite the presence of genes in
the ica locus, they are not able to produce biofilm. The mechanism of the test is not fully
understood [43–45].

The conducted research provides new information on S. aureus colonizing tracheostomy
tubes. The detection of genes from the MSCRAMM family could help to understand the
most common proteins on the surface of bacteria, and thus lead to the development of new
biomaterials to prevent or limit bacterial infections associated with biomaterials.

5. Conclusions

It has been shown that S. aureus found on the surface of tracheostomy tubes shows
a large variety of clonal strains, high biofilm production capacity and high resistance to
certain groups of antibiotics. The present results suggest that these bacteria may come
from the endogenous flora of patients. At the same time, the high frequency of occurrence
of some genes encoding surface proteins from the MSCRAMM family makes the strains
capable of colonizing a wide spectrum of tissues in hospitalized patients. However, no
relationship was found between the high biofilm formation capacity of the tested strains
and the incidence of surface proteins from the MSCRAMM family. The actual role of these
genes in the pathogenesis of respiratory staphylococcal infection in patients undergoing
tracheostomy remains largely unknown.
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